1
|
Masella O, Murphy KJ, Bazalova-Carter M. Characterization of a new low-dose and low-energy Gafchromic film LD-V1. J Appl Clin Med Phys 2024:e14531. [PMID: 39259853 DOI: 10.1002/acm2.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE To characterize the dose-response, energy dependence, postexposure changes, orientation dependence, and spatial capabilities of LD-V1, a new low-dose Gafchromic film for low-energy x-ray dosimetry. METHODS A single sheet of LD-V1 Gafchromic film was cut into 15 × 20 mm2 rectangles with a notch to track orientation. Eight different doses between 5 and 320 mGy were delivered by an MXR-160/22 x-ray tube using x-ray beams of 90, 100, and 120 kVp filtered with 3 mm of Al and 2 mm of Ti. The 120 kVp films were scanned at 1, 1.5, 2, 3, 12, 24, 48, 72, and 168 h postexposure in portrait orientation and additionally scanned in landscape orientation at 24 h. The 90 and 100 kVp films were scanned at 24 h postexposure in portrait orientation. Lastly, a 20 × 200 mm2 strip of film was irradiated using a thin-slit imaging collimator and scanned 24 h postexposure to test the film performance in an x-ray imaging application. RESULTS Of the three color channels, the red channel was found to produce a dose-response curve with a large range of net optical density (netOD) values across the considered dose range. A prominent energy dependence was discovered, resulting in dose discrepancies on the scale of 17 mGy between 90 and 120 kVp for a dose of 80 mGy. The measured postexposure changes suggest that the calibration irradiation-to-scan time should be longer than 12 h with a ± 4 h scanning time window for dose errors of <0.5%. An average dose difference of 3.4% was found between the two scanning orientations. Lastly, noise of 4% was measured in the thin slit collimator film for a dose of 30 mGy. CONCLUSIONS We have characterized the LD-V1 film for low-energy, low-dose x-ray dosimetry. Energy, scan-time, and orientation dependencies should be considered when using this film.
Collapse
Affiliation(s)
- Oliva Masella
- Physics and Astronomy Department, University of Victoria, Victoria, British Columbia, Canada
| | - Kevin J Murphy
- Physics and Astronomy Department, University of Victoria, Victoria, British Columbia, Canada
| | | |
Collapse
|
2
|
Nakajima E, Sato H. Characterization of a new radiochromic film (LD-V1) using mammographic beam qualities. Z Med Phys 2023:S0939-3889(23)00072-7. [PMID: 37365089 DOI: 10.1016/j.zemedi.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Radiochromic film (RCF) is a detector that can obtain a two-dimensional dose distribution with high resolution; it is widely used in medical and industrial fields. Several types of RCFs exist based on their application. The type of RCF mainly used for mammography dose assessment has been discontinued; however, a new type of RCF (LD-V1) has been distributed as a successor. Since the medical use of LD-V1 has rarely been studied, we investigated the response characteristics of LD-V1 in mammography. METHODS Measurements were performed using Mo/Mo and Rh/Ag on a Senographe Pristina mammography device (GE, Fairfield, CT, USA). The reference air kerma was measured using a parallel-plate ionization chamber (PPIC) (C-MA, Applied Engineering Inc, Tokyo, Japan). Pieces of LD-V1 film model were irradiated at the same position where the reference air kerma in air was measured by the PPIC. Irradiation was performed using the time scale method based on the load on the equipment. Two methods of irradiation were considered: placing the detector in air and on the phantom. The LD-V1 was scanned five times at 72 dpi in RGB (48 bit) mode using a flatbed scanner (ES-G11000, Seiko Epson Corp, Nagano, Japan) 24 h following irradiation. The response ratio of the reference air kerma and the air kerma obtained from the LD-V1 were compared and examined for each beam quality and air kerma range. RESULTS AND DISCUSSION When the beam quality was altered, the response ratio varied from 0.8 to 1.2 with respect to the measurement value of the PPIC; however, some outliers were observed. Response ratios were highly variable in the low-dose range; however, as the air kerma increased, the ratios approached 1. Thus, LD-V1 does not need calibration for each beam quality used in mammography. LD-V1 enables air kerma evaluation by creating air kerma response curves under certain X-ray conditions used in mammography. CONCLUSION We suggest that the dose range be limited to 12 mGy or more to keep the response variation with beam qualities below ±20%. If further measurement is required for reducing the response variation, the dose range should be shifted to a higher dose range.
Collapse
Affiliation(s)
- Erika Nakajima
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki Prefecture, Japan.
| | - Hitoshi Sato
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki Prefecture, Japan
| |
Collapse
|
3
|
van Eeden D, Joubert MM, du Plessis FCP. Evaluation of artificial neural network designs for Gafchromic™ film calibration with Tc-99m and digital photos. Appl Radiat Isot 2022; 187:110311. [PMID: 35753171 DOI: 10.1016/j.apradiso.2022.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Déte van Eeden
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Maria M Joubert
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
4
|
Valero C, Sarno A, Cutaia C, Poli M, Isoardi P, Stasi M. On the suitability of XR-SP2 gafchromic films for dosimetry in mammography. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Sarno A, Tucciariello RM, Mettivier G, Del Sarto D, Fantacci ME, Russo P. Normalized glandular dose coefficients for digital breast tomosynthesis systems with a homogeneous breast model. Phys Med Biol 2021; 66:065024. [PMID: 33535193 DOI: 10.1088/1361-6560/abe2e9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work aims at calculating and releasing tabulated values of dose conversion coefficients, DgNDBT, for mean glandular dose (MGD) estimates in digital breast tomosynthesis (DBT). The DgNDBT coefficients are proposed as unique conversion coefficients for MGD estimates, in place of dose conversion coefficients in mammography (DgNDM or c, g, s triad as proposed in worldwide quality assurance protocols) used together with the T correction factor. DgNDBT is the MGD per unit incident air kerma measured at the breast surface for a 0° projection and the entire tube load used for the scan. The dataset of polyenergetic DgNDBT coefficients was derived via a Monte Carlo software based on the Geant4 toolkit. Dose coefficients were calculated for a grid of values of breast characteristics (breast thickness in the range 20-90 mm and glandular fraction by mass of 1%, 25%, 50%, 75%, 100%) and the simulated geometries, scan protocols, irradiation geometries and typical spectral qualities replicated those of six commercial DBT systems (GE SenoClaire, Hologic Selenia Dimensions, GE Senographe Pristina, Fujifilm Amulet Innovality, Siemens Mammomat Inspiration and IMS Giotto Class). For given breast characteristics, target/filter combination, tube voltage and half value layer (HVL), two spectra with two HVL values have been simulated in order to permit MGD estimates from experimental HVL values via mathematical interpolation from tabulated values. The adopted breast model assumes homogenous composition of glandular and adipose tissues; it includes a 1.45 mm thick skin envelope in place of the 4-5 mm envelope commonly adopted in dosimetry protocols. The simulation code was validated versus AAPM Task group 195 Monte Carlo reference data sets (absolute differences not higher than 1.1%) and by comparison to relative dosimetry measurements with radiochromic film in a PMMA test object (differences within the maximum experimental uncertainty of 11%). The calculated coefficients show maximum relative deviations of -17.6% and +6.1% from those provided by the DBT dose coefficients adopted in the EUREF protocol and of 1.5%, on average, from data in the AAPM TG223 report. A spreadsheet is provided for interpolating the tabulated DgNDBT coefficients for arbitrary values of HVL, compressed breast thickness and glandular fraction, in the corresponding investigated ranges, for each DBT unit modeled in this work.
Collapse
Affiliation(s)
- Antonio Sarno
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Radiochromic Films for the Two-Dimensional Dose Distribution Assessment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Radiochromic films are mainly used for two-dimensional dose verification in photon, electron, and proton therapy treatments. Moreover, the radiochromic film types available today allow their use in a wide dose range, corresponding to applications from low-medical diagnostics to high-dose beam profile measurements in charged particle medical accelerators. An in-depth knowledge of the characteristics of radiochromic films, of their operating principles, and of the dose reading techniques is of paramount importance to exploit all the features of this interesting and versatile radiation detection system. This short review focuses on these main aspects by considering the most recent works on the subject.
Collapse
|
7
|
Tanki N, Katsuda T, Gotanda R, Gotanda T, Imai S, Kawaji Y, Noguchi A, Kuwano T, Fujita H, Takeda Y. THE CONCEPT OF X-RAY CT DOSE EVALUATION METHOD USING RADIOCHROMIC FILM AND FILM-FOLDING PHANTOM. RADIATION PROTECTION DOSIMETRY 2021; 193:96-104. [PMID: 33786601 DOI: 10.1093/rpd/ncab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we propose a novel radiochromic film (RCF)-based computed tomography (CT) dosimetry method, which is different from the method based on CT dose index. RCF dosimetry using Gafchromic QA2 films was performed using two lengths of film-folding phantoms. The phantom was exposed to X-ray CT through a single scan, while the RCF was sandwiched between the phantoms. We analysed the dose profile curve in two directions to investigate the dose distribution. We observed a difference in the dose distribution as the phantom size changed. Our results contradict with the results of previous studies such as Monte Carlo simulation or direct measurement. The ability to visually evaluate 2D dose distributions is an advantage of RCF dosimetry over other methods. This research investigated the ability of 2D X-ray CT dose evaluation using RCF and film-folding phantom.
Collapse
Affiliation(s)
- Nobuyoshi Tanki
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
- Brain Activity Imaging Center, ATR-Promotions Inc., 2-2-2 Hikaridai, Sorakugun Seika-cho, Kyoto 619-0288, Japan
| | - Toshizo Katsuda
- Department of Medical Radiation Sciences, Shizuoka College of Medicalcare Science, 2000 Hiraguchi, Hamakita-ku, Hamamatsu, 434-0041 Shizuoka, Japan
| | - Rumi Gotanda
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, 701-0193 Okayama, Japan
| | - Tatsuhiro Gotanda
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, 701-0193 Okayama, Japan
| | - Shinya Imai
- Department of Radiological Science, Faculty of Health Science, Morinomiya University of Medical Sciences, 1-26-16 Nankou-kita, Suminoe-ku, 559-8611 Osaka, Japan
| | - Yasuyuki Kawaji
- Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University, 1-1-1 Chikushioka, Minami-ku, 815-8510 Fukuoka, Japan
| | - Atsushi Noguchi
- Aoi Hospital, Medical Incorporated Association Seishokai, 6-14-2 Aramaki, Itami, 664-0001 Hyogo, Japan
| | - Tadao Kuwano
- Osaka Center for Cancer and Cardiovasucular Disease Prevention, 1-6-107 Morinomiya, Joutou-ku, 536-8588 Osaka, Japan
| | - Hideki Fujita
- Department of Radiation Oncology, Osaka Saiseikai Nakatsu Hospital, 2-10-39 Shibata, Kita-ku 530-0012 Osaka, Japan
| | - Yoshihiro Takeda
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
8
|
Niroomand‐Rad A, Chiu‐Tsao S, Grams MP, Lewis DF, Soares CG, Van Battum LJ, Das IJ, Trichter S, Kissick MW, Massillon‐JL G, Alvarez PE, Chan MF. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55. Med Phys 2020; 47:5986-6025. [DOI: 10.1002/mp.14497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Indra J. Das
- Radiation Oncology Northwestern University Memorial Hospital Chicago IL USA
| | - Samuel Trichter
- New York‐Presbyterian HospitalWeill Cornell Medical Center New York NY USA
| | | | - Guerda Massillon‐JL
- Instituto de Fisica Universidad Nacional Autonoma de Mexico Mexico City Mexico
| | - Paola E. Alvarez
- Imaging and Radiation Oncology Core MD Anderson Cancer Center Houston TX USA
| | - Maria F. Chan
- Memorial Sloan Kettering Cancer Center Basking Ridge NJ USA
| |
Collapse
|
9
|
Mettivier G, Masi M, Arfelli F, Brombal L, Delogu P, Di Lillo F, Donato S, Fedon C, Golosio B, Oliva P, Rigon L, Sarno A, Taibi A, Russo P. Radiochromic film dosimetry in synchrotron radiation breast computed tomography: a phantom study. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:762-771. [PMID: 32381779 PMCID: PMC7285685 DOI: 10.1107/s1600577520001745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
This study relates to the INFN project SYRMA-3D for in vivo phase-contrast breast computed tomography using the SYRMEP synchrotron radiation beamline at the ELETTRA facility in Trieste, Italy. This peculiar imaging technique uses a novel dosimetric approach with respect to the standard clinical procedure. In this study, optimization of the acquisition procedure was evaluated in terms of dose delivered to the breast. An offline dose monitoring method was also investigated using radiochromic film dosimetry. Various irradiation geometries have been investigated for scanning the prone patient's pendant breast, simulated by a 14 cm-diameter polymethylmethacrylate cylindrical phantom containing pieces of calibrated radiochromic film type XR-QA2. Films were inserted mid-plane in the phantom, as well as wrapped around its external surface, and irradiated at 38 keV, with an air kerma value that would produce an estimated mean glandular dose of 5 mGy for a 14 cm-diameter 50% glandular breast. Axial scans were performed over a full rotation or over 180°. The results point out that a scheme adopting a stepped rotation irradiation represents the best geometry to optimize the dose distribution to the breast. The feasibility of using a piece of calibrated radiochromic film wrapped around a suitable holder around the breast to monitor the scan dose offline is demonstrated.
Collapse
Affiliation(s)
- Giovanni Mettivier
- Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli ‘Federico II’, I-80126 Napoli, Italy
- INFN, Sezione di Napoli, I-80126 Napoli, Italy
| | - Marica Masi
- Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli ‘Federico II’, I-80126 Napoli, Italy
- INFN, Sezione di Napoli, I-80126 Napoli, Italy
| | - Fulvia Arfelli
- Department of Physics, Università di Trieste, I-34127 Trieste, Italy
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
| | - Luca Brombal
- Department of Physics, Università di Trieste, I-34127 Trieste, Italy
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
| | - Pasquale Delogu
- Department of Physical Science, Earth and Environment, Università di Siena, I-53100 Siena, Italy
- Sezione di Pisa, INFN, I-34127 Pisa, Italy
| | - Francesca Di Lillo
- Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli ‘Federico II’, I-80126 Napoli, Italy
- INFN, Sezione di Napoli, I-80126 Napoli, Italy
- ELETTRA-Sincrotrone Trieste SCpA, Bassovizza, I-34149 Trieste, Italy
| | - Sandro Donato
- Department of Physics, Università di Trieste, I-34127 Trieste, Italy
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
| | - Christian Fedon
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Bruno Golosio
- Department of Physics, Università di Cagliari, I-09042 Cagliari, Italy
- Sezione di Cagliari, INFN, I-09042 Cagliari, Italy
| | - Piernicola Oliva
- Sezione di Cagliari, INFN, I-09042 Cagliari, Italy
- Department of Chemistry and Pharmacy, Università di Sassari, Sassari, Italy
| | - Luigi Rigon
- Department of Physics, Università di Trieste, I-34127 Trieste, Italy
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
| | | | - Angelo Taibi
- Department of Physics and Earth Science, Università di Ferrara, I-44122 Ferrara, Italy
- Sezione di Ferrara, INFN, I-44122 Ferrara, Italy
| | - Paolo Russo
- Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli ‘Federico II’, I-80126 Napoli, Italy
- INFN, Sezione di Napoli, I-80126 Napoli, Italy
| |
Collapse
|
10
|
Flores MB, Mourão AP, Oliveira FA, Del Río MC. Dose profile evaluation in digital breast tomosynthesis exposition using radiochromic film. Appl Radiat Isot 2019; 152:140-144. [PMID: 31299451 DOI: 10.1016/j.apradiso.2019.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/16/2023]
Abstract
Digital Breast Tomosynthesis (DBT) is an efficient method to diagnose changes in the breast tissues. However, it may promote some future detriment to the patient exposed in this test. The future effects can be evaluating using absorbed dose values. A mammographic phantom should be chosen to simulate approximately the properties of a compressed breast in terms of the primary and dispersed radiation spectrum that exits its lower surface. The use of PMMA has important advantages. It is cheaper than substitutes for specially manufactured fabrics and is more available. The objective of this work will be to estimate the dose profile that a real breast would receive during a DTB examination. For this purpose a breast phantom with acrylic materials (PMMA) and dimensions similar to those of a real breast will be constructed, and the dose will be measured on the surface (ESAK profile) and in the middle cut (air kerma profile) of the breast phantom using the radiochromic film.
Collapse
Affiliation(s)
- Mabel B Flores
- Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Arnaldo P Mourão
- Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro de Engenharia Biomédica, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Fernando A Oliveira
- Centro de Engenharia Biomédica, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Margarita C Del Río
- Departamento de Radiología, Rehabilitación y Fisioterapia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Monte Carlo simulations of different CT X-ray energy spectra within CTDI phantom and the influence of its changes on radiochromic film measurements. Phys Med 2019; 62:105-110. [DOI: 10.1016/j.ejmp.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
|
12
|
Massillon-Jl G, Cabrera-Santiago A, Xicohténcatl-Hernández N. Relative efficiency of Gafchromic EBT3 and MD-V3 films exposed to low-energy photons and its influence on the energy dependence. Phys Med 2019; 61:8-17. [PMID: 31151584 DOI: 10.1016/j.ejmp.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/17/2022] Open
Abstract
Energy-dependence of Gafchromic films exposed to low-energy photons has been reported to be a function of absorbed-dose. However, these studies are based on a relative-response, R, which considers the absorbed-dose in water and not within the film sensitive-volume. This work investigated the relative-efficiency, REfilm, (ratio of absorbed-dose required to produce the same net optical density (netOD) by 60Co gamma and by x-ray) of Gafchromic EBT3 and MD-V3 films exposed to five x-ray beams from 20 kV to 160 kV and 60Co gamma rays. A factor that accounts for the energy-dependence, fx,Q,med, based on REfilm, phantom-material and depth at which the films are placed during irradiation was used to remove the influence of absorbed dose. Values of REfilm indicated that the absorbed dose from 60Co gamma rays needs to be 4 and 3 times larger than those from 20 kV x-rays to produce the same netOD within the EBT3 and MD-V3 sensitive volumes, respectively. Thus, saturation could help explain why Gafchromic films show under-response to very low doses from low-energy photon beams, regardless of film model. Furthermore, REfilm, was found to be nearly independent of netOD and colour-channels. Consequently, fx,Q,med is independent of the absorbed dose and colour-channels. In contrast, besides the variation with the photon energy, fx,Q,med varied with film model, depth and phantom material used during the irradiation. Thus, the results suggest that fx,Q,med is a more reliable wide-ranging parameter for evaluating the degree of energy-dependence of the film rather than the relative-response method commonly considered.
Collapse
Affiliation(s)
- Guerda Massillon-Jl
- Instituto de Física, Universidad Nacional Autónoma de México, 04510 Coyoacan, Mexico City, Mexico.
| | - Alexis Cabrera-Santiago
- Instituto de Física, Universidad Nacional Autónoma de México, 04510 Coyoacan, Mexico City, Mexico
| | | |
Collapse
|
13
|
Vijayan S, Xiong Z, Guo C, Troville J, Islam N, Rudin S, Bednarek DR. Calculation of Forward Scatter Dose Distribution at the skin entrance from the patient table for fluoroscopically guided interventions using a pencil beam convolution kernel. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10573. [PMID: 29904230 DOI: 10.1117/12.2294920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The forward-scatter dose distribution generated by the patient table during fluoroscopic interventions and its contribution to the skin dose is studied. The forward-scatter dose distribution to skin generated by a water table-equivalent phantom and the patient table are calculated using EGSnrc Monte-Carlo and Gafchromic film as a function of x-ray field size and beam penetrability. Forward scatter point spread function's (PSFn) were generated with EGSnrc from a 1×1 mm simulated primary pencil beam incident on the water model and patient table. The forward-scatter point spread function normalized to the primary is convolved over the primary-dose distribution to generate scatter-dose distributions. The utility of PSFn to calculate the entrance skin dose distribution using DTS (dose tracking system) software is investigated. The forward-scatter distribution calculations were performed for 2.32 mm, 3.10 mm, 3.84 mm and 4.24 mm Al HVL x-ray beams for 5×5 cm, 9×9 cm, 13.5×13.5 cm sized x-ray fields for water and 3.1 mm Al HVL x-ray beam for 16.5×16.5 cm field for the patient table. The skin dose is determined with DTS by convolution of the scatter dose PSFn's and with Gafchromic film under PMMA "patient-simulating" blocks for uniform and for shaped x-ray fields. The normalized forward-scatter distribution determined using the convolution method for water table-equivalent phantom agreed with that calculated for the full field using EGSnrc within ±6%. The normalized forward-scatter dose distribution calculated for the patient table for a 16.5×16.5 cm FOV, agreed with that determined using film within ±2.4%. For the homogenous PMMA phantom, the skin dose using DTS was calculated within ±2 % of that measured with the film for both uniform and non-uniform x-ray fields. The convolution method provides improved accuracy over using a single forward-scatter value over the entire field and is a faster alternative to performing full-field Monte-Carlo calculations.
Collapse
Affiliation(s)
- Sarath Vijayan
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Zhenyu Xiong
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Chao Guo
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Jonathan Troville
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Naveed Islam
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Stephen Rudin
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA.,Department of Radiology, University at Buffalo, Buffalo, NY, USA
| | - Daniel R Bednarek
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA.,Department of Radiology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
14
|
Di Lillo F, Mettivier G, Castriconi R, Sarno A, Stevenson AW, Hall CJ, Häusermann D, Russo P. Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:857-868. [PMID: 29714197 DOI: 10.1107/s1600577518003788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.
Collapse
Affiliation(s)
- Francesca Di Lillo
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| | - Giovanni Mettivier
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| | - Roberta Castriconi
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| | - Antonio Sarno
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| | - Andrew W Stevenson
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Chris J Hall
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Daniel Häusermann
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Paolo Russo
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| |
Collapse
|
15
|
Spampinato S, Gueli AM, Milone P, Raffaele LA. Dosimetric changes with computed tomography automatic tube-current modulation techniques. Radiol Phys Technol 2018; 11:184-191. [PMID: 29626289 DOI: 10.1007/s12194-018-0454-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 11/29/2022]
Abstract
The study is aimed at a verification of dose changes for a computed tomography automatic tube-current modulation (ATCM) technique. For this purpose, anthropomorphic phantom and Gafchromic® XR-QA2 films were used. Radiochromic films were cut according to the shape of two thorax regions. The ATCM algorithm is based on noise index (NI) and three exam protocols with different NI were chosen, of which one was a reference. Results were compared with dose values displayed by the console and with Poisson statistics. The information obtained with radiochromic films has been normalized with respect to the NI reference value to compare dose percentage variations. Results showed that, on average, the information reported by the CT console and calculated values coincide with measurements. The study allowed verification of the dose information reported by the CT console for an ATCM technique. Although this evaluation represents an estimate, the method can be a starting point for further studies.
Collapse
Affiliation(s)
- Sofia Spampinato
- PH3DRA Laboratories (PHysics for Dating Diagnostic Dosimetry Research and Applications), Dipartimento di Fisica e Astronomia, Università di Catania and INFN-Catania, Via Santa Sofia 64, 95123, Catania, Italy. .,Scuola di Specializzazione in Fisica Medica, Dipartimento di Scienze mediche chirurgiche e tecnologie avanzate "G. F. Ingrassia", Scuola Facoltà di Medicina, Via Santa Sofia 78, 95123, Catania, Italy. .,Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000, Aarhus, Denmark.
| | - Anna Maria Gueli
- PH3DRA Laboratories (PHysics for Dating Diagnostic Dosimetry Research and Applications), Dipartimento di Fisica e Astronomia, Università di Catania and INFN-Catania, Via Santa Sofia 64, 95123, Catania, Italy.,Scuola di Specializzazione in Fisica Medica, Dipartimento di Scienze mediche chirurgiche e tecnologie avanzate "G. F. Ingrassia", Scuola Facoltà di Medicina, Via Santa Sofia 78, 95123, Catania, Italy
| | - Pietro Milone
- Scuola di Specializzazione in Fisica Medica, Dipartimento di Scienze mediche chirurgiche e tecnologie avanzate "G. F. Ingrassia", Scuola Facoltà di Medicina, Via Santa Sofia 78, 95123, Catania, Italy.,Unità Operativa Complessa di Radiodiagnostica e Radioterapia, Azienda Ospedaliero-Universitaria Policlinico di Catania, P. O. Gaspare Rodolico, Via Santa Sofia 78, 95123, Catania, Italy
| | - Luigi Angelo Raffaele
- PH3DRA Laboratories (PHysics for Dating Diagnostic Dosimetry Research and Applications), Dipartimento di Fisica e Astronomia, Università di Catania and INFN-Catania, Via Santa Sofia 64, 95123, Catania, Italy.,Scuola di Specializzazione in Fisica Medica, Dipartimento di Scienze mediche chirurgiche e tecnologie avanzate "G. F. Ingrassia", Scuola Facoltà di Medicina, Via Santa Sofia 78, 95123, Catania, Italy.,Unità Operativa Complessa di Radiodiagnostica e Radioterapia, Azienda Ospedaliero-Universitaria Policlinico di Catania, P. O. Gaspare Rodolico, Via Santa Sofia 78, 95123, Catania, Italy
| |
Collapse
|
16
|
Feng Y, Tiedje HF, Gagnon K, Fedosejevs R. Spectral calibration of EBT3 and HD-V2 radiochromic film response at high dose using 20 MeV proton beams. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:043511. [PMID: 29716332 DOI: 10.1063/1.4996022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Radiochromic film is used extensively in many medical, industrial, and scientific applications. In particular, the film is used in analysis of proton generation and in high intensity laser-plasma experiments where very high dose levels can be obtained. The present study reports calibration of the dose response of Gafchromic EBT3 and HD-V2 radiochromic films up to high exposure densities. A 2D scanning confocal densitometer system is employed to carry out accurate optical density measurements up to optical density 5 on the exposed films at the peak spectral absorption wavelengths. Various wavelengths from 400 to 740 nm are also scanned to extend the practical dose range of such films by measuring the response at wavelengths removed from the peak response wavelengths. Calibration curves for the optical density versus exposure dose are determined and can be used for quantitative evaluation of measured doses based on the measured optical densities. It was found that blue and UV wavelengths allowed the largest dynamic range though at some trade-off with overall accuracy.
Collapse
Affiliation(s)
- Yiwei Feng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G2V4, Alberta, Canada
| | - Henry F Tiedje
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G2V4, Alberta, Canada
| | - Katherine Gagnon
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton T6G2V4, Alberta, Canada
| | - Robert Fedosejevs
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G2V4, Alberta, Canada
| |
Collapse
|
17
|
Fedon C, Caballo M, Longo R, Trianni A, Sechopoulos I. Internal breast dosimetry in mammography: Experimental methods and Monte Carlo validation with a monoenergetic x-ray beam. Med Phys 2018; 45:1724-1737. [DOI: 10.1002/mp.12792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/05/2017] [Accepted: 01/19/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christian Fedon
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; PO Box 9101 6500 HB Nijmegen The Netherlands
- Istituto Nazionale di Fisica Nucleare (INFN); sezione di Trieste; 34127 Trieste Italy
| | - Marco Caballo
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; PO Box 9101 6500 HB Nijmegen The Netherlands
| | - Renata Longo
- Istituto Nazionale di Fisica Nucleare (INFN); sezione di Trieste; 34127 Trieste Italy
- Dipartimento di Fisica; Università degli Studi di Trieste; 34127 Trieste Italy
| | - Annalisa Trianni
- Medical Physics Department; Azienda Sanitaria Universitaria Integrata (ASUIUD) - Presidio Ospedaliero “S. Maria della Misericordia”; p.le S. Maria della Misericordia, 15 33100 Udine Italy
| | - Ioannis Sechopoulos
- Department of Radiology and Nuclear Medicine; Radboud University Medical Center; PO Box 9101 6500 HB Nijmegen The Netherlands
- Dutch Expert Center for Screening (LRCB); PO Box 6873 6503 GJ Nijmegen The Netherlands
| |
Collapse
|
18
|
Sarno A, Masi M, Antonelli N, Di Lillo F, Mettivier G, Castriconi R, Russo P. Dose Volume Distribution in Digital Breast Tomosynthesis: A Phantom Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/trpms.2017.2705727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Akhilesh P, Kulkarni AR, Jamhale SH, Sharma SD, Kumar R, Datta D. Estimation of Eye Lens Dose During Brain Scans Using Gafchromic Xr-QA2 Film in Various Multidetector CT Scanners. RADIATION PROTECTION DOSIMETRY 2017; 174:236-241. [PMID: 27247444 DOI: 10.1093/rpd/ncw132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to estimate eye lens dose during brain scans in 16-, 64-, 128- and 256-slice multidetector computed tomography (CT) scanners in helical acquisition mode and to test the feasibility of using radiochromic film as eye lens dosemeter during CT scanning. Eye lens dose measurements were performed using Gafchromic XR-QA2 film on a polystyrene head phantom designed with outer dimensions equivalent to the head size of a reference Indian man. The response accuracy of XR-QA2 film was validated by using thermoluminescence dosemeters. The eye lens dose measured using XR-QA2 film on head phantom for plain brain scanning in helical mode ranged from 43.8 to 45.8 mGy. The XR-QA2 film measured dose values were in agreement with TLD measured dose values within a maximum variation of 8.9%. The good correlation between the two data sets confirms the viability of using XR-QA2 film for eye lens dosimetry.
Collapse
Affiliation(s)
- Philomina Akhilesh
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT&CRS Building, Anushaktinagar, Mumbai 400094, India
| | - Arti R Kulkarni
- Radiological Safety Division, Atomic Energy Regulatory Board, Niyamak Bhavan, Anushaktinagar, Mumbai 400094, India
| | - Shramika H Jamhale
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT&CRS Building, Anushaktinagar, Mumbai 400094, India
| | - S D Sharma
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT&CRS Building, Anushaktinagar, Mumbai 400094, India
| | - Rajesh Kumar
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT&CRS Building, Anushaktinagar, Mumbai 400094, India
| | - D Datta
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT&CRS Building, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
20
|
Devic S, Tomic N, Lewis D. Reference radiochromic film dosimetry: Review of technical aspects. Phys Med 2016; 32:541-56. [DOI: 10.1016/j.ejmp.2016.02.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/30/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
|