1
|
Rahimi R, Taylor M, Li X, Chen KL, MacLennan G, Murdoch E, Chang L, Parniani A, Wang P, Chawla A, Fan J, Kim D. Fetal dose assessment in a pregnant patient with brain tumor: A comparative study of proton PBS and 3DCRT/VMAT radiation therapy techniques. J Appl Clin Med Phys 2024; 25:e14394. [PMID: 38887816 PMCID: PMC11302808 DOI: 10.1002/acm2.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE The treatment of brain tumors in pregnant patients poses challenges, as the out-of-field dose exposure to the fetus can potentially be harmful. A pregnant patient with prior radiation treatment was presented with a brain tumor at our clinic. This work reports on our pre-treatment study that compared fetal dose exposure between intensity-modulated proton therapy (IMPT) using pencil beam scanning (PBS) and conventional photon 3D conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT), and the subsequent pregnant patient's radiation treatment. MATERIALS AND METHODS Pre-treatment measurements of clinical plans, 3DCRT, VMAT, and IMPT, were conducted on a phantom. Measurements were performed using a device capable of neutron detections, closely following AAPM guidelines, TG158. For photon measurements, fetus shielding was utilized. On patient treatment days, which was determined to be proton treatment, shielding was used only during daily imaging for patient setup. Additionally, an in vivo measurement was conducted on the patient. RESULTS Measurements showed that IMPT delivered the lowest fetal dose, considering both photon and neutron out-of-field doses to the fetus, even when shielding was implemented for photon measurements. Additionally, the proton plans demonstrated superior treatment for the mother, a reirradiation case. CONCLUSION The patient was treated with proton therapy, and the baby was subsequently delivered at full term with no complications. This case study supports previous clinical findings and advocates for the expanded use of proton therapy in this patient population.
Collapse
Affiliation(s)
- Robabeh Rahimi
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Michael Taylor
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Xing Li
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Kuan Ling Chen
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | | | - Erin Murdoch
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Lienard Chang
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Ashkan Parniani
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Peng Wang
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Ashish Chawla
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Jiajin Fan
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| | - Daniel Kim
- Radiation Oncology DepartmentInova Health SystemFairfaxVirginiaUSA
| |
Collapse
|
2
|
Romero-Expósito M, Liszka M, Christou A, Toma-Dasu I, Dasu A. Range shifter contribution to neutron exposure of patients undergoing proton pencil beam scanning. Med Phys 2024; 51:5099-5108. [PMID: 38112191 DOI: 10.1002/mp.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Superficial targets require the use of the lowest energies within the available energy range in proton pencil-beam scanning (PBS) technique. However, the lower efficiency of the energy selection system at these energies and the requirement of a greater number of layers may represent disadvantages for this approach. The alternative is to use a range shifter (RS) at nozzle exit. However, one of the concerns of using this beamline element is that it becomes an additional source of neutrons that could irradiate organs situated far from the target. PURPOSE The purpose of this study is to assess the increase in neutron dose due to the RS in proton PBS technique. Additionally, an analytical model for the neutron production is tested. METHODS Two clinical plans, designed to achieve identical target coverage, were created for an anthropomorphic phantom. These plans consisted of a lateral field delivering an absorbed dose of 60 Gy (RBE) to the target. One of the plans employed the RS. The MCNP code was used to simulate the plans, evaluating the distribution of neutron dose equivalent (Hn) and the equivalent dose in organ. In the plan with the RS plan, neutron production from both the patient and the RS were assessed separately. Hn values were also fitted versus the distance to field edge using a Gaussian function. RESULTS Hn per prescription dose, in the plan using the RS, ranged between 1.4 and 3.7 mSv/Gy at the field edge, whereas doses at 40 cm from the edge ranged from 9.9 to 32 μSv/Gy. These values are 1.2 to 10 times higher compared to those obtained without the RS. Both this factor and the contribution of neutrons originating from the RS increases with the distance from field edge. A triple-Gaussian function was able to reproduce the equivalent dose in organs within a factor of 2, although underestimating the values. CONCLUSIONS The dose deposited in the patient by the neutrons originating from the RS predominantly affects areas away from the target (beyond approximately 25 cm from field edge), resulting in a neutron dose equivalent of the order of mSv. This indicates an overall low neutron contribution from the use of RS in PBS.
Collapse
Affiliation(s)
- Maite Romero-Expósito
- The Skandion Clinic, Uppsala, Sweden
- Oncology Pathology Department, Karolinska Institutet, Solna, Sweden
| | | | | | - Iuliana Toma-Dasu
- Oncology Pathology Department, Karolinska Institutet, Solna, Sweden
- Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Blommaert J, De Saint‐Hubert M, Depuydt T, Oldehinkel E, Poortmans P, Amant F, Lambrecht M. Challenges and opportunities for proton therapy during pregnancy. Acta Obstet Gynecol Scand 2024; 103:767-774. [PMID: 37491770 PMCID: PMC10993337 DOI: 10.1111/aogs.14645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
During pregnancy, the use of radiation therapy for cancer treatment is often considered impossible due to the assumed associated fetal risks. However, suboptimal treatment of pregnant cancer patients and unjustifiable delay in radiation therapy until after delivery can be harmful for both patient and child. In non-pregnant patients, proton-radiation therapy is increasingly administered because of its favorable dosimetric properties compared with photon-radiation therapy. Although data on the use of pencil beam scanning proton-radiation therapy during pregnancy are scarce, different case reports and dosimetric studies have indicated a more than 10-fold reduction in fetal radiation exposure compared with photon-radiation therapy. Nonetheless, the implementation of proton-radiation therapy during pregnancy requires complex fetal dosimetry for the neutron-dominated out-of-field radiation dose and faces a lack of clinical guidelines. Further exploration and standardization of proton-radiation therapy during pregnancy will be necessary to improve radiotherapeutic management of pregnant women with cancer and further reduce risks for their offspring.
Collapse
Affiliation(s)
| | | | - Tom Depuydt
- Department of OncologyKU LeuvenLeuvenBelgium
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Edwin Oldehinkel
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenthe Netherlands
| | - Philip Poortmans
- Radiation OncologyIridium Netwerk & University of AntwerpWilrijkBelgium
| | - Frederic Amant
- Department of OncologyKU LeuvenLeuvenBelgium
- Gynecologic Oncology, Antoni van LeeuwenhoekNetherlands Cancer InstituteAmsterdamThe Netherlands
- Division Gynecologic OncologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Maarten Lambrecht
- Department of OncologyKU LeuvenLeuvenBelgium
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
4
|
Colson D, Blommaert J, Poels K, De Saint-Hubert M, Reniers B, Depuydt T. Extended in-field and out-of-field validation of a compact Monte Carlo model of an IBA PROTEUS ®ONE proton beam in TOPAS/GEANT4. Phys Med Biol 2023; 68:21NT02. [PMID: 37844576 DOI: 10.1088/1361-6560/ad03a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Objective:This study evaluates a compact Monte Carlo (MC) model of a pencil beam scanning clinical proton beam using TOPAS to estimate the dose out-of-field (OOF). Compact modelling means that the model starts from a pristine proton beam at the nozzle exit, customised based on acceptance and commissioning data, instead of modelling the full treatment head and room.Approach: First, in-field validation tests were performed. Then, the OOF dose was validated in an RW3 phantom with bubble detectors for personal neutron dosimetry (measuring the neutron dose equivalent) and thermoluminiescent detectors (measuring the absorbed dose by protons and gammas). Measurements were performed at 15 and 35 cm from the distal edge of the field for five different irradiation plans, covering different beam orientations, proton energies and a 40 mm range shifter. TOPAS simulations were performed with QGSP Binary Cascade HP (BIC) and QGSP Bertini HP (Bertini) hadron physics lists.Main results: In-field validation shows that MC simulations agree with point dose measurements within -2.5 % and +1.5 % at locations on- and off-axis and before, in and after the Bragg peak or plateau. The gamma passing rate 2%/3mm of four simulated treatment plans compared to the dose distribution calculated by the TPS exceeds 97 % agreement score. OOF dose simulations showed an average overestimation of 27 % of the neutron dose equivalent for the BIC hadron physics list and an average underestimation of 20 % for the Bertini hadron physics list. The simulated absorbed dose of protons and gammas showed a systematic underestimation which was on average 21 % and 51 % for BIC and Bertini respectively.Significance: Our study demonstrates that a compact MC model can reliably produce in-field data, while out-of-field dose data are within the uncertainties of the detector systems and MC simulations nuclear models, and do so with shorter modelling and faster calculation time.
Collapse
Affiliation(s)
- Dries Colson
- Hasselt University, Faculty of Engineering Technology - Nuclear Technology (NuTeC), Hasselt, Belgium
| | | | - Kenneth Poels
- University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Marijke De Saint-Hubert
- Belgian Nuclear Research Centre (SCK CEN), Research in Dosimetric Applications, Mol, Belgium
| | - Brigitte Reniers
- Hasselt University, Faculty of Engineering Technology - Nuclear Technology (NuTeC), Hasselt, Belgium
| | - Tom Depuydt
- KU Leuven, department of Oncology, Leuven, Belgium
- University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
5
|
Knežević Ž, Stolarczyk L, Ambrožová I, Caballero-Pacheco MÁ, Davídková M, De Saint-Hubert M, Domingo C, Jeleń K, Kopeć R, Krzempek D, Majer M, Miljanić S, Mojżeszek N, Romero-Expósito M, Martínez-Rovira I, Harrison RM, Olko P. Out-of-Field Doses Produced by a Proton Scanning Beam Inside Pediatric Anthropomorphic Phantoms and Their Comparison With Different Photon Modalities. Front Oncol 2022; 12:904563. [PMID: 35957900 PMCID: PMC9361051 DOI: 10.3389/fonc.2022.904563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235). Thermoluminescent and radiophotoluminescent dosimeters were used for non-neutron dose measurements while secondary neutrons were measured with track-etched detectors. Out-of-field doses measured using intensity-modulated proton therapy (IMPT) were compared with previous measurements performed within a WG9 for three different photon radiotherapy techniques: 1) intensity-modulated radiation therapy (IMRT), 2) three-dimensional conformal radiation therapy (3D CDRT) performed on a Varian Clinac 2300 linear accelerator (LINAC) in the Centre of Oncology, Krakow, Poland, and 3) Gamma Knife surgery performed on the Leksell Gamma Knife (GK) at the University Hospital Centre Zagreb, Croatia. Phantoms and detectors used in experiments as well as the target location were the same for both photon and proton modalities. The total organ dose equivalent expressed as the sum of neutron and non-neutron components in IMPT was found to be significantly lower (two to three orders of magnitude) in comparison with the different photon radiotherapy techniques for the same delivered tumor dose. For IMPT, neutron doses are lower than non-neutron doses close to the target but become larger than non-neutron doses further away from the target. Results of WG9 studies have provided out-of-field dose levels required for an extensive set of radiotherapy techniques, including proton therapy, and involving a complete description of organ doses of pediatric patients. Such studies are needed for validating mathematical models and Monte Carlo simulation tools for out-of-field dosimetry which is essential for dedicated epidemiological studies which evaluate the risk of second cancers and other late effects for pediatric patients treated with radiotherapy.
Collapse
Affiliation(s)
- Željka Knežević
- Ruđer Bošković Institute, Zagreb, Croatia
- *Correspondence: Željka Knežević,
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy, Aarhus, Denmark
- Institute of Nuclear Physics, PAN, Krakow, Poland
| | - Iva Ambrožová
- Nuclear Physics Institute of the Czech Academy of Sciences, CAS, Řež, Czechia
| | | | - Marie Davídková
- Nuclear Physics Institute of the Czech Academy of Sciences, CAS, Řež, Czechia
| | | | | | - Kinga Jeleń
- Institute of Nuclear Physics, PAN, Krakow, Poland
- Tadeusz Kosciuszko Cracow University of Technology, Cracow, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics, PAN, Krakow, Poland
| | | | | | | | | | - Maite Romero-Expósito
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Skandion Clinic, Uppsala, Sweden
| | | | - Roger M. Harrison
- University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Paweł Olko
- Institute of Nuclear Physics, PAN, Krakow, Poland
| |
Collapse
|
6
|
De Saint-Hubert M, Verbeek N, Bäumer C, Esser J, Wulff J, Nabha R, Van Hoey O, Dabin J, Stuckmann F, Vasi F, Radonic S, Boissonnat G, Schneider U, Rodriguez M, Timmermann B, Thierry-Chef I, Brualla L. Validation of a Monte Carlo Framework for Out-of-Field Dose Calculations in Proton Therapy. Front Oncol 2022; 12:882489. [PMID: 35756661 PMCID: PMC9213663 DOI: 10.3389/fonc.2022.882489] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Proton therapy enables to deliver highly conformed dose distributions owing to the characteristic Bragg peak and the finite range of protons. However, during proton therapy, secondary neutrons are created, which can travel long distances and deposit dose in out-of-field volumes. This out-of-field absorbed dose needs to be considered for radiation-induced secondary cancers, which are particularly relevant in the case of pediatric treatments. Unfortunately, no method exists in clinics for the computation of the out-of-field dose distributions in proton therapy. To help overcome this limitation, a computational tool has been developed based on the Monte Carlo code TOPAS. The purpose of this work is to evaluate the accuracy of this tool in comparison to experimental data obtained from an anthropomorphic phantom irradiation. An anthropomorphic phantom of a 5-year-old child (ATOM, CIRS) was irradiated for a brain tumor treatment in an IBA Proteus Plus facility using a pencil beam dedicated nozzle. The treatment consisted of three pencil beam scanning fields employing a lucite range shifter. Proton energies ranged from 100 to 165 MeV. A median dose of 50.4 Gy(RBE) with 1.8 Gy(RBE) per fraction was prescribed to the initial planning target volume (PTV), which was located in the cerebellum. Thermoluminescent detectors (TLDs), namely, Li-7-enriched LiF : Mg, Ti (MTS-7) type, were used to detect gamma radiation, which is produced by nuclear reactions, and secondary as well as recoil protons created out-of-field by secondary neutrons. Li-6-enriched LiF : Mg,Cu,P (MCP-6) was combined with Li-7-enriched MCP-7 to measure thermal neutrons. TLDs were calibrated in Co-60 and reported on absorbed dose in water per target dose (μGy/Gy) as well as thermal neutron dose equivalent per target dose (μSv/Gy). Additionally, bubble detectors for personal neutron dosimetry (BD-PND) were used for measuring neutrons (>50 keV), which were calibrated in a Cf-252 neutron beam to report on neutron dose equivalent dose data. The Monte Carlo code TOPAS (version 3.6) was run using a phase-space file containing 1010 histories reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1) on all voxels scoring more than 50% of the maximum dose. The primary beam was modeled following a Fermi–Eyges description of the spot envelope fitted to measurements. For the Monte Carlo simulation, the chemical composition of the tissues represented in ATOM was employed. The dose was tallied as dose-to-water, and data were normalized to the target dose (physical dose) to report on absorbed doses per target dose (mSv/Gy) or neutron dose equivalent per target dose (μSv/Gy), while also an estimate of the total organ dose was provided for a target dose of 50.4 Gy(RBE). Out-of-field doses showed absorbed doses that were 5 to 6 orders of magnitude lower than the target dose. The discrepancy between TLD data and the corresponding scored values in the Monte Carlo calculations involving proton and gamma contributions was on average 18%. The comparison between the neutron equivalent doses between the Monte Carlo simulation and the measured neutron doses was on average 8%. Organ dose calculations revealed the highest dose for the thyroid, which was 120 mSv, while other organ doses ranged from 18 mSv in the lungs to 0.6 mSv in the testes. The proposed computational method for routine calculation of the out-of-the-field dose in proton therapy produces results that are compatible with the experimental data and allow to calculate out-of-field organ doses during proton therapy.
Collapse
Affiliation(s)
- Marijke De Saint-Hubert
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Nico Verbeek
- West German Proton Therapy Centre Essen WPE, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany.,Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen WPE, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany.,Radiation Oncology and Imaging, German Cancer Consortium DKTK, Heidelberg, Germany.,Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Johannes Esser
- West German Proton Therapy Centre Essen WPE, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany.,Faculty of Mathematics and Science Institute of Physics and Medical Physics. Heinrich-Heine University, Düsseldorf, Germany
| | - Jörg Wulff
- West German Proton Therapy Centre Essen WPE, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany
| | - Racell Nabha
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Olivier Van Hoey
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Jérémie Dabin
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Florian Stuckmann
- West German Proton Therapy Centre Essen WPE, Essen, Germany.,Faculty of Mathematics and Science Institute of Physics and Medical Physics. Heinrich-Heine University, Düsseldorf, Germany.,Klinikum Fulda GAG, Universitätsmedizin Marburg, Fulda, Zurich, Germany
| | - Fabiano Vasi
- Physik Institut, Universität Zürich, Zürich, Switzerland
| | | | | | - Uwe Schneider
- Physik Institut, Universität Zürich, Zürich, Switzerland
| | - Miguel Rodriguez
- Hospital Paitilla, Panama City, Panama.,Instituto de Investigaciones Cientificas y de Alta Tecnología INDICASAT-AIP, Panama City, Panama
| | - Beate Timmermann
- West German Proton Therapy Centre Essen WPE, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany.,Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Radiation Oncology and Imaging, German Cancer Consortium DKTK, Heidelberg, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Isabelle Thierry-Chef
- Radiation Programme, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,University Pompeu Fabra, Barcelona, Spain.,CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen WPE, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany.,Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Domingo C, Lagares JI, Romero-Expósito M, Sánchez-Nieto B, Nieto-Camero JJ, Terrón JA, Irazola L, Dasu A, Sánchez-Doblado F. Peripheral Organ Equivalent Dose Estimation Procedure in Proton Therapy. Front Oncol 2022; 12:882476. [PMID: 35692801 PMCID: PMC9176390 DOI: 10.3389/fonc.2022.882476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this work is to present a reproducible methodology for the evaluation of total equivalent doses in organs during proton therapy facilities. The methodology is based on measuring the dose equivalent in representative locations inside an anthropomorphic phantom where photon and neutron dosimeters were inserted. The Monte Carlo simulation was needed for obtaining neutron energy distribution inside the phantom. The methodology was implemented for a head irradiation case in the passive proton beam of iThemba Labs (South Africa). Thermoluminescent dosimeter (TLD)-600 and TLD-700 pairs were used as dosimeters inside the phantom and GEANT code for simulations. In addition, Bonner sphere spectrometry was performed inside the treatment room to obtain the neutron spectra, some relevant neutron dosimetric quantities per treatment Gy, and a percentual distribution of neutron fluence and ambient dose equivalent in four energy groups, at two locations. The neutron spectrum at one of those locations was also simulated so that a reasonable agreement between simulation and measurement allowed a validation of the simulation. Results showed that the total out-of-field dose equivalent inside the phantom ranged from 1.4 to 0.28 mSv/Gy, mainly due to the neutron contribution and with a small contribution from photons, 10% on average. The order of magnitude of the equivalent dose in organs was similar, displaying a slow reduction in values as the organ is farther from the target volume. These values were in agreement with those found by other authors in other passive beam facilities under similar irradiation and measurement conditions.
Collapse
Affiliation(s)
- Carles Domingo
- Departament de Fisica, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Juan Ignacio Lagares
- Unidad de Aplicaciones Médicas, Departamento de Tecnología, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | | | | | - Jose Antonio Terrón
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Leticia Irazola
- Servicio de Radiofísica y Protección Radiológica, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden.,Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
8
|
Majer M, Ambrožová I, Davídková M, De Saint-Hubert M, Kasabašić M, Knežević Ž, Kopeć R, Krzempek D, Krzempek K, Miljanić S, Mojżeszek N, Veršić I, Stolarczyk L, Harrison RM, Olko P. Out-of-field doses in pediatric craniospinal irradiations with 3D-CRT, VMAT and scanning proton radiotherapy - a phantom study. Med Phys 2022; 49:2672-2683. [PMID: 35090187 DOI: 10.1002/mp.15493] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Craniospinal irradiation (CSI) has greatly increased survival rates for patients with a diagnosis of medulloblastoma and other primitive neuroectodermal tumors. However, as it includes exposure of a large volume of healthy tissue to unwanted doses, there is a strong concern about the complications of the treatment, especially for the children. To estimate the risk of second cancers and other unwanted effects, out-of-field dose assessment is necessary. The purpose of this study is to evaluate and compare out-of-field doses in pediatric CSI treatment using conventional and advanced photon radiotherapy (RT) and advanced proton therapy. To our knowledge, it is the first such comparison based on in-phantom measurements. Additionally, for out-of-field doses during photon RT in this and other studies, comparisons were made using analytical modeling. METHODS In order to describe the out-of-field doses absorbed in a pediatric patient during actual clinical treatment, an anthropomorphic phantom which mimics the 10-year-old child was used. Photon 3D-conformal radiotherapy (3D-CRT) and two advanced, highly conformal techniques: photon volumetric modulated arc therapy (VMAT) and active pencil beam scanning (PBS) proton radiotherapy were used for CSI treatment. Radiophotoluminescent (RPL) and poly-allyl-diglycol-carbonate (PADC) nuclear track detectors were used for photon and neutron dosimetry in the phantom, respectively. Out-of-field doses from neutrons were expressed in terms of dose equivalent. A two-Gaussian model was implemented for out-of-field doses during photon RT. RESULTS The mean VMAT photon doses per target dose to all organs in this study were under 50% of the target dose (i.e., <500 mGy/Gy), while the mean 3D-CRT photon dose to oesophagus, gall bladder and thyroid, exceeded that value. However, for 3D-CRT, better sparing was achieved for eyes and lungs. The mean PBS photon doses for all organs were up to 3 orders of magnitude lower compared to VMAT and 3D-CRT and exceeded 10 mGy/Gy only for the oesophagus, intestine and lungs. The mean neutron dose equivalent during PBS for 8 organs of interest (thyroid, breasts, lungs, liver, stomach, gall bladder, bladder, prostate) ranged from 1.2 mSv/Gy for bladder to 23.1 mSv/Gy for breasts. Comparison of out-of-field doses in this and other phantom studies found in the literature showed that a simple and fast two-Gaussian model for out-of-field doses as a function of distance from the field edge can be applied in a CSI using photon RT techniques. CONCLUSIONS PBS is the most promising technique for out-of-field dose reduction in comparison to photon techniques. Among photon techniques, VMAT is a preferred choice for most of out-of-field organs and especially for the thyroid, while doses for eyes, breasts and lungs, are lower for 3D-CRT. For organs outside the field edge, a simple analytical model can be helpful for clinicians involved in treatment planning using photon RT but also for retrospective data analysis for cancer risk estimates and epidemiology in general. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marija Majer
- Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Iva Ambrožová
- Nuclear Physics Institute of the CAS, Řež, CZ-250 68, Czech Republic
| | - Marie Davídková
- Nuclear Physics Institute of the CAS, Řež, CZ-250 68, Czech Republic
| | | | - Mladen Kasabašić
- Osijek University Hospital, Osijek, 31000, Croatia.,Faculty of Medicine Osijek, J.J. Strossmayer University of Osijek, Osijek, 31000, Croatia
| | | | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| | - Dawid Krzempek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| | - Katarzyna Krzempek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| | | | - Natalia Mojżeszek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| | - Ivan Veršić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
| | - Liliana Stolarczyk
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland.,Danish Center for Particle Therapy, Aarhus, Denmark
| | - Roger M Harrison
- University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| |
Collapse
|
9
|
The influence of nuclear models and Monte Carlo radiation transport codes on stray neutron dose estimations in proton therapy. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2021.106693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
De Saint-Hubert M, Tymińska K, Stolarczyk L, Brkić H. Fetus dose calculation during proton therapy of pregnant phantoms using MCNPX and MCNP6.2 codes. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2021.106665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Neutron production in the interaction of 12 and 18 MeV electrons with a scattering foil inside a simple LINAC head. Appl Radiat Isot 2018; 139:46-52. [DOI: 10.1016/j.apradiso.2018.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022]
|
12
|
Kneževic Ž, Ambrozova I, Domingo C, De Saint-Hubert M, Majer M, Martínez-Rovira I, Miljanic S, Mojzeszek N, Porwol P, Ploc O, Romero-Expósito M, Stolarczyk L, Trinkl S, Harrison RM, Olko P. COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS. RADIATION PROTECTION DOSIMETRY 2018; 180:256-260. [PMID: 29165619 DOI: 10.1093/rpd/ncx254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique.
Collapse
Affiliation(s)
- Ž Kneževic
- Ruder Boškovic Institute, Bijenicka cesta 54, Zagreb, Croatia
| | - I Ambrozova
- Nuclear Physics Institute of the CAS, Department of Radiation Dosimetry, Na Truhlárce 39/64, Praha, Czech Republic
| | - C Domingo
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M De Saint-Hubert
- Belgium Nuclear Research Center (SCK-CEN), Boeretang 200, Mol, Belgium
| | - M Majer
- Ruder Boškovic Institute, Bijenicka cesta 54, Zagreb, Croatia
| | - I Martínez-Rovira
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - S Miljanic
- Ruder Boškovic Institute, Bijenicka cesta 54, Zagreb, Croatia
| | - N Mojzeszek
- Cyclotron Centre Bronowice, Institute of Nuclear Physics, PAN (IFJPAN), Radzikowskiego 152, Krakow, Poland
| | - P Porwol
- Radiology therapeutic Center Poland SP. Z O.O., Centrum Radioterapii Amethyst w Krakowie, Zlotej Jesieni 1, Krakow, Poland
| | - O Ploc
- Nuclear Physics Institute of the CAS, Department of Radiation Dosimetry, Na Truhlárce 39/64, Praha, Czech Republic
| | - M Romero-Expósito
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - L Stolarczyk
- Cyclotron Centre Bronowice, Institute of Nuclear Physics, PAN (IFJPAN), Radzikowskiego 152, Krakow, Poland
| | - S Trinkl
- Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg, Germany
- Technische Universität München, Physik-Department, James-Franck-Str. 1, Garching bei München, Germany
| | - R M Harrison
- University of Newcastle upon Tyne, Tyne and Wear, Newcastle upon Tyne, UK
| | - P Olko
- Cyclotron Centre Bronowice, Institute of Nuclear Physics, PAN (IFJPAN), Radzikowskiego 152, Krakow, Poland
| |
Collapse
|
13
|
Stolarczyk L, Trinkl S, Romero-Expósito M, Mojżeszek N, Ambrozova I, Domingo C, Davídková M, Farah J, Kłodowska M, Knežević Ž, Liszka M, Majer M, Miljanić S, Ploc O, Schwarz M, Harrison RM, Olko P. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise. Phys Med Biol 2018; 63:085017. [PMID: 29509148 DOI: 10.1088/1361-6560/aab469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Systematic 3D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam in a 300 × 300 × 600 mm3 water phantom was performed using a set of thermoluminescence detectors (TLDs): MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MTS-N (natLiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti), radiophotoluminescent (RPL) detectors GD-352M and GD-302M, and polyallyldiglycol carbonate (PADC)-based (C12H18O7) track-etched detectors. Neutron and gamma-ray doses, as well as linear energy transfer distributions, were experimentally determined at 200 points within the phantom. In parallel, the Geant4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume of 100 × 100 × 100 mm3 (spread out Bragg peak with a modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicular to the primary beam were approximately 0.5 mGy Gy-1 at a distance of 100 mm and 0.02 mGy Gy-1 at 300 mm from the center of the target. For the neutrons, the corresponding values of dose equivalent were found to be ~0.7 and ~0.06 mSv Gy-1, respectively. The measured neutron doses were comparable with the out-of-field neutron doses from a similar experiment with 20 MV x-rays, whereas photon doses for the scanning proton beam were up to three orders of magnitude lower.
Collapse
Affiliation(s)
- L Stolarczyk
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow, Poland. Skandionkliniken, von Kraemers Allé 26, 752 37 Uppsala, Sweden. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Peripheral equivalent neutron dose model implementation for radiotherapy patients. Phys Med 2017; 42:345-352. [PMID: 28372877 DOI: 10.1016/j.ejmp.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
|
15
|
Harrison R. Out-of-field doses in radiotherapy: Input to epidemiological studies and dose-risk models. Phys Med 2017; 42:239-246. [PMID: 28392312 DOI: 10.1016/j.ejmp.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 01/18/2023] Open
Abstract
Out-of-field doses in radiotherapy have been increasingly studied in recent years because of the generally improved survival of patients who have received radiotherapy as part of their treatment for cancer and their subsequent risk of a second malignancy. This short article attempts to identify some current problems, challenges and opportunities for dosimetry developments in this field. Out-of-field doses and derived risk estimates contribute to general knowledge about radiation effects on humans as well as contributing to risk-benefit considerations for the individual patient. It is suggested that for input into epidemiological studies, the complete dose description (i.e. the synthesis of therapy and imaging doses from all the treatment and imaging modalities) is ideally required, although there is currently no common dosimetry framework which easily covers all modalities. A general strategy for out-of-field dose estimation requires development and improvement in several areas including (i) dosimetry in regions of steep dose gradient close to the field edge (ii) experimentally verified analytical and Monte Carlo models for out-of-field doses (iii) the validity of treatment planning system algorithms outside the field edge (iv) dosimetry of critical sub-structures in organs at risk (v) mixed field (including neutron) dosimetry in proton and ion radiotherapy and photoneutron production in high energy photon beams (vi) the most appropriate quantities to use in neutron dosimetry in a radiotherapy context and (vii) simplification of measurement methods in regions distant from the target volume.
Collapse
Affiliation(s)
- Roger Harrison
- Institute of Cellular Medicine, Faculty of Medical Sciences, University of Newcastle upon Tyne, UK.
| |
Collapse
|