2
|
Lorton O, Guillemin PC, M’Rad Y, Peloso A, Boudabbous S, Charbonnier C, Holman R, Crowe LA, Gui L, Poletti PA, Ricoeur A, Terraz S, Salomir R. A Novel Concept of a Phased-Array HIFU Transducer Optimized for MR-Guided Hepatic Ablation: Embodiment and First In-Vivo Studies. Front Oncol 2022; 12:899440. [PMID: 35769711 PMCID: PMC9235567 DOI: 10.3389/fonc.2022.899440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose High-intensity focused ultrasound (HIFU) is challenging in the liver due to the respiratory motion and risks of near-/far-field burns, particularly on the ribs. We implemented a novel design of a HIFU phased-array transducer, dedicated to transcostal hepatic thermo-ablation. Due to its large acoustic window and strong focusing, the transducer should perform safely for this application. Material and Methods The new HIFU transducer is composed of 256 elements distributed on 5 concentric segments of a specific radius (either 100, 111, or 125 mm). It has been optimally shaped to fit the abdominal wall. The shape and size of the acoustic elements were optimized for the largest emitting surface and the lowest symmetry. Calibration tests have been conducted on tissue-mimicking gels under 3-T magnetic resonance (MR) guidance. In-vivo MR-guided HIFU treatment was conducted in two pigs, aiming to create thermal ablation deep in the liver without significant side effects. Imaging follow-up was performed at D0 and D7. Sacrifice and post-mortem macroscopic examination occurred at D7, with the ablated tissue being fixed for pathology. Results The device showed −3-dB focusing capacities in a volume of 27 × 46 × 50 mm3 as compared with the numerical simulation volume of 18 × 48 × 60 mm3. The shape of the focal area was in millimeter-range agreement with the numerical simulations. No interference was detected between the HIFU sonication and the MR acquisition. In vivo, the temperature elevation in perivascular liver parenchyma reached 28°C above physiological temperature, within one breath-hold. The lesion was visible on Gd contrast-enhanced MRI sequences and post-mortem examination. The non-perfused volume was found in pig #1 and pig #2 of 8/11, 6/8, and 7/7 mm along the LR, AP, and HF directions, respectively. No rib burns or other near-field side effects were visually observed on post-mortem gross examination. High-resolution contrast-enhanced 3D MRI indicated a minor lesion on the sternum. Conclusion The performance of this new HIFU transducer has been demonstrated in vitro and in vivo. The transducer meets the requirement to perform thermal lesions in deep tissues, without the need for rib-sparing means.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Orane Lorton,
| | - Pauline C. Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yacine M’Rad
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Sana Boudabbous
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Caecilia Charbonnier
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Medical Research Department, Artanim Foundation, Geneva, Switzerland
| | - Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lindsey A. Crowe
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Laura Gui
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Alexis Ricoeur
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Sylvain Terraz
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Zhang Y, Yong L, Luo Y, Ding X, Xu D, Gao X, Yan S, Wang Q, Luo J, Pu D, Zou J. Enhancement of HIFU ablation by sonosensitizer-loading liquid fluorocarbon nanoparticles with pre-targeting in a mouse model. Sci Rep 2019; 9:6982. [PMID: 31061456 PMCID: PMC6502828 DOI: 10.1038/s41598-019-43416-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
High intensity focused ultrasound (HIFU) is a noninvasive thermal ablation technique for the treatment of benign and malignant solid masses. To improve the efficacy of HIFU ablation, we developed poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating perfluoropentane (PFP) and hematoporphyrin monomethyl ether (HMME) as synergistic agents (HMME+PFP/PLGA). Two-step biotin-avidin pre-targeting technique was applied for the HIFU ablation. We further modified the nanoparticles with streptavidin (HMME+PFP/PLGA-SA). HMME+PFP/PLGA-SA were highly dispersed with spherical morphology (477.8 ± 81.8 nm in diameter). The encapsulation efficiency of HMME and PFP were 46.6 ± 3.3% and 40.1 ± 2.6%, respectively. The binding efficiency of nanoparticles to streptavidin was 95.5 ± 2.5%. The targeting ability of the HMME+PFP/PLGA-SA nanoparticles was tested by parallel plate flow chamber in vitro. In the pre-targeting group (HMME+PFP/PLGA-SA), a large number of nanoparticles bound to the peripheral and surface of the cell. In the HIFU ablation experiment in vivo, compared with the other groups, the largest gray-scale changes and coagulation necrosis areas were observed in the pre-targeting (HMME+PFP/PLGA-SA) group, with the lowest energy efficiency factor value. Moreover, the microvessel density and proliferation index declined, while the apoptotic index increased, in the tumor tissue surrounding the coagulation necrosis area in the pre-targeting group. Meanwhile, the survival time of the tumor-bearing nude mice in the pre-targeting group was significantly longer than that in the HIFU treatment group. These results suggest that HMME+PFP/PLGA-SA have high potential to act as synergistic agents in HIFU ablation.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Lijun Yong
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Yong Luo
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Xiaoya Ding
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Die Xu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Xuan Gao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Sijing Yan
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
- Department of Ultrasound, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Qi Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Jie Luo
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Darong Pu
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China.
| |
Collapse
|
5
|
Gray MD, Lyon PC, Mannaris C, Folkes LK, Stratford M, Campo L, Chung DYF, Scott S, Anderson M, Goldin R, Carlisle R, Wu F, Middleton MR, Gleeson FV, Coussios CC. Focused Ultrasound Hyperthermia for Targeted Drug Release from Thermosensitive Liposomes: Results from a Phase I Trial. Radiology 2019; 291:232-238. [PMID: 30644817 DOI: 10.1148/radiol.2018181445] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose To demonstrate the feasibility and safety of using focused ultrasound planning models to determine the treatment parameters needed to deliver volumetric mild hyperthermia for targeted drug delivery without real-time thermometry. Materials and Methods This study was part of the Targeted Doxorubicin, or TARDOX, phase I prospective trial of focused ultrasound-mediated, hyperthermia-triggered drug delivery to solid liver tumors ( ClinicalTrials.gov identifier NCT02181075). Ten participants (age range, 49-68 years; average age, 60 years; four women) were treated from March 2015 to March 2017 by using a clinically approved focused ultrasound system to release doxorubicin from lyso-thermosensitive liposomes. Ultrasonic heating of target tumors (treated volume: 11-73 cm3 [mean ± standard deviation, 50 cm3 ± 26]) was monitored in six participants by using a minimally invasive temperature sensor; four participants were treated without real-time thermometry. For all participants, CT images were used with a patient-specific hyperthermia model to define focused ultrasound treatment plans. Feasibility was assessed by comparing model-prescribed focused ultrasound powers to those implemented for treatment. Safety was assessed by evaluating MR images and biopsy specimens for evidence of thermal ablation and monitoring adverse events. Results The mean difference between predicted and implemented treatment powers was -0.1 W ± 17.7 (n = 10). No evidence of focused ultrasound-related adverse effects, including thermal ablation, was found. Conclusion In this 10-participant study, the authors confirmed the feasibility of using focused ultrasound-mediated hyperthermia planning models to define treatment parameters that safely enabled targeted, noninvasive drug delivery to liver tumors while monitored with B-mode guidance and without real-time thermometry. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Dickey and Levi-Polyachenko in this issue.
Collapse
Affiliation(s)
- Michael D Gray
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Paul C Lyon
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Christophoros Mannaris
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Lisa K Folkes
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Michael Stratford
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Leticia Campo
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Daniel Y F Chung
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Shaun Scott
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Mark Anderson
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Robert Goldin
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Robert Carlisle
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Feng Wu
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Mark R Middleton
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Fergus V Gleeson
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| | - Constantin C Coussios
- From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P.C.L., F.W.); Departments of Radiology (P.C.L., D.Y.F.C., M.A., F.V.G.) and Oncology (M.R.M.), Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England (L.K.F., M.S., L.C.); Nuffield Department of Anaesthetics, Oxford University Hospitals Foundation NHS Trust, Oxford, England (S.S.); and Centre for Pathology, Faculty of Medicine, Imperial College London, London, England (R.G.)
| |
Collapse
|