1
|
Angelou C, Patallo IS, Doherty D, Romano F, Schettino G. A review of diamond dosimeters in advanced radiotherapy techniques. Med Phys 2024; 51:9230-9249. [PMID: 39221583 DOI: 10.1002/mp.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
This review article synthesizes key findings from studies on the use of diamond dosimeters in advanced radiotherapy techniques, showcasing their applications, challenges, and contributions to enhancing dosimetric accuracy. The article explores various dosimeters, highlighting synthetic diamond dosimeters as potential candidates especially due to their high spatial resolution and negligible ion recombination effect. The clinically validated commercial dosimeter, PTW microDiamond (mD), faces limitations in small fields, proton and hadron therapy and ultra-high dose per pulse (UHDPP) conditions. Variability in reported values for field sizes < $<$ 2 × $\times$ 2cm 2 ${\rm cm}^2$ is noted, reflecting the competition between volume averaging and density perturbation effects. PTW's introduction of flashDiamond (fD) holds promise for dosimetric measurements in UHDPP conditions and is reliable for commissioning ultra-high dose rate (UHDR) electron beam systems, pending the clinical validation of the device. Other advancements in diamond detectors, such as in 3D configurations and real-time dose per pulse x-ray detectors, are considered valuable in overcoming challenges posed by modern radiotherapy techniques, alongside relative dosimetry and pre-treatment verifications. The studies discussed collectively provide a comprehensive overview of the evolving landscape of diamond dosimetry in the field of radiotherapy, and offer insights into future directions for research and development in the field.
Collapse
Affiliation(s)
- Christina Angelou
- Department of Physics, University of Surrey, Guildford, UK
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory (NPL), Teddington, UK
| | | | - Daniel Doherty
- Department of Physics, University of Surrey, Guildford, UK
| | - Francesco Romano
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, Catania, Italy
| | - Giuseppe Schettino
- Radiotherapy and Radiation Dosimetry, National Physical Laboratory (NPL), Teddington, UK
| |
Collapse
|
2
|
Kawata K, Hirashima H, Tsuruta Y, Sasaki M, Matsushita N, Fujimoto T, Nakamura M, Nakata M. Applicability evaluation of the TRS-483 protocol for the determination of small-field output factors using different multi-leaf collimator and field-shaping types. Phys Med 2023; 113:102664. [PMID: 37573811 DOI: 10.1016/j.ejmp.2023.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE To evaluate the applicability of TRS-483 output correction factors (CFs) for small-field output factors (OFs) using different multi-leaf collimators (MLC) and field-shaping types. METHODS All measurements were performed on TrueBeam, TrueBeam STx, and Halcyon using 6 MV flattening filter-free energy. Four detectors, including CC01, CC04, microDiamond, and EDGE, were used. Nominal field sizes ranging from 1 × 1 to 4 × 4, and 10 × 10 cm2 were used to measure small-field OFs at source-to-axis distance of 100 cm with a 0° gantry angle in a 3D water phantom. Further, the field-shaping types were defined using jaw collimator or MLC (five different configurations). A field size of 10 × 10 cm2 was used as the reference for calculation of OFs obtained as ratio of detector readings (OFdet). The percentage difference and coefficient of variation of OFdet and OFdet corrected by applying CF were compared for each field size and configuration. RESULTS For OFdet corrected by applying CF, the ranges of percentage difference and coefficient of variation in all configurations for ≥ 2 × 2 cm2 fields were reduced from 1.2-2.2 to 0.8-1.3 percentage points (%pt) and from 0.5-1.0 to 0.4-0.7%, respectively. For 1 × 1 cm2 field, the ranges of percentage difference and coefficient of variation were reduced from 3.3-5.7 to 1.2-2.2 %pt and from 2.2-3.7 to 0.8-1.1%, respectively. CONCLUSIONS The CFs described in TRS-483 dosimetry protocol have broad applicability in reducing OF variations between detectors under different MLC and field-shaping types.
Collapse
Affiliation(s)
- Kohei Kawata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | - Yusuke Tsuruta
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan; Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Makoto Sasaki
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Norimasa Matsushita
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan; Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Manabu Nakata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
3
|
Guo Y, Hu J, Li Y, Ran J, Cai H. Correlation between patient-specific quality assurance in volumetric modulated arc therapy and 2D dose image features. Sci Rep 2023; 13:4051. [PMID: 36899027 PMCID: PMC10006091 DOI: 10.1038/s41598-023-30719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
In radiotherapy, air-filled ion chamber detectors are ubiquitously used in routine dose measurements for treatment planning. However, its use has been restricted by intrinsic low spatial resolution barriers. We developed one procedure for patient-specific quality assurance (QA) in arc radiotherapy by coalescing two adjacent measurement images into a single image to improve spatial resolution and sampling frequency, and investigated how different spatial resolutions affect the QA results. PTW 729 and 1500 ion chamber detectors were used for dosimetric verification via coalescing two measurements with 5 mm-couch shift and the isocenter, and only isocenter measurement, which we call coalescence and standard acquisition (SA). Statistical process control (SPC), process capability analysis (PCA), and receiver operating characteristic (ROC) curve were used to compare the performance of the two procedures in determining tolerance levels and identifying clinically relevant errors. By analyzing 1256 γ values calculated on interpolated data points, our results indicated that detector 1500 showed higher averages in coalescence cohorts at different tolerance criteria and the dispersion degrees were spread out smaller. Detector 729 yielded a slightly lower process capability of 0.79, 0.76, 1.10, and 1.34, but detector 1500 exhibited somewhat different results of 0.94, 1.42, 1.19, and 1.60 in magnitude. The results of SPC individual control chart showed that cases in coalescence cohorts with γ values lowering its lower control limit (LCL) were greater than those in SA cohorts for detector 1500. A combination of the width of multi-leaf collimator (MLC) leaf, the cross-sectional area of the single detector, and the spacing between adjacent detectors might lead to discrepancies in percent γ values across diverse spatial resolution scenarios. The accuracy of reconstructed volume dose is mainly determined by the interpolation algorithm used in dosimetric systems. The magnitude of filling factor in the ion chamber detectors determined its ability to detect dose deviations. SPC and PCA results indicated that coalescence procedure could detect more potential failure QA results than SA while enhancing action thresholds.
Collapse
Affiliation(s)
- Yixiao Guo
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyan Hu
- Department of Oncology, Longhua District People's Hospital, Shenzhen, 518109, People's Republic of China
| | - Yang Li
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, 261000, People's Republic of China
| | - Juntao Ran
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongyi Cai
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
4
|
Andersson P, Swanpalmer J, Palm Å, Båth M, Chakarova R. Cylindrical ionization chamber response in static and dynamic 6 and 15 MV photon beams. Biomed Phys Eng Express 2023; 9. [PMID: 36689763 DOI: 10.1088/2057-1976/acb553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Purpose.To investigate the response of the CC13 ionization chamber under non-reference photon beam conditions, focusing on penumbra and build-up regions of static fields and on dynamic intensity-modulated beams.Methods. Measurements were performed in 6 MV 100 × 100, 20 × 100, and 20 × 20 mm2static fields. Monte Carlo calculations were performed for the static fields and for 6 and 15 MV dynamic beam sequences using a Varian multi-leaf collimator. The chamber was modelled using EGSnrc egs_chamber software. Conversion factors were calculated by relating the absorbed dose to air in the chamber air cavity to the absorbed dose to water. Correction and point-dose correction factors were calculated to quantify the conversion factor variations.Results. The correction factors for positions on the beam central axis and at the penumbra centre were 0.98-1.02 for all static fields and depths investigated. The largest corrections were obtained for chamber positions beyond penumbra centre in the off-axis direction. Point-dose correction factors were 0.54-0.71 at 100 mm depth and their magnitude increased with decreasing field size and measurement depth. Factors of 0.99-1.03 were obtained inside and near the integrated penumbra of the dynamic field at 100 mm depth, and of 0.92-0.94 beyond the integrated penumbra centre. The variations in the ionization chamber response across the integrated dynamic penumbra qualitatively followed the behaviour across penumbra of static fields.Conclusions. Without corrections, the CC13 chamber was of limited usefulness for profile measurements in 20-mm-wide fields. However, measurements in dynamic small irregular beam openings resembling the conditions of pre-treatment patient quality assurance were feasible. Uncorrected ionization chamber response could be applied for dose verification at 100 mm depth inside and close to large gradients of dynamically accumulating high- and low-dose regions assuming 3% tolerance between measured and calculated doses.
Collapse
Affiliation(s)
- P Andersson
- Sahlgrenska Academy, Institute of Clinical Sciences, Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden.,RISE Research Institutes of Sweden, Materials and Production, Gothenburg, Sweden
| | - J Swanpalmer
- Sahlgrenska Academy, Institute of Clinical Sciences, Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Å Palm
- Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M Båth
- Sahlgrenska Academy, Institute of Clinical Sciences, Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - R Chakarova
- Sahlgrenska Academy, Institute of Clinical Sciences, Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Das IJ, Dogan SK, Gopalakrishnan M, Ding GX, Longo M, Franscescon P. Validity of equivalent square field concept in small field dosimetry. Med Phys 2022; 49:4043-4055. [PMID: 35344220 DOI: 10.1002/mp.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The equivalent Square (ES) concept has been used for traditional radiation fields defined by the machine collimating system. For small fields, the concept Sclin was introduced based on measuring dosimetric field width (full-width half maximum, FWHM) of the cardinal axis of the beam profiles. The pros and cons of this concept are evaluated in small fields and compared with the traditional ES using area and perimeter (4A/P) method based on geometric field size settings e.g. light field settings. METHODS One hundred thirty-seven square and rectangular fields from 5-50 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 mm to 50 mm) were utilized to measure FWHM for the validation of Sclin . Using a microSilicon detector and a scanning water tank, measurements were performed on an Elekta (Versa) machine with Agility head and a Varian TrueBeam with different MLC/Jaw design to evaluate the Sclin concept and to understand the effect of exchange factor in small fields. Field output factors were also measured for all 137 fields. RESULTS The data fitting for fields ranging from 5-50 mm between the traditional 4A/P method and Sclin shows differences and indicates a linear relationship with distinct separation of slope for Elekta and Varian machines. As Elekta does not have y jaws, the ES based on 4A/P < Sclin but for the Varian linac 4A/P > Sclin for square fields. Our measured data shows that both methods are equally valid but does vary by the machine design. The field output factor is dependent on the elongation factor as well as machine design. For fields with sides ≥10 mm, the exchange factor is nearly identical in both machines with magnitude up to 4% which is close to measurement uncertainty (±3%) but for small fields (<10 mm) the Elekta machine has higher exchange factors compared to the Varian machine. CONCLUSION The results demonstrate that the two concepts for defining equivalent field (Sclin and 4A/P) are equivalent and can be directly related through an empirical equation. This study confirms that 4A/P is still valid for small fields except for very small fields (≤10 mm) where source occlusion is a dominating factor. The Sclin method is potentially sensitive to measurement uncertainty due to measurement of FWHM which is machine, detector and user dependent, while the 4A/P method relies mainly on geometry of the machine and has less dependency on type of machine, detector and user. The exchange factors are comparable for both types of machines. The conclusion is based on data from an Elekta with Agility head and a Varian TrueBeam machine that may have potential for bias due to light field/collimator set up and alignment. Care should be taken in extrapolating these data to any other machine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mahesh Gopalakrishnan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Mariaconcetta Longo
- Department of Radiation Oncology Ospedale Di Vicenza, Viale Rodolfi, Vicenza, 36100, Italy
| | - Paolo Franscescon
- Department of Radiation Oncology Ospedale Di Vicenza, Viale Rodolfi, Vicenza, 36100, Italy
| |
Collapse
|
6
|
McManus M, Romano F, Royle G, Botnariuc D, Shipley D, Palmans H, Subiel A. Determination of beam quality correction factors for the Roos plane-parallel ionisation chamber exposed to very high energy electron (VHEE) beams using Geant4. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5a94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Detailed characterisation of the Roos secondary standard plane-parallel ionisation chamber has been conducted in a novel 200 MeV Very High Energy Electron (VHEE) beam with reference to the standard 12 MeV electron calibration beam used in our experimental work. Stopping-power-ratios and perturbation factors have been determined for both beams and used to calculated the beam quality correction factor using the Geant4 general purpose MC code. These factors have been calculated for a variety of charged particle transport parameters available in Geant4 which were found to pass the Fano cavity test. Stopping-power-ratios for the 12 MeV electron calibration beam quality were found to agree within uncertainties to that quoted by current dosimetry protocols. Perturbation factors were found to vary by up-to 4% for the calibration beam depending on the parameter configuration, compared with only 0.8% for the VHEE beam. Beam quality correction factors were found to describe an approximately 10% lower dose than would be originally calculated if a beam quality correction were not accounted for. Moreover, results presented here largely resolve unphysical chamber measurements, such as collection efficiencies greater than 100%, and assist in the accurate determination of absorbed dose and ion recombination in secondary standard ionisation chambers.
Collapse
|
7
|
Dobberthien B, Cao F, Zhao Y, Harvey E, Badragan G. Effect of inaccurate small field output factors on brain SRS plans. Biomed Phys Eng Express 2022; 8. [PMID: 35021167 DOI: 10.1088/2057-1976/ac4a85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
External beam radiotherapy often includes the use of field sizes 3 × 3 cm2or less, which can be defined as small fields. Dosimetry is a difficult, yet important part of the radiotherapy process. The dosimetry of small fields has additional challenges, which can lead to treatment inconsistencies if not done properly. Most important is the use of an appropriate detector, as well as the application of the necessary corrections. The International Atomic Energy Agency and the American Association of Physicists in Medicine provide the International Code of Practice (CoP) TRS-483 for the dosimetry of small static fields used in external MV photon beams. It gives guidelines on how to apply small-field correction factors for small field dosimetry. The purpose of this study was to evaluate the impact of inaccurate small-field output factors on clinical brain stereotactic radiosurgery plans with and without applying the small-field correction factors as suggested in the CoP. Small-field correction factors for a Varian TrueBeam linear accelerator were applied to uncorrected relative dose factors. Uncorrected and corrected clinical plans were created with two different beam configurations, 6 MV with a flattening filter (6 WFF) and 6 MV without a flattening filter (6 FFF). For the corrected plans, the planning target volume mean dose was 1.6 ± 0.9% lower with p < 0.001 for 6 WFF and 1.8 ± 1.5% lower with p < 0.001 for 6 FFF. For brainstem, a major organ at risk, the corrected plans had a dose that was 1.6 ± 0.9% lower with p = 0.03 for 6 WFF and 1.8 ± 1.5% lower with p = 0.10 for 6 FFF. This represents a systematic error that should and can be corrected.
Collapse
Affiliation(s)
- Brennen Dobberthien
- Radiation Medical Physics, BC Cancer Agency Fraser Valley Centre, 13750 96th Ave., Surrey, British Columbia, V3V 1Z2, CANADA
| | - Fred Cao
- Radiation Physics, BC Cancer Agency Fraser Valley Centre, 13750 96th Ave, Surrey, British Columbia, V3V 1Z2, CANADA
| | - Yingli Zhao
- Radiation Medical Physics, BC Cancer Agency Fraser Valley Centre, 13750 96th Ave., Surrey, British Columbia, V3V 1Z2, CANADA
| | - Eric Harvey
- Radiation Medical Physics, BC Cancer Agency Fraser Valley Centre, 13750 96th Ave., Surrey, British Columbia, V3V 1Z2, CANADA
| | - Genoveva Badragan
- Radiation Medical Physics, BC Cancer Agency Fraser Valley Centre, 13750 96th Ave., Surrey, British Columbia, V3V 1Z2, CANADA
| |
Collapse
|
8
|
Jurado-Bruggeman D, Muñoz-Montplet C, Hernandez V, Saez J, Fuentes-Raspall R. Impact of the dose quantity used in MV photon optimization on dose distribution, robustness, and complexity. Med Phys 2021; 49:648-665. [PMID: 34855988 DOI: 10.1002/mp.15389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/09/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Convolution/superposition algorithms used in megavoltage (MV) photon radiotherapy model radiation transport in water, yielding dose to water-in-water (Dw,w ). Advanced algorithms constitute a step forward, but their dose distributions in terms of dose to medium-in-medium (Dm,m ) or dose to water-in-medium (Dw,m ) can be problematic when used in plan optimization due to their different dose responses to some atomic composition heterogeneities. Failure to take this into account can lead to undesired overcorrections and thus to unnoticed suboptimal and unrobust plans. Dose to reference-like medium (Dref,m* ) was recently introduced to overcome these limitations while ensuring accurate transport. This work evaluates and compares the performance of these four dose quantities in planning target volume (PTV)-based optimization. METHODS We considered three cases with heterogeneities inside the PTV: virtual phantom with water surrounded by bone; head and neck; and lung. These cases were planned with volumetric modulated arc therapy (VMAT) technique, optimizing with the same setup and objectives for each dose quantity. We used different algorithms of the Varian Eclipse treatment planning system (TPS): Acuros XB (AXB) for Dm,m and Dw,m , and Analytical Anisotropic Algorithm (AAA) for Dw,w . Dref,m* was obtained from Dm,m distributions using an in-house software considering water as the reference medium (Dw,m* ). The optimization process consisted of: (1) common first optimization, (2) dose distribution computed for each quantity, (3) re-optimization, and (4) final calculation for each dose quantity. The dose distribution, robustness to patient setup errors, and complexity of the plans were analyzed and compared. RESULTS The quantities showed similar dose distributions after the optimization but differed in terms of plan robustness. The cases with soft tissue and high-density heterogeneities followed the same pattern. For AXB Dm,m , cold regions appeared in the heterogeneities after the first optimization. They were compensated in the second optimization through local fluence increases, but any positional mismatch impacted robustness, with clinical target volume (CTV) variations from the nominal scenario around +3% for bone and up to +7% for metal. For AXB Dw,m the pattern was inverse (hot regions compensated by fluence decreases) and more pronounced, with CTV dose variations around -7% for bone and up to -17% for metal. Neither AXB Dw,m* nor AAA Dw,w presented these dose inhomogeneities, which resulted in more robust plans. However, Dw,w differed markedly from the other quantities in the lung case because of its lower radiation transport accuracy. AXB Dm,m was the most complex of the four dose quantities and AXB Dw,m* the least complex, though we observed no major differences in this regard. CONCLUSIONS The dose quantity used in MV photon optimization can affect plan robustness. Dw,w distributions from convolution/superposition algorithms are robust but may not provide sufficient radiation transport accuracy in some cases. Dm,m and Dw,m from advanced algorithms can compromise robustness because their different responses to some composition heterogeneities introduce additional fluence compensations. Dref,m* offers advantages in plan optimization and evaluation, producing accurate and robust plans without increasing complexity. Dref,m* can be easily implemented as a built-in feature of the TPS and can facilitate and simplify the treatment planning process when using advanced algorithms. Final reporting can be kept in Dm,m or Dw,m for clinical correlations.
Collapse
Affiliation(s)
- Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain
| | - Carles Muñoz-Montplet
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain.,Department of Medical Sciences, University of Girona, Girona, Spain
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain.,Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Fuentes-Raspall
- Department of Medical Sciences, University of Girona, Girona, Spain.,Radiation Oncology Department, Institut Català d'Oncologia, Girona, Spain
| |
Collapse
|
9
|
Cervantes Y, Duchaine J, Billas I, Duane S, Bouchard H. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams. Phys Med Biol 2021; 66. [PMID: 34700311 DOI: 10.1088/1361-6560/ac3344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023]
Abstract
Objective.With future advances in magnetic resonance imaging-guided radiation therapy, small photon beams are expected to be included regularly in clinical treatments. This study provides physical insights on detector dose-response to multiple megavoltage photon beam sizes coupled to magnetic fields and determines optimal orientations for measurements.Approach.Monte Carlo simulations determine small-cavity detector (solid-state: PTW60012 and PTW60019, ionization chambers: PTW31010, PTW31021, and PTW31022) dose-responses in water to an Elekta Unity 7 MV FFF photon beam. Investigations are performed for field widths between 0.25 and 10 cm in four detector axis orientations with respect to the 1.5 T magnetic field and the photon beam. The magnetic field effect on the overall perturbation factor (PMC) accounting for the extracameral components, atomic composition, and density is quantified in each orientation. The density (Pρ) and volume averaging (Pvol) perturbation factors and quality correction factors (kQB,QfB,f) accounting for the magnetic field are also calculated in each orientation.Main results.Results show thatPvolremains the most significant perturbation both with and without magnetic fields. In most cases, the magnetic field effect onPvolis 1% or less. The magnetic field effect onPρis more significant on ionization chambers than on solid-state detectors. This effect increases up to 1.564 ± 0.001 with decreasing field size for chambers. On the contrary, the magnetic field effect on the extracameral perturbation factor is higher on solid-state detectors than on ionization chambers. For chambers, the magnetic field effect onPMCis only significant for field widths <1 cm, while, for solid-state detectors, this effect exhibits different trends with orientation, indicating that the beam incident angle and geometry play a crucial role.Significance.Solid-state detectors' dose-response is strongly affected by the magnetic field in all orientations. The magnetic field impact on ionization chamber response increases with decreasing field size. In general, ionization chambers yieldkQB,QfB,fcloser to unity, especially in orientations where the chamber axis is parallel to the magnetic field.
Collapse
Affiliation(s)
- Yunuen Cervantes
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Jasmine Duchaine
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Ilias Billas
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom.,Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Simon Duane
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| |
Collapse
|
10
|
Hartmann GH, Andreo P, Kapsch RP, Zink K. Cema-based formalism for the determination of absorbed dose for high-energy photon beams. Med Phys 2021; 48:7461-7475. [PMID: 34613620 DOI: 10.1002/mp.15266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Determination of absorbed dose is well established in many dosimetry protocols and considered to be highly reliable using ionization chambers under reference conditions. If dosimetry is performed under other conditions or using other detectors, however, open questions still remain. Such questions frequently refer to appropriate correction factors. A converted energy per mass (cema)-based approach to formulate such correction factors offers a good understanding of the specific response of a detector for dosimetry under various measuring conditions and thus an estimate of pros and cons of its application. METHODS Determination of absorbed dose requires the knowledge of the beam quality correction factor kQ,Qo , where Q denotes the quality of a user beam and Qo is the quality of the radiation used for calibration. In modern Monte Carlo (MC)-based methods, kQ,Qo is directly derived from the MC-calculated dose conversion factor, which is the ratio between the absorbed dose at a point of interest in water and the mean absorbed dose in the sensitive volume of an ion chamber. In this work, absorbed dose is approximated by the fundamental quantity cema. This approximation allows the dose conversion factor to be substituted by the cema conversion factor. Subsequently, this factor is decomposed into a product of cema ratios. They are identified as the stopping power ratio water to the material in the sensitive detector volume, and as the correction factor for the fluence perturbation of the secondary charged particles in the detector cavity caused by the presence of the detector. This correction factor is further decomposed with respect to the perturbation caused by the detector cavity and that caused by external detector properties. The cema-based formalism was subsequently tested by MC calculations of the spectral fluence of the secondary charged particles (electrons and positrons) under various conditions. RESULTS MC calculations demonstrate that considerable fluence perturbation may occur particularly under non-reference conditions. Cema-based correction factors to be applied in a 6-MV beam were obtained for a number of ionization chambers and for three solid-state detectors. Feasibility was shown at field sizes of 4 × 4 and 0.5 cm × 0.5 cm. Values of the cema ratios resulting from the decomposition of the dose conversion factor can be well correlated with detector response. Under the small field conditions, the internal fluence correction factor of ionization chambers is considerably dependent on volume averaging and thus on the shape and size of the cavity volume. CONCLUSIONS The cema approach is particularly useful at non-reference conditions including when solid-state detectors are used. Perturbation correction factors can be expressed and evaluated by cema ratios in a comprehensive manner. The cema approach can serve to understand the specific response of a detector for dosimetry to be dependent on (a) radiation quality, (b) detector properties, and (c) electron fluence changes caused by the detector. This understanding may also help to decide which detector is best suited for a specific measurement situation.
Collapse
Affiliation(s)
- Günther H Hartmann
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pedro Andreo
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Klemens Zink
- Institut fuer Medizinische Physik und Strahlenschutz (IMPS), University of Applied Sciences, Giessen, Giessen, Germany.,Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany.,Marburg Iontherapy Center (MIT), Marburg, Germany
| |
Collapse
|
11
|
Banos-Capilla MC, Lago-Martin JD, Gil P, Larrea LM. Sensitivity and specificity analysis of 2D small field measurement array: Patient-specific quality assurance of small target treatments and spatially fractionated radiotherapy. J Appl Clin Med Phys 2021; 22:104-119. [PMID: 34449110 PMCID: PMC8504597 DOI: 10.1002/acm2.13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/25/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
Purpose The aim of this paper is to describe the tests carried out on a SRSMapCheck array, to verify its reliability and sensitivity for quality assurance (QA) of high gradient treatments as an alternative system to the use of high spatial resolution detectors, such as gafchromic film, whose processing requires meticulous and time‐consuming procedures. Methods In an initial step, general functionality tests were carried out to verify that the equipment meets the manufacturer's specifications. A study of the accuracy of the application of correction factors to compensate for variation in detector response due to dose rate, field size and beam angle incidence has been included. Besides, to assess the ability of the array to detect inaccurately delivered treatments, systematic errors corresponding to the deviation in the position of the leaves and the accuracy of the gantry position, have been introduced. Based on these results, an estimate of sensitivity and specificity values of the device has been completed. The final step included a study applied to high gradient treatment for real cases of spatially fractionated radiotherapy, where the results of SRSMapCheck measurements have been compared with gafchromic films. Results General commissioning tests meet the manufacturer's specifications. dose rate (DR) response variation is better than 1.5% and for DR above 50 MU/min better than 1%. The results for beam incidences are better than 1% for all gantry angles, including beam incidences parallel to the array. Field size response differences are within the range of ±1% for sizes up to 2 × 2 cm2, with a maximum value obtained of 3.5%, for 1 × 1 cm2. From the systematic error study, using a Gamma function Γ (2%, 2 mm), the detector presents a high specificity with a value greater than 90% at its lower limit, while its sensitivity has a moderate mean value of 81%. Sensitivity values increase above 86% when we apply a Gamma function Γ (2%, 1 mm) is applied. Finally, the study of actual cases comprises 17 patients, distributed into 11 lung tumors, 3 gynecological and 3 soft tissue tumors. The gafchromic film showed a lower passing rate with an average value of Γ (2%, 2 mm) = 94.1% compared to Γ (2%, 2 mm) = 98.6% reached by the measurements with the array. Conclusions Gamma function obtained with the SRSMapCheck array always presented a higher value than gafchromic film measurements, resulting in a greater number of plans considered correct. This fact, together with the sensitivity and specificity study carried out, allows us to conclude the recommendation that a restrictive metric must be established, in this way we will improve sensitivity, and therefore we will reduce the rate of incorrect plans qualified as correct. The characteristics of the equipment together with the correction factors applied, led to reliably performing acquisitions for complex treatments with multiple small targets in oblique rotational incidences. The spatial resolution of detectors allows the verification of high gradient dose plans such as those achieved in spatially fractionated radiotherapy (SFRT).
Collapse
Affiliation(s)
- Maria Carmen Banos-Capilla
- Radiation Oncology Department, Hospital Vithas Consuelo, Valencia, Spain.,Mathematical and Fluid Physics Department, Faculty of Sciences, National University of Distance Education (UNED), Madrid, Spain
| | | | - Patricia Gil
- Radiation Oncology Department, Hospital Vithas Consuelo, Valencia, Spain
| | - Luis Maria Larrea
- Radiation Oncology Department, Hospital Vithas Consuelo, Valencia, Spain
| |
Collapse
|
12
|
De Martin E, Alhujaili S, Fumagalli ML, Ghielmetti F, Marchetti M, Gallo P, Aquino D, Padelli F, Davis J, Alnaghy S, Carrara M, Fariselli L, Rosenfeld AB, Petasecca M. On the evaluation of edgeless diode detectors for patient-specific QA in high-dose stereotactic radiosurgery. Phys Med 2021; 89:20-28. [PMID: 34343763 DOI: 10.1016/j.ejmp.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In this work, the potential of an innovative "edgeless" silicon diode was evaluated as a response to the still unmet need of a reliable tool for plan dosimetry verification of very high dose, non-coplanar, patient-specific radiosurgery treatments. In order to prove the effectiveness of the proposed technology, we focused on radiosurgical treatments for functional disease like tremor or pain. METHODS The edgeless diodes response has been validated with respect to clinical practice standard detectors by reproducing the reference dosimetry data adopted for the Treatment Planning System. In order to evaluate the potential for radiosurgery patient-specific treatment plan verification, the anthropomorphic phantom Alderson RANDO has been adopted along with three edgeless sensors, one placed in the centre of the Planning Target Volume, one superiorly and one inferiorly. RESULTS The reference dosimetry data obtained from the edgeless detectors are within 2.6% for output factor, off-axis ratio and well within 2% for tissue phantom ratio when compared to PTW 60,018 diode. The edgeless detectors measure a dose discrepancy of approximately 3.6% from the mean value calculated by the TPS. Larger discrepancies are obtained in very steep gradient dose regions when the sensors are placed outside the PTV. CONCLUSIONS The angular independent edgeless diode is proposed as an innovative dosimeter for patient quality assurance of brain functional disorders and other radiosurgery treatments. The comparison of the diode measurements with TPS calculations confirms that edgeless diodes are suitable candidates for patient-specific dosimetric verification in very high dose ranges delivered by non-isocentric stereotactic radiosurgery modalities.
Collapse
Affiliation(s)
- Elena De Martin
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Health Department, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Sultan Alhujaili
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Medical Imaging Department, College of Applied Medical Sciences, Aljouf University, Aljouf 72388, Saudi Arabia.
| | - Maria Luisa Fumagalli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Health Department, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Francesco Ghielmetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Health Department, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Marcello Marchetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Radiotherapy Unit, Department of Neurosurgery, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Pasqualina Gallo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Health Department, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Domenico Aquino
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neuroradiology Unit, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Francesco Padelli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neuroradiology Unit, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Saree Alnaghy
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Mauro Carrara
- Fondazione IRCCS Istituto Nazionale Dei Tumori, s.s.d. di Fisica Medica, Dipartimento di Diagnostica per Immagini e Radioterapia, Via Giacomo Venezian 1, 20133 Milan, Italy.
| | - Laura Fariselli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Radiotherapy Unit, Department of Neurosurgery, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Kaveckyte V, Carlsson Tedgren Å, Fernández-Varea JM. Impact of the I-value of diamond on the energy deposition in different beam qualities. Phys Med Biol 2021; 66. [PMID: 34014176 DOI: 10.1088/1361-6560/ac028f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Diamond detectors are increasingly employed in dosimetry. Their response has been investigated by means of Monte Carlo (MC) methods, but there is no consensus on what mass densityρ, mean excitation energyIand number of conduction electrons per atomnceto use in the simulations. The ambiguity occurs due to its seeming similarity with graphite (both are carbon allotropes). Except for the difference inρbetween crystalline graphite (2.265 g cm-3) and diamond (3.515 g cm-3), their dielectric properties are assumed to be identical. This is incorrect, and the two materials should be distinguished: (ρ= 2.265 g cm-3,I= 81.0 eV,nce= 1) for graphite and (ρ= 3.515 g cm-3,I= 88.5 eV,nce= 0) for diamond. Simulations done with the MC codepenelopeshow that the energy imparted in diamond decreases by up to 1% with respect to 'pseudo-diamond' (ρ= 3.515 g cm-3,I= 81.0 eV,nce= 0) depending on the beam quality and cavity thickness. The energy imparted changed the most in cavities that are small compared with the range of electrons. The difference in the density-effect term relative to graphite was the smallest for diamond owing to an interplay effect thatρ,Iandncehave on this term, in contrast to pseudo-diamond media when eitherρorIalone were adjusted. The study also presents a parameterized density-effect correction function for diamond that may be used by MC codes like EGSnrc. Theestarprogram assumes thatnce= 2 for all carbon-based materials, hence it delivers an erroneous density-effect correction term for graphite and diamond. Despite the small changes of the energy imparted in diamond simulated with two differentIvalues and expected close-to-negligible deviation from the published small-field output correction data, it is important to pay attention to material properties and model the medium faithfully.
Collapse
Affiliation(s)
- Vaiva Kaveckyte
- Department of Health, Medicine and Caring Sciences, Linköping University, SE-58185 Linköping, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Åsa Carlsson Tedgren
- Department of Health, Medicine and Caring Sciences, Linköping University, SE-58185 Linköping, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - José M Fernández-Varea
- Facultat de Física (FQA and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Gonod M, Chacon Avila C, Suarez MA, Crouzilles J, Laskri S, Vinchant JF, Aubignac L, Grosjean T. Miniaturized scintillator dosimeter for small field radiation therapy. Phys Med Biol 2021; 66. [PMID: 33971635 DOI: 10.1088/1361-6560/abffbb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 11/11/2022]
Abstract
The concept of a miniaturized inorganic scintillator detector is demonstrated in the analysis of the small static photon fields used in external radiation therapy. Such a detector is constituted by a 0.25 mm diameter and 0.48 mm long inorganic scintillating cell (1.6 × 10-5cm3detection volume) efficiently coupled to a narrow 125μm diameter silica optical fiber using a tiny photonic interface (an optical antenna). The response of our miniaturized scintillator detector (MSD) under 6 MV bremsstrahlung beam of various sizes (from 1 × 1 cm2to 4 × 4 cm2) is compared to that of two high resolution reference probes, namely, a micro-diamond detector and a dedicated silicon diode. The spurious Cerenkov signal transmitted through our bare detector is rejected with a basic spectral filtering. The MSD shows a linear response regarding the dose, a repeatability within 0.1% and a radial directional dependence of 0.36% (standard deviations). Beam profiling at 5 cm depth with the MSD and the micro-diamond detector shows a mismatch in the measurement of the full widths at 80% and 50% of the maximum which does not exceed 0.25 mm. The same difference range is found between the micro-diamond detector and a silicon diode. The deviation of the percentage depth dose between the MSD and micro-diamond detector remains below 2.3% within the first fifteen centimeters of the decay region for field sizes of 1 × 1 cm2, 2 × 2 cm2and 3 × 3 cm2(0.76% between the silicon diode and the micro-diamond in the same field range). The 2D dose mapping of a 0.6 × 0.6 cm2photon field evidences the strong 3D character of the radiation-matter interaction in small photon field regime. From a beam-probe convolution theory, we predict that our probe overestimates the beam width by 0.06%, making our detector a right compromise between high resolution, compactness, flexibility and ease of use. The MSD overcomes problem of volume averaging, stem effects, and despite its water non-equivalence it is expected to minimize electron fluence perturbation due to its extreme compactness. Such a detector thus has the potential to become a valuable dose verification tool in small field radiation therapy, and by extension in Brachytherapy, FLASH-radiotherapy and microbeam radiation therapy.
Collapse
Affiliation(s)
- Mathieu Gonod
- Centre Georges François Leclerc (CGFL)-Dijon, France
| | - Carlos Chacon Avila
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| | - Miguel Angel Suarez
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| | - Julien Crouzilles
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | - Samir Laskri
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | | | | | - Thierry Grosjean
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| |
Collapse
|
16
|
Charles PH, Crowe SB, Kairn T. Technical Note: Small field dose correction factors for radiochromic film in lung phantoms. Med Phys 2021; 48:2667-2672. [PMID: 33619729 DOI: 10.1002/mp.14799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Radiochromic film has been established as a detector that can be used without the need for perturbation correction factors for small field dosimetry in water. However, perturbation factors in low density media such as lung have yet to be published. This study calculated the factors required to account for the perturbation of radiochromic film when used for small field dosimetry in lung equivalent material. METHOD Monte Carlo simulations were used to calculate dose to Gafchromic EBT3 film when placed inside a lung phantom. The beam simulated had a nominal energy of 6 MV and the field sizes simulated ranged from 10 × 10 mm2 to 30 × 30 mm2 . The lung density simulated was varied between 0.2 and 0.3 g/cm3 . Each simulation was repeated with the film replaced by lung material (the same as the surrounding medium), and the required correction factors for film dosimetry in lung ( D M e d , Q D D e t , Q ) were calculated by dividing the dose in lung by the dose in film. RESULTS For field sizes 30 × 30 mm2 and larger, no correction factors were required. At a 20 × 20 mm2 field size, small corrections were required, but were within the approximate accuracy of film dosimetry (~2%). For a 10 × 10 mm2 field size, significant correction factors need to be applied (0.935 for lung density of 0.20 g/cm3 to 0.963 for lung density of 0.30 g/cm3 ). The values lower than one mean that the film is over-responding. At the "upstream" lung-water interface the correction factors were close to unity; while at the downstream interface the corrections required were marginally smaller to those at the center of lung. One centimeter or more away from the interfaces, the correction factor did not vary as a function distance from the interface (in the beam direction). Away from the central axis (perpendicular to the beam direction), the correction factors increased slightly (away from unity) as a function of off-axis distance, before abruptly changing direction at the penumbra, with the film actually under-responding by ~10% outside the field edges. CONCLUSION Accurate dosimetry of very small fields (15 × 15 mm2 or smaller) using radiochromic film requires correction factors for the perturbation of the film on the surrounding lung material. This correction factor was as high as 6.5% for a 10 × 10 mm2 field size and a density of 0.2 g/cm3 . This will increase if either the density or the field size decrease further. This correction factor does not vary as a function of depth in lung once charged particle equilibrium is established.
Collapse
Affiliation(s)
- Paul H Charles
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Scott B Crowe
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| | - Tanya Kairn
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| |
Collapse
|
17
|
Bouchard H. Reference dosimetry of modulated and dynamic photon beams. Phys Med Biol 2021; 65:24TR05. [PMID: 33438582 DOI: 10.1088/1361-6560/abc3fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the late 1980s, a new technique was proposed that would revolutionize radiotherapy. Now referred to as intensity-modulated radiotherapy, it is at the core of state-of-the-art photon beam delivery techniques, such as helical tomotherapy and volumetric modulated arc therapy. Despite over two decades of clinical application, there are still no established guidelines on the calibration of dynamic modulated photon beams. In 2008, the IAEA-AAPM work group on nonstandard photon beam dosimetry published a formalism to support the development of a new generation of protocols applicable to nonstandard beam reference dosimetry (Alfonso et al 2008 Med. Phys. 35 5179-86). The recent IAEA Code of Practice TRS-483 was published as a result of this initiative and addresses exclusively small static beams. But the plan-class specific reference calibration route proposed by Alfonso et al (2008 Med. Phys. 35 5179-86) is a change of paradigm that is yet to be implemented in radiotherapy clinics. The main goals of this paper are to provide a literature review on the dosimetry of nonstandard photon beams, including dynamic deliveries, and to discuss anticipated benefits and challenges in a future implementation of the IAEA-AAPM formalism on dynamic photon beams.
Collapse
Affiliation(s)
- Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada. Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
18
|
Cervantes Y, Billas I, Shipley D, Duane S, Bouchard H. Small-cavity chamber dose response in megavoltage photon beams coupled to magnetic fields. Phys Med Biol 2020; 65:245008. [PMID: 32674077 DOI: 10.1088/1361-6560/aba6d6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In MRgRT, dosimetry measurements are performed in the presence of magnetic fields. For high-resolution measurements, small-cavity ionization chambers are required. While Monte Carlo simulations are essential to determine dosimetry correction factors, models of small-chambers require careful validation with experimental measurements. The aim of this study is to characterize small-cavity chamber response coupled to magnetic fields. Small-cavity chambers (PTW31010, PTW31016, PTW31021 and PTW3022) are irradiated by a 6 MV photon beam for 9 magnetic field strengths between -1.5 T and +1.5 T. The chamber axis is orientated either parallel or perpendicular to the irradiation beam, with the magnetic field always perpendicular to the beam. MC simulations are performed in EGSnrc. The sensitive volume of the chambers is reduced to account for the inefficiency adjacent to the guard electrode (dead volume) based on COMSOL calculations of electric potentials. The magnetic field affects the chamber response by up to 4.1% and 4.5% in the parallel and perpendicular orientations, respectively, compared to no magnetic field. The maximal difference in dose response between experiments and simulations is up to 6.1% and 4.5% for parallel and perpendicular orientation, respectively. When the dead volume is removed, which accounts for the 15%-23% of the nominal volume, the difference, in most cases, is within the stated uncertainties. Nevertheless, for a particular chamber, the reduced nominal volume barely improved the agreement between the experimental and calculated relative response (4.53% to 4.13%). This disagreement may be due to the imperfect chamber geometry model, as was found from microCT images. A detailed uncertainty analysis is presented. The characterization of small-cavity ion chamber response coupled to magnetic fields is complex. Small differences between real and model chamber geometry that normally would be insignificant become an issue in the presence of magnetic fields. Accurate characterization of the nominal volume is essential for small-cavity ion chamber modelling.
Collapse
Affiliation(s)
- Yunuen Cervantes
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | | | | | | | | |
Collapse
|
19
|
Kumar S, Nahum AE, Chetty IJ. Monte-Carlo-computed dose, kerma and fluence distributions in heterogeneous slab geometries irradiated by small megavoltage photon fields. ACTA ACUST UNITED AC 2020; 65:175012. [DOI: 10.1088/1361-6560/ab98d1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Rosenfeld AB, Biasi G, Petasecca M, Lerch MLF, Villani G, Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy. Phys Med Biol 2020; 65:16TR01. [PMID: 32604077 DOI: 10.1088/1361-6560/aba163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Mirzakhanian L, Bassalow R, Huntzinger C, Seuntjens J. Extending the IAEA‐AAPM TRS‐483 methodology for radiation therapy machines with field sizes down to 10 × 2 cm
2. Med Phys 2020; 47:5209-5221. [DOI: 10.1002/mp.14325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/17/2020] [Accepted: 05/21/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | | | - Jan Seuntjens
- Medical Physics Unit McGill University Montreal QCH4A 3J1Canada
| |
Collapse
|
22
|
Poppinga D, Kretschmer J, Brodbek L, Meyners J, Poppe B, Looe HK. Evaluation of the RUBY modular QA phantom for planar and non-coplanar VMAT and stereotactic radiations. J Appl Clin Med Phys 2020; 21:69-79. [PMID: 32797670 PMCID: PMC7592965 DOI: 10.1002/acm2.13006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose This study evaluates the clinical use of the RUBY modular QA phantom for linac QA to validate the integrity of IGRT workflows including the congruence of machine isocenter, imaging isocenter, and room lasers. The results have been benchmarked against those obtained with widely used systems. Additionally, the RUBY phantom has been implemented to perform system QA (End‐to‐End testing) from imaging to radiation for IGRT‐based VMAT and stereotactic radiations at an Elekta Synergy linac. Material and Methods The daily check of IGRT workflow was performed using the RUBY phantom, the Penta‐Guide, and the STEEV phantom. Furthermore, Winston–Lutz tests was carried out with the RUBY phantom and a ball‐bearing phantom to determine the offsets and the diameters of the isospheres of gantry, collimator, and couch rotations, with respect to the room lasers and kV‐imaging isocenter. System QA was performed with the RUBY phantom and STEEV phantom for eight VMAT treatment plans. Additionally, the visibility of the embedded objects within these phantoms in the images and the results of CT and MR image fusions were evaluated. Results All systems used for daily QA of IGRT workflows show comparable results. Calculated shifts based on CBCT imaging agree within 1 mm to the expected values. The results of the Winston–Lutz test based on kV imaging (2D planar and CBCT) or room lasers are consistent regardless of the system tested. The point dose values in the RUBY phantom agree to the expected values calculated using algorithms in Masterplan and Monte Carlo engine in Monaco within 3% of the clinical acceptance criteria. Conclusion All the systems evaluated in this study yielded comparable results in terms of linac QA and system QA procedures. A system QA protocol has been derived using the RUBY phantom to check the IGRT‐based VMAT and stereotactic radiations workflow at an Elekta Synergy linac.
Collapse
Affiliation(s)
| | - Jana Kretschmer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Leonie Brodbek
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jutta Meyners
- Radiotherapy Department, Imland Hospital, Rendsburg, Germany
| | - Bjoern Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
23
|
Rose MS, Tirpak L, Van Casteren K, Zack J, Simon T, Schoenfeld A, Simon W. Multi‐institution validation of a new high spatial resolution diode array for SRS and SBRT plan pretreatment quality assurance. Med Phys 2020; 47:3153-3164. [DOI: 10.1002/mp.14153] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark S. Rose
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | - Lena Tirpak
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | | | - Jeff Zack
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | - Tom Simon
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | | | - William Simon
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| |
Collapse
|
24
|
Therriault-Proulx F, Pino R, Yang JN, Beddar AS. Quality assurance for Gamma Knife Perfexion using the Exradin W1 plastic scintillation detector and Lucy phantom. Phys Med Biol 2019; 64:225007. [PMID: 31581139 DOI: 10.1088/1361-6560/ab4ac3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The goal of this work is to validate the use of the Exradin W1 plastic scintillation detector (PSD) to measure profiles and output factors from Gamma Knife Perfexion collimators in a Lucy phantom. The Exradin W1 PSD has a small-volume, near-water-equivalent, energy-independent sensitive element. Output measurements were performed for all 3 collimators (4 mm, 8 mm, and 16 mm) of the Gamma Knife Perfexion system, and these measurements were compared to measurements made with an A16 ion chamber and an EBT3 film and to the nominal values. We showed that a configuration in which the focus or 'shot' moves while the detector remains fixed is essentially equivalent to a configuration in which the focus is fixed while the detector moves. A Lucy phantom containing a PSD was moved in small steps to acquire profiles in all three dimensions. EBT3 film was inserted in the Lucy phantom and exposed to a single shot for each collimator. The relative values for output factors measured with the PSD were 1.000, 0.892, and 0.795, for the 16 mm, 8 mm, and 4 mm collimators, respectively. The values measured with EBT3 film were 1.000, 0.881, and 0.793, and the values measured with the A16 ion chamber were 1.000, 0.883, and 0.727. The nominal output factors for the Gamma Knife Perfexion are 1.000, 0.900, and 0.814, respectively. There was excellent agreement between all profiles measured with the PSD and EBT3 as well as with the treatment planning system data provided by the vendor. In light of our results, the Exradin W1 PSD is well suited for beam quality assurance of a Gamma Knife Perfexion irradiator.
Collapse
Affiliation(s)
- Francois Therriault-Proulx
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | | | | | |
Collapse
|
25
|
Hartmann GH, Hensley F, Kapsch RP, Poppe B, Sauer O, Würfel J, Zink K. [Detector Based Determination of Water Absorbed Dose According to DIN 6800 Teil 1: Suggestion for an Extension of the Fundamental Formalism]. Z Med Phys 2019; 30:24-39. [PMID: 31585786 DOI: 10.1016/j.zemedi.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 10/25/2022]
Abstract
For any detector to be used for the determination of absorbed dose at the point of measurement in water a basic equation is required to convert the reading of the detector into absorbed dose in water. The German DIN 6800 part 1 provides a general formalism for that. A further differentiated formalism applicable to photon dosimetry is suggested in this work. This modified formalism presents the two following still general and at the same time fundamental properties of any dosimetry detector: a) a clear distinction of correction factors with respect to the physical processes involved during the measurement, and b) the fact that the process of energy absorption in the detector is determined by the spectral distribution of the fluence of the secondary charged particles. It is concluded that based on the modified formalism and knowing this spectral distribution within the detector a general method is available with benefits for ionization chambers as well as for any other dosimetry detector and which is applicable at reference as well as non-reference conditions without any preconditions.
Collapse
Affiliation(s)
| | | | - Ralf-Peter Kapsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Deutschland
| | - Bjoern Poppe
- Carl von Ossietzky Universität, Oldenburg, Deutschland
| | - Otto Sauer
- Universitätsklinikum, Würzburg, Deutschland
| | - Jan Würfel
- Physikalisch-Technische Werkstätten (PTW), Freiburg, Deutschland
| | - Klemens Zink
- Technische Hochschule Mittelhessen, Gießen, Deutschland
| |
Collapse
|
26
|
Ghazal M, Westermark M, Kaveckyte V, Carlsson‐Tedgren Å, Benmakhlouf H. 6‐MV small field output factors: intra‐/intermachine comparison and implementation of TRS‐483 using various detectors and several linear accelerators. Med Phys 2019; 46:5350-5359. [DOI: 10.1002/mp.13830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mohammed Ghazal
- Department of Medical Radiation Physics and Nuclear Medicine Karolinska University Hospital SE‐171 76Stockholm Sweden
| | - Mathias Westermark
- Department of Medical Radiation Physics and Nuclear Medicine Karolinska University Hospital SE‐171 76Stockholm Sweden
| | - Vaiva Kaveckyte
- Department of Medical Radiation Physics and Nuclear Medicine Karolinska University Hospital SE‐171 76Stockholm Sweden
- Radiation Physics Department of Medical and Health Sciences Linköping University SE‐581 85Linköping Sweden
| | - Åsa Carlsson‐Tedgren
- Department of Medical Radiation Physics and Nuclear Medicine Karolinska University Hospital SE‐171 76Stockholm Sweden
- Radiation Physics Department of Medical and Health Sciences Linköping University SE‐581 85Linköping Sweden
| | - Hamza Benmakhlouf
- Department of Medical Radiation Physics and Nuclear Medicine Karolinska University Hospital SE‐171 76Stockholm Sweden
| |
Collapse
|
27
|
Moradi F, Olatunji M, Abdul Sani S, Ung N, Forouzeshfar F, Khandaker M, Bradley D. Composition and thickness dependence of TLD relative dose sensitivity: A Monte Carlo study. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2019.106191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Hartmann GH, Zink K. A Monte Carlo study on the PTW 60019 microDiamond detector. Med Phys 2019; 46:5159-5172. [DOI: 10.1002/mp.13721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS) University of Applied Sciences Giessen 35390Giessen Germany
- Department for Radiotherapy and Radiooncology University Medical Center Giessen‐Marburg 35043Marburg Germany
- Frankfurt Institute for Advanced Studies (FIAS), Goethe‐University 60438Frankfurt Germany
| |
Collapse
|
29
|
Schönfeld AB, Poppinga D, Kranzer R, De Wilde RL, Willborn K, Poppe B, Looe HK. Technical Note: Characterization of the new microSilicon diode detector. Med Phys 2019; 46:4257-4262. [PMID: 31309594 PMCID: PMC6852691 DOI: 10.1002/mp.13710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Dosimetric properties of the new microSilicon diode detector (60023) have been studied with focus on application in small‐field dosimetry. The influences of the dimensions of the sensitive volume and the density of the epoxy layer surrounding the silicon chip of microSilicon have been quantified and compared to its predecessor (Diode E 60017) and the microDiamond (60019, all PTW‐Freiburg, Germany). Methods Dose linearity has been studied in the range from 0.01 to 8.55 Gy and dose‐per‐pulse dependence from 0.13 to 0.86 mGy/pulse. The effective point of measurement (EPOM) was determined by comparing measured percentage depth dose curves with a reference curve (Roos chamber). Output ratios were measured for nominal field sizes from 0.5 × 0.5 cm2 to 4 × 4 cm2. The corresponding small‐field output correction factors, k, were derived with a plastic scintillation detector as reference. The lateral dose–response function, K(x), was determined using a slit beam geometry. Results MicroSilicon shows linear dose response (R2 = 1.000) in both low and high dose range up to 8.55 Gy with deviations of only up to 1% within the dose‐per‐pulse values investigated. The EPOM was found to lie (0.7 ± 0.2) mm below the front detector’s surface. The derived k for microSilicon (0.960 at seff = 0.55 cm) is similar to that of microDiamond (0.956), while Diode E requires larger corrections (0.929). This improved behavior of microSilicon in small‐fields is reflected in the slightly wider K(x) compared to Diode E. Furthermore, the amplitude of the negative values in K(x) at the borders of the sensitive volume has been reduced. Conclusions Compared to its predecessor, microSilicon shows improved dosimetric behavior with higher sensitivity and smaller dose‐per‐pulse dependence. Profile measurements demonstrated that microSilicon causes less perturbation in off‐axis measurements. It is especially suitable for the applications in small‐field output factors and profile measurements.
Collapse
Affiliation(s)
- Ann-Britt Schönfeld
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | | | | | | | - Kay Willborn
- Clinic for Radiation Therapy, Pius Hospital, Oldenburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
30
|
Poppinga D, Kranzer R, Ulrichs AB, Delfs B, Giesen U, Langner F, Poppe B, Looe HK. Three-dimensional characterization of the active volumes of PTW microDiamond, microSilicon, and Diode E dosimetry detectors using a proton microbeam. Med Phys 2019; 46:4241-4245. [PMID: 31292964 PMCID: PMC6851623 DOI: 10.1002/mp.13705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this work is the three-dimensional characterization of the active volumes of commercial solid-state dosimetry detectors. Detailed knowledge of the dimensions of the detector's active volume as well as the detector housing is of particular interest for small-field photon dosimetry. As shown in previous publications from different groups, the design of the detector housing influences the detector signal for small photon fields. Therefore, detailed knowledge of the active volume dimension and the surrounding materials form the basis for accurate Monte Carlo simulations of the detector. METHODS A 10 MeV proton beam focused by the microbeam system of the Physikalisch-Technische Bundesanstalt was used to measure two-dimensional response maps of a synthetic diamond detector (microDiamond, type 60019, PTW Freiburg) and two silicon detectors (microSilicon, type 60023, PTW Freiburg and Diode E, type 60017, PTW Freiburg). In addition, the thickness of the active volume of the new microSilicon was measured using the method developed in a previous study. RESULTS The analysis of the response maps leads to active area of 1.18 mm2 for the Diode E, 1.75 mm2 for the microSilicon, and 3.91 mm2 for the microDiamond detector. The thickness of the active volume of the microSilicon detector was determined to be (17.8 ± 2) µm. CONCLUSIONS This study provides detailed geometrical data of the dosimetric active volume of three different solid-state detector types.
Collapse
Affiliation(s)
| | | | - Ann-Britt Ulrichs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Frank Langner
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
31
|
Girardi A, Fiandra C, Giglioli FR, Gallio E, Ali OH, Ragona R. Small field correction factors determination for several active detectors using a Monte Carlo method in the Elekta Axesse linac equipped with circular cones. ACTA ACUST UNITED AC 2019; 64:11NT01. [DOI: 10.1088/1361-6560/ab1f26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Looe HK, Poppinga D, Kranzer R, Büsing I, Tekin T, Ulrichs A, Delfs B, Vogt D, Würfel J, Poppe B. The role of radiation-induced charge imbalance on the dose-response of a commercial synthetic diamond detector in small field dosimetry. Med Phys 2019; 46:2752-2759. [PMID: 30972756 PMCID: PMC6849526 DOI: 10.1002/mp.13542] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Discrepancy between experimental and Monte Carlo simulated dose-response of the microDiamond (mD) detector (type 60019, PTW Freiburg, Germany) at small field sizes has been reported. In this work, the radiation-induced charge imbalance in the structural components of the detector has been investigated as the possible cause of this discrepancy. MATERIALS AND METHODS Output ratio (OR) measurements have been performed using standard and modified versions of the mD detector at nominal field sizes from 6 mm × 6 mm to 40 mm × 40 mm. In the first modified mD detector (mD_reversed), the type of charge carriers collected is reversed by connecting the opposite contact to the electrometer. In the second modified mD detector (mD_shortened), the detector's contacts have been shortened. The third modified mD detector (mD_noChip) is the same as the standard version but the diamond chip with the sensitive volume has been removed. Output correction factors were calculated from the measured OR and simulated using the EGSnrc package. An adapted Monte Carlo user-code has been used to study the underlying mechanisms of the field size-dependent charge imbalance and to identify the detector's structural components contributing to this effect. RESULTS At the smallest field size investigated, the OR measured using the standard mD detector is >3% higher than the OR obtained using the modified mD detector with reversed contact (mD_reversed). Combining the results obtained with the different versions of the detector, the OR have been corrected for the effect of radiation imbalance. The OR obtained using the modified mD detector with shortened contacts (mD_shortened) agree with the corrected OR, all showing an over-response of less than 2% at the field sizes investigated. The discrepancy between the experimental and simulated output correction factors has been eliminated after accounting for the effect of charge imbalance. DISCUSSIONS AND CONCLUSIONS The role of radiation-induced charge imbalance on the dose-response of mD detector in small field dosimetry has been studied and quantified. It has been demonstrated that the effect is significant at small field sizes. Multiple methods were used to quantify the effect of charge imbalance with good agreement between Monte Carlo simulations and experimental results obtained with modified detectors. When this correction is applied to the Monte Carlo data, the discrepancy from experimental data is eliminated. Based on the detailed component analysis using an adapted Monte Carlo user-code, it has been demonstrated that the effect of charge imbalance can be minimized by modifying the design of the detector's contacts.
Collapse
Affiliation(s)
- Hui Khee Looe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | | | | - Isabel Büsing
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Tuba Tekin
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Ann‐Britt Ulrichs
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Björn Delfs
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | | | | - Björn Poppe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| |
Collapse
|
33
|
Gul A, Farrukh S, Kakakhel MB, Ilyas N, Naveed M, Haseeb A, Mirza SM. Measurement of 6 MV small field beam profiles - comparison of micro ionization chamber and linear diode array with monte carlo code. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:655-664. [PMID: 31205012 DOI: 10.3233/xst-190493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The objective of this study is to analyze small field photon beams acquired with commonly available detectors. Beam profiles of 6 MV photons from the Siemens Primus Linear Accelerator were measured with a micro ion chamber (IC CC01, IBA) and linear diode array (LDA-99SC, IBA). Data was acquired using a water phantom for small fields (0.5×0.5 cm2 to 4×4 cm2) at depth of maximum dose, 5 cm and 10 cm. Profiles were also generated with EGSnrc Monte Carlo code. Measured and simulated profiles were compared in terms of percentage difference of the area under the simulated and measured profiles (PD), ratio of the measured to simulated dose at the point of maximum deviation within the central region of profile (R), full width half maximum (FWHM) and penumbra. For field sizes ≥1×1 cm2, the maximum PD is 3.17 % and 2.87 % for IC and LDA respectively, whereas R is in the range of 0.95-1.05 for IC and 0.99-1.05 for LDA. LDA measured FWHM and penumbra are also in better agreement with the simulated results. This study demonstrated that LDA can be used for acquisition of beam profiles for field size as low as 1×1 cm2.
Collapse
Affiliation(s)
- Attia Gul
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Salman Farrukh
- Atomic Energy Medical Centre (AEMC), Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan
| | - M Basim Kakakhel
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Nasir Ilyas
- Institution of Space and Planetary Astrophysics (ISPA), University of Karachi, Karachi, Pakistan
| | - Muhammad Naveed
- Atomic Energy Medical Centre (AEMC), Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan
| | - Abdul Haseeb
- Atomic Energy Medical Centre (AEMC), Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan
| | - Sikander M Mirza
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
34
|
Comments on the
TRS
‐483 protocol on small field dosimetry. Med Phys 2018; 45:5666-5668. [DOI: 10.1002/mp.13236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/07/2022] Open
|
35
|
Palmans H, Andreo P, Huq MS, Seuntjens J, Christaki KE, Meghzifene A. Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRS‐483, the IAEA–AAPM international Code of Practice for reference and relative dose determination. Med Phys 2018; 45:e1123-e1145. [DOI: 10.1002/mp.13208] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hugo Palmans
- Medical Radiation Science National Physical Laboratory Teddington TW11 0LWUK
- Department of Medical Physics EBG MedAustron GmbH A‐2700Wiener Neustadt Austria
| | - Pedro Andreo
- Department of Medical Physics and Nuclear Medicine Karolinska University Hospital SE‐17176Stockholm Sweden
| | - M. Saiful Huq
- Department of Radiation Oncology University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center Pittsburgh PA15232USA
| | - Jan Seuntjens
- Medical Physics Unit McGill University Montréal QCH3A 0G4Canada
| | - Karen E. Christaki
- Dosimetry and Medical Radiation Physics Section International Atomic Energy Agency A‐1400Vienna Austria
| | - Ahmed Meghzifene
- Dosimetry and Medical Radiation Physics Section International Atomic Energy Agency A‐1400Vienna Austria
| |
Collapse
|
36
|
Fenwick JD, Georgiou G, Rowbottom CG, Underwood TSA, Kumar S. Reply to comment on ‘origins of the changing detector response in small megavoltage photon radiation fields’. Phys Med Biol 2018; 63:198002. [DOI: 10.1088/1361-6560/aae0e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Hartmann GH, Zink K. Decomposition of the dose conversion factor based on fluence spectra of secondary charged particles: Application to lateral dose profiles in photon fields. Med Phys 2018; 45:4246-4256. [PMID: 29974479 DOI: 10.1002/mp.13081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The dose conversion factor plays an important role in the dosimetry by enabling the absorbed dose in the sensitive volume of a detector to be converted into the absorbed dose in the surrounding medium (in most cases water). The purpose of this paper is to demonstrate that a specific fluence-based approach for the decomposition of the dose conversion factor is in particular useful for the interpretation of the influences of detector properties on measurements under nonreference conditions. METHODS Data for the dose conversion factor and secondary fluence spectra were obtained by the Monte Carlo method. The calculation of the secondary charged particle fluence (electrons and positrons) in the sensitive detector volume was imbedded into the code for the calculation of absorbed dose in the detector. The decomposition method into subfactors is based on the use of these fluence data applied to a stepwise transition from the dose at the point of measurement next to a pure water detector and finally to the fully simulated detector geometry. Each subfactor is obtained as a ratio, at which the stopping power only is different in the numerator and the denominator or at which the fluence only is different in the numerator and the denominator. This method was applied at photon dose profiles obtained in water at different radiation qualities and with various detectors of cylindrical type. RESULTS The resulting subfactors can be well identified as a stopping power ratio and as perturbation factors each reflecting particular detector properties. Two of them (f1 and f4 ) are equivalent with perturbation factors which have already been introduced by other authors previously. These are the volume perturbation factor and the extracameral perturbation factor. Subfactor f2 denoted as medium perturbation factor was found to resemble the density perturbation factor. Results obtained for the volume perturbation factor applied to dose profiles measured with cylindrical detectors confirm that the volume effect can be well described by a convolution of the true profile in water with a Gaussian kernel. It was found that the sigma parameter depends on the cylinder radius only and amounts almost exactly to half of its value. The medium perturbation factor strongly depends on the density of the detector medium. For an air-filled detector, the influence of the air again can be described by a Gauss convolution, however, with a less good agreement. For detectors with a density of the cavity medium larger than that of water, for instance, for a diamond detector, it was found that there is a tendency of compensation between the volume averaging effect and the medium effect. CONCLUSION The fluence-based decomposition of the dose conversion factor leads to a fluence-based formulation of perturbation factors, referred to as volume, medium, and extracameral perturbation factor. These factors offer useful explanations for the behavior of detectors in nonreference conditions. An example was given for cylindrical detectors at dose profile measurements.
Collapse
Affiliation(s)
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, 35390, Giessen, Germany
- Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, 35043, Marburg, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Goethe-University, 60438, Frankfurt, Germany
| |
Collapse
|
38
|
Shukaili KA, Corde S, Petasecca M, Pereveratylo V, Lerch M, Jackson M, Rosenfeld A. "Characterization of ELEKTA SRS cone collimator using high spatial resolution monolithic silicon detector array". J Appl Clin Med Phys 2018; 19:114-124. [PMID: 29790261 PMCID: PMC6036391 DOI: 10.1002/acm2.12345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To investigate the accuracy of the dosimetry of radiation fields produced by small ELEKTA cone collimators used for stereotactic radiosurgery treatments (SRS) using commercially available detectors EBT3 GafchromicTM film, IBA Stereotactic diode (SFD), and the recently developed detector DUO, which is a monolithic silicon orthogonal linear diode array detector. METHODS These three detectors were used for the measurement of beam profiles, output factors, and percentage depth dose for SRS cone collimators with cone sizes ranging from 5 to 50 mm diameter. The measurements were performed at 10 cm depth and 90 cm SSD. RESULTS The SRS cone beam profiles measured with DUO, EBT3 film, and IBA SFD agreed well, results being in agreement within ±0.5 mm in the FWHM, and ±0.7 mm in the penumbra region. The output factor measured by DUO with 0.5 mm air gap above agrees within ±1% with EBT3. The OF measured by IBA SFD (corrected for the over-response) agreed with both EBT3 and DUO within ±2%. All three detectors agree within ±2% for PDD measurements for all SRS cones. CONCLUSIONS The characteristics of the ELEKTA SRS cone collimator have been evaluated by using a monolithic silicon high spatial resolution detector DUO, EBT3, and IBA SFD diode. The DUO detector is suitable for fast real-time quality assurance dosimetry in small radiation fields typical for SRS/SRT. This has been demonstrated by its good agreement of measured doses with EBT 3 films.
Collapse
Affiliation(s)
- Khalsa Al Shukaili
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- National Oncology CentreRoyal HospitalMuscatOman
| | - Stéphanie Corde
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
- Nelune Comprehensive Cancer CentrePrince of Wales HospitalRandwickNSWAustralia
| | - Marco Petasecca
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | | | - Michael Lerch
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Michael Jackson
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Nelune Comprehensive Cancer CentrePrince of Wales HospitalRandwickNSWAustralia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| |
Collapse
|
39
|
Obeidat M, McConnell KA, Li X, Bui B, Stathakis S, Papanikolaou N, Rasmussen K, Ha CS, Lee SE, Shim EY, Kirby N. DNA double-strand breaks as a method of radiation measurements for therapeutic beams. Med Phys 2018; 45:3460-3465. [PMID: 29745994 DOI: 10.1002/mp.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Many types of dosimeters are used to measure radiation dose and calibrate radiotherapy equipment, but none directly measure the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. METHODS A DNA dosimeter, consisting of magnetic streptavidin beads attached to four kilobase pair DNA strands labeled with biotin and fluorescein amidite (FAM) on opposing ends, was suspended in phosphate-buffered saline (PBS). Fifty microliter samples were placed in plastic tubes inside a water tank setup and irradiated at the dose levels of 25, 50, 100, 150, and 200 Gy. After irradiation, the dosimeters were mechanically separated into beads (intact DNA) and supernatant (broken DNA/FAM) using a magnet. The fluorescence was read and the probability of DSB was calculated. This DNA dosimeter response was benchmarked against a Southern blot analysis technique for the measurement of DSB probability. RESULTS For the DNA dosimeter, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.043, 0.081, 0.149, 0.196, and 0.242, respectively, and the standard errors of the mean were 0.002, 0.003, 0.006, 0.005, and 0.011, respectively. For the Southern blot method, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.053, 0.105, 0.198, 0.235, and 0.264, respectively, and the standard errors of the mean were 0.013, 0.024, 0.040, 0.044, and 0.063, respectively. CONCLUSIONS A DNA dosimeter can accurately determine the probability of DNA double-strand break (DSB), one of the most toxic effects of radiotherapy, for absorbed radiation doses from 25 to 200 Gy. This is an important step in demonstrating the viability of DNA dosimeters as a measurement technique for radiation.
Collapse
Affiliation(s)
- Mohammad Obeidat
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kristen A McConnell
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xiaolei Li
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian Bui
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Karl Rasmussen
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Chul Soo Ha
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sang Eun Lee
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
40
|
Gargett M, Oborn B, Alnaghy SJ, Causer T, Petasecca M, Rosenfeld AB, Metcalfe P. A high resolution 2D array detector system for small-field MRI-linac applications. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabd08] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Clemente S, Masi L, Fiandra C, Cagni E, Villaggi E, Esposito M, Giglioli FR, Marino C, Strigari L, Garibaldi C, Stasi M, Mancosu P, Russo S. A multi-center output factor intercomparison to uncover systematic inaccuracies in small field dosimetry. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 5:93-96. [PMID: 33458376 PMCID: PMC7807548 DOI: 10.1016/j.phro.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Large uncertainties in output factor (OF) small fields dosimetry motivated multicentric studies. The focus of the study was the determination of the OFs, for different linacs and radiosurgery units, using new-generation detectors. Intercomparison studies between radiotherapy centers improved quality dosimetry practices. Results confirmed the effectiveness of the studies to uncover large systematic inaccuracies in small field dosimetry.
Collapse
Affiliation(s)
- Stefania Clemente
- Unit of Medical Physics and Radioprotection, A.O.U Federico II, Napoli, Italy
| | - Laura Masi
- Department of Medical Physics and Radiation Oncology, IFCA, I-50139 Firenze, Italy
| | - Christian Fiandra
- Department of Oncology, Radiation Oncology Unit, University of Torino, Italy
| | | | | | - Marco Esposito
- Medical Physics Unit, Azienda USL Toscana Centro, Firenze I-50012, Italy
| | | | | | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena Cancer Center IFO, Roma, Italy
| | - Cristina Garibaldi
- Unit of Radiation Research, European Institute of Oncology, Milano, Italy
| | | | - Pietro Mancosu
- Medical Physics Unit of Radiation Oncology Dept., Humanitas Research Hospital, Milano, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Firenze I-50012, Italy
| |
Collapse
|
42
|
Zhang Y, Brandner E, Ozhasoglu C, Lalonde R, Heron DE, Huq MS. A 3D correction method for predicting the readings of a PinPoint chamber on the CyberKnife ® M6 ™ machine. Phys Med Biol 2018; 63:045010. [PMID: 29350197 DOI: 10.1088/1361-6560/aaa90d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of small fields in radiation therapy techniques has increased substantially in particular in stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). However, as field size reduces further still, the response of the detector changes more rapidly with field size, and the effects of measurement uncertainties become increasingly significant due to the lack of lateral charged particle equilibrium, spectral changes as a function of field size, detector choice, and subsequent perturbations of the charged particle fluence. This work presents a novel 3D dose volume-to-point correction method to predict the readings of a 0.015 cc PinPoint chamber (PTW 31014) for both small static-fields and composite-field dosimetry formed by fixed cones on the CyberKnife® M6™ machine. A 3D correction matrix is introduced to link the 3D dose distribution to the response of the PinPoint chamber in water. The parameters of the correction matrix are determined by modeling its 3D dose response in circular fields created using the 12 fixed cones (5 mm-60 mm) on a CyberKnife® M6™ machine. A penalized least-square optimization problem is defined by fitting the calculated detector reading to the experimental measurement data to generate the optimal correction matrix; the simulated annealing algorithm is used to solve the inverse optimization problem. All the experimental measurements are acquired for every 2 mm chamber shift in the horizontal planes for each field size. The 3D dose distributions for the measurements are calculated using the Monte Carlo calculation with the MultiPlan® treatment planning system (Accuray Inc., Sunnyvale, CA, USA). The performance evaluation of the 3D conversion matrix is carried out by comparing the predictions of the output factors (OFs), off-axis ratios (OARs) and percentage depth dose (PDD) data to the experimental measurement data. The discrepancy of the measurement and the prediction data for composite fields is also performed for clinical SRS plans. The optimization algorithm used for generating the optimal correction factors is stable, and the resulting correction factors were smooth in the spatial domain. The measurement and prediction of OFs agree closely with percentage differences of less than 1.9% for all the 12 cones. The discrepancies between the prediction and the measurement PDD readings at 50 mm and 80 mm depth are 1.7% and 1.9%, respectively. The percentage differences of OARs between measurement and prediction data are less than 2% in the low dose gradient region, and 2%/1 mm discrepancies are observed within the high dose gradient regions. The differences between the measurement and prediction data for all the CyberKnife based SRS plans are less than 1%. These results demonstrate the existence and efficiency of the novel 3D correction method for small field dosimetry. The 3D correction matrix links the 3D dose distribution and the reading of the PinPoint chamber. The comparison between the predicted reading and the measurement data for static small fields (OFs, OARs and PDDs) yield discrepancies within 2% for low dose gradient regions and 2%/1 mm for high dose gradient regions; the discrepancies between the predicted and the measurement data are less than 1% for all the SRS plans. The 3D correction method provides an access to evaluate the clinical measurement data and can be applied to non-standard composite fields intensity modulated radiation therapy point dose verification.
Collapse
|
43
|
Andreo P. The physics of small megavoltage photon beam dosimetry. Radiother Oncol 2018; 126:205-213. [DOI: 10.1016/j.radonc.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
44
|
Oliver CP, Butler DJ, Takau V, Williams I. Survey of 5 mm small-field output factor measurements in Australia. J Appl Clin Med Phys 2018; 19:329-337. [PMID: 29368796 PMCID: PMC5849830 DOI: 10.1002/acm2.12259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) held a comparison exercise in April 2016 where participants came to ARPANSA and measured the output factor of a nominal 5 mm cone attached to the ARPANSA Elekta Synergy (Elekta, Crawley, UK) linear accelerator. The goal of the exercise was to compare the consistency and methods used by independent medical physicists in measuring small‐field output factors. ARPANSA provided a three‐dimensional scanning tank for detector setup and positioning, but the participants were required to measure the output factor with their own detectors. No information regarding output factors previously measured was supplied to participants to make each result as independent as possible. Fifteen groups travelled to ARPANSA bringing a wide range of detectors and methods. A total of 30 measurements of the output factor were made. The standard deviation of the measurements (excluding one expected outlier from an uncorrected ionization chamber measurement) was 3.6%. The results provide an insight into the consistency of small‐field dosimetry being performed in Australia and New Zealand at the present time.
Collapse
Affiliation(s)
- Christopher P Oliver
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Vic, Australia
| | - Duncan J Butler
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Vic, Australia
| | - Viliami Takau
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Vic, Australia
| | - Ivan Williams
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Vic, Australia
| |
Collapse
|
45
|
Shahbazi-Gahrouei D, Keivan H, Shanei A, Amouheidari A. Assessment of Imprecise Small Photon Beam Modeling by Two Treatment Planning System Algorithms. JOURNAL OF MEDICAL SIGNALS & SENSORS 2018. [DOI: 10.4103/jmss.jmss_28_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Pimpinella M, Caporali C, Guerra AS, Silvi L, De Coste V, Petrucci A, Delaunay F, Dufreneix S, Gouriou J, Ostrowsky A, Rapp B, Bordy JM, Daures J, Le Roy M, Sommier L, Vermesse D. Feasibility of using a dose-area product ratio as beam quality specifier for photon beams with small field sizes. Phys Med 2018; 45:106-116. [DOI: 10.1016/j.ejmp.2017.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 01/17/2023] Open
|
47
|
Wegener S, Sauer OA. Energy response corrections for profile measurements using a combination of different detector types. Med Phys 2017; 45:898-907. [DOI: 10.1002/mp.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sonja Wegener
- Department of Radiation Oncology; University of Würzburg; Würzburg Germany
| | - Otto A. Sauer
- Department of Radiation Oncology; University of Würzburg; Würzburg Germany
| |
Collapse
|
48
|
Looe HK, Delfs B, Poppinga D, Jiang P, Harder D, Poppe B. The ‘cutting away’ of potential secondary electron tracks explains the effects of beam size and detector wall density in small-field photon dosimetry. ACTA ACUST UNITED AC 2017; 63:015001. [DOI: 10.1088/1361-6560/aa9b46] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Hashimoto S, Fujita Y, Katayose T, Mizuno H, Saitoh H, Karasawa K. Field-size correction factors of a radiophotoluminescent glass dosimeter for small-field and intensity-modulated radiation therapy beams. Med Phys 2017; 45:382-390. [PMID: 29131409 DOI: 10.1002/mp.12665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We evaluated the energy responses of a radiophotoluminescent glass dosimeter (RPLD) to variations in small-field and intensity-modulated radiation therapy (IMRT) conditions using experimental measurements and Monte Carlo simulation. METHODS Several sizes of the jaw and multileaf collimator fields and various plan-class IMRT-beam measurements were performed using the RPLD and an ionization chamber. The field-size correction factor for the RPLD was determined for 6- and 10-MV x rays. This correction factor, together with the perturbation factor, was also calculated using Monte Carlo simulation with the EGSnrc/egs_chamber user code. In addition, to evaluate the response of the RPLD to clinical-class-specific reference fields, the field-size correction factor for the clinical IMRT plan was measured. RESULTS The calculated field-size correction factor ranged from 1.007 to 0.981 (for 6-MV x rays) and from 1.012 to 0.990 (for 10-MV x rays) as the jaw-field size ranged from 1 × 1 cm2 to 20 × 20 cm2 . The atomic composition perturbation factor for these jaw fields decreased by 3.2% and 1.9% for the 6- and 10-MV fields, respectively. The density perturbation factor was unity for field sizes ranging from 3 × 3 cm2 to 20 × 20 cm2 , whereas that for field sizes ranging from 3 × 3 cm2 to 1 × 1 cm2 decreased by 3.2% (for 6-MV x rays) and 4.3% (for 10-MV x rays). The volume-averaging factor rapidly increased for field sizes below 1.6 × 1.6 cm2 . The results for the MLC fields were similar to those for the jaw fields. For plan-class IMRT beams, the field-size correction and perturbation factors were almost unity. The difference between the doses measured using the RPLD and ionization chamber was within 1.2% for the clinical IMRT plan at the planning-target volume (PTV) region. CONCLUSIONS For small fields of size 1.6 × 1.6 cm2 or less, it was clarified that the volume averaging and density perturbation were the dominant effects responsible for the variation in the RPLD response. Moreover, perturbation correction is required when measuring a field size 1.0 × 1.0 cm2 or less. Under the IMRT conditions, the difference in the responses of the RPLD between the reference conditions and the PTV region calculated by Monte Carlo simulation did not exceed 0.8%. These results indicate that it is feasible to measure IMRT dosage using an RPLD at the PTV region.
Collapse
Affiliation(s)
- Shimpei Hashimoto
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Yukio Fujita
- Department of Radiation Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, Japan
| | - Tetsurou Katayose
- Department of Radiation Oncology, Chiba Cancer Center, 666-2 Nitona-cho Chuo-ku, Chiba-shi, Chiba, Japan
| | - Hideyuki Mizuno
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, Japan
| | - Hidetoshi Saitoh
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo, Japan
| | - Katsuyuki Karasawa
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
50
|
Christiansen E, Muir B, Belec J, Vandervoort E. Small composite field correction factors for the CyberKnife radiosurgery system: clinical and PCSR plans. Phys Med Biol 2017; 62:9240-9259. [PMID: 29058682 DOI: 10.1088/1361-6560/aa954c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A formalism has been proposed for small and non-standard photon fields in which [Formula: see text] correction factors are used to correct dosimeter response in small fields (indiviual or composite) relative to that in a larger machine-specific reference (MSR) field. For clinical plans consisting of several fields, a plan-class specific reference (PCSR) plan can also be defined, serving as an intermediate calibration field between the MSR and clinical plans within a certain plan-class. In this work, the formalism was applied in the calculation of [Formula: see text] for 21 clinical plans delivered by the [Formula: see text] radiosurgery system, each plan employing one or two of the smallest diameter collimators: 5 mm, 7.5 mm, and 10 mm. Three detectors were considered: the Exradin A16 and A26 micro chambers, and the W1 plastic scintillator. The clinical plans were grouped into 7 plan-classes according to commonly shared characteristics. The suitability of using a PCSR plan to represent the detector response of each plan within the plan-class was investigated. Total and intermediate correction factors were calculated using the [Formula: see text] Monte Carlo user code. The corrections for the micro chambers were large, primarily due to the presence of the low-density air cavity and the volume averaging effect. The correction for the scintillator was found to be close to unity for most plans, indicating that this detector may be used to measure small clinical plan correction factors in any plan except for those using the 5 mm collimator. The PCSR plan was shown to be applicable to plan-classes comprising isocentric plans only, with plan-classes divided according to collimator size. For non-isocentric plans, the variation of [Formula: see text] as a function of the point of measurement within a single plan, as well as the high inter-plan-class variability of the correction factor, precludes the use of a PCSR plan.
Collapse
|