1
|
Jiang Z, Salcudean SE, Navab N. Robotic ultrasound imaging: State-of-the-art and future perspectives. Med Image Anal 2023; 89:102878. [PMID: 37541100 DOI: 10.1016/j.media.2023.102878] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/27/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques. Additionally, we present the challenges that the scientific community needs to face in the coming years in order to achieve its ultimate goal of developing intelligent robotic sonographer colleagues. These colleagues are expected to be capable of collaborating with human sonographers in dynamic environments to enhance both diagnostic and intraoperative imaging.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany.
| | - Septimiu E Salcudean
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nassir Navab
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany; Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Li Y, Gong Z, Liu M, Li H, Gao H, Guo C, Yu L, Zhu C, Sun Z, Sun L, Xu H, He X. 3D-US and CBCT Dual-guided Radiotherapy for Postoperative Uterine Malignancy: A Primary Workflow Set-up. Technol Cancer Res Treat 2023; 22:15330338231212082. [PMID: 37993995 PMCID: PMC10666818 DOI: 10.1177/15330338231212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 11/24/2023] Open
Abstract
Introduction: The consistency of clinical target volume is essential to guiding radiotherapy with precision for postoperative uterine malignancy patients. By introducing a three-dimensional ultrasound system (3D-US) into image-guided radiation therapy (IGRT), this study was designed to investigate the initial workflow set-up, the therapeutic potential, and the adverse events of 3D-US and cone-beam computed tomography (CBCT) dual-guided radiotherapy in postoperative uterine malignancy treatment. Methods: From April 2021 to December 2021, postoperative uterine malignancy patients were instructed to follow the previously standard protocol of daily radiation treatment, particularly a 3D-US (Clarity system) guiding was involved before CBCT. Soft-tissue-based displacements resulting from the additional US-IGRT were acquired in the LT (left)/RT (right), ANT (anterior)/POST (posterior), and SUP (superior)/INF(inferior) directions of the patient before fractional treatment. Displacement distributions before and after treatment either from 3D-US or from CBCT were also estimated and compared subsequently, and the urinary and rectal toxicity was further evaluated. Results: All the patients completed radiation treatment as planned. The assessment of 170 scans resulted in a mean displacement of (0.17 ± 0.24) cm, (0.19 ± 0.23) cm, (0.22 ± 0.26) cm for bladder in LT/RT, ANT/POST, and SUP/INF directions. A mean deviation of (0.26 ± 0.22) cm, (0.58 ± 0.5) cm, and (0.3 ± 0.23) cm was also observed for the bladder centroid between the CBCT and computed tomography -simulation images in three directions. Paired comparison between these two guidance shows that the variations from 3D-US are much smaller than those from CBCT in three directions, especially in ANT/POST and SUP/INF directions with significance (P = 0.000, 0.001, respectively). During treatment, and 0, 3, 6, 9, and 12 months after treatment, there was no severe urinary and rectal toxicity happened. Conclusion: A primary workflow of 3D-US and CBCT dual-guided radiotherapy has been established, which showed great therapeutic potential with mild to moderate urinary and rectal toxicity for postoperative uterine malignancy patients. But the clinical outcomes of this non-invasive technique need to be investigated further.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhen Gong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mengyu Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Huixin Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Han Gao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chang Guo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Le Yu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chenjing Zhu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhihua Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Li Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hanzi Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
3
|
Sprenger J, Bengs M, Gerlach S, Neidhardt M, Schlaefer A. Systematic analysis of volumetric ultrasound parameters for markerless 4D motion tracking. Int J Comput Assist Radiol Surg 2022; 17:2131-2139. [PMID: 35597846 PMCID: PMC9515030 DOI: 10.1007/s11548-022-02665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Motion compensation is an interesting approach to improve treatments of moving structures. For example, target motion can substantially affect dose delivery in radiation therapy, where methods to detect and mitigate the motion are widely used. Recent advances in fast, volumetric ultrasound have rekindled the interest in ultrasound for motion tracking. We present a setup to evaluate ultrasound based motion tracking and we study the effect of imaging rate and motion artifacts on its performance. METHODS We describe an experimental setup to acquire markerless 4D ultrasound data with precise ground truth from a robot and evaluate different real-world trajectories and system settings toward accurate motion estimation. We analyze motion artifacts in continuously acquired data by comparing to data recorded in a step-and-shoot fashion. Furthermore, we investigate the trade-off between the imaging frequency and resolution. RESULTS The mean tracking errors show that continuously acquired data leads to similar results as data acquired in a step-and-shoot fashion. We report mean tracking errors up to 2.01 mm and 1.36 mm on the continuous data for the lower and higher resolution, respectively, while step-and-shoot data leads to mean tracking errors of 2.52 mm and 0.98 mm. CONCLUSIONS We perform a quantitative analysis of different system settings for motion tracking with 4D ultrasound. We can show that precise tracking is feasible and additional motion in continuously acquired data does not impair the tracking. Moreover, the analysis of the frequency resolution trade-off shows that a high imaging resolution is beneficial in ultrasound tracking.
Collapse
Affiliation(s)
- Johanna Sprenger
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany.
| | - Marcel Bengs
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - Stefan Gerlach
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - Maximilian Neidhardt
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - Alexander Schlaefer
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
4
|
DI Franco R, Borzillo V, Alberti D, Ametrano G, Petito A, Coppolaro A, Tarantino I, Rossetti S, Pignata S, Iovane G, Perdonà S, Quarto G, Grimaldi G, Izzo A, Castaldo L, Muscariello R, Serra M, Facchini G, Muto P. Acute Toxicity in Hypofractionated/Stereotactic Prostate Radiotherapy of Elderly Patients: Use of the Image-guided Radio Therapy (IGRT) Clarity System. In Vivo 2021; 35:1849-1856. [PMID: 33910872 DOI: 10.21873/invivo.12447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND The use of intra-fractional monitoring and correction of prostate position with the Image Guided Radio Therapy (IGRT) system can increase the spatial accuracy of dose delivery. Clarity is a system used for intrafraction prostate-motion management, it provides a real-time visualization of prostate with a transperineal ultrasound. The aim of this study was to evaluate the use of Clarity-IGRT on proper intrafraction alignment and monitoring, its impact on Planning Tumor Volume margin and on urinary and rectal toxicity in elderly patients not eligible for surgery. PATIENTS AND METHODS Twenty-five elderly prostate cancer patients, median age=75 years (range=75-90 years) were treated with Volumetric Radiotherapy and Clarity-IGRT using 3 different schemes: A) 64.5/72 Gray (Gy) in 30 fractions on prostate and seminal vesicles (6 patients); B) 35 Gy in 5 fractions on prostate and seminal vesicles (12 patients); C): 35 Gy in 5 fractions on prostate (7 patients). Ultrasound identification of the overlapped structures to the detected ones during simulation has been used in each session. A specific software calculates direction and entity of necessary shift to obtain the perfect match. The average misalignment in the three-dimensional space has been determined and shown in a box-plot. RESULTS All patients completed treatment with mild-moderate toxicity. During treatment, genitourinary toxicity was 32% Grade 1; 4% Grade 2, rectal was 4% Grade 1. At follow-up of 3 months, genitourinary toxicity was 20% Grade 1; 4% Grade 2, rectal toxicity was 4% Grade 2. At follow-up of 6 months, genitourinary toxicity was 4% Grade 1; 4% Grade 2. Rectal toxicity was 4% Grade 2. CONCLUSION Radiotherapy with the Clarity System allows a reduction of PTV margins, the amount of fractions can be reduced increasing the total dose, not exacerbating urinary and rectal toxicity with greater patient's compliance.
Collapse
Affiliation(s)
- Rossella DI Franco
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy;
| | - Valentina Borzillo
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Domingo Alberti
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Gianluca Ametrano
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Angela Petito
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Andrea Coppolaro
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Ilaria Tarantino
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Sabrina Rossetti
- Departmental Unit Of Clinical and Experimental Uro-Andrologic Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Sandro Pignata
- Departmental Unit Of Clinical and Experimental Uro-Andrologic Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Gelsomina Iovane
- Departmental Unit Of Clinical and Experimental Uro-Andrologic Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Sisto Perdonà
- Uro-Gynecological Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Quarto
- Uro-Gynecological Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Giovanni Grimaldi
- Uro-Gynecological Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Alessandro Izzo
- Uro-Gynecological Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Luigi Castaldo
- Uro-Gynecological Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Raffaele Muscariello
- Uro-Gynecological Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Marcello Serra
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Gaetano Facchini
- Department of Hospital Medicine, Unit of Medical Oncology, ASL Napoli 2 Nord, "S.M. delle Grazie" Hospital, Pozzuoli, Italy
| | - Paolo Muto
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
5
|
Pang EPP, Knight K, Leung RW, Wang MLC, Chan JWS, Low GK, Seah IKL, Atan MAB, Chai JYH, Ng GC, Yang TC, Tuan JKL. Technical considerations for positioning and placement of a transperineal ultrasound probe during prostate radiotherapy. J Med Radiat Sci 2021; 68:196-202. [PMID: 33017863 PMCID: PMC8168066 DOI: 10.1002/jmrs.439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
This technical evaluation aims to provide practice 'how to' guidelines for radiation therapists (RTs) when positioning a transperineal ultrasound (TPUS) probe during prostate radiotherapy. Recommendations and practical tips will be provided for the best practice in TPUS-guided workflow to obtain optimal ultrasound images for accurate interpretation and registration of the prostate gland. This will assist the RTs in making consistent and accurate clinical decision in an ultrasound-guided radiotherapy workflow for prostate treatment. The implementation process and the associated successes and challenges will also be described to assist institutions who may be investigating the potential of implementing this system.
Collapse
Affiliation(s)
- Eric Pei Ping Pang
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Faculty of Medicine, Nursing and Health SciencesDepartment of Medical Imaging & Radiation SciencesMonash UniversityClaytonVICAustralia
| | - Kellie Knight
- Faculty of Medicine, Nursing and Health SciencesDepartment of Medical Imaging & Radiation SciencesMonash UniversityClaytonVICAustralia
| | | | - Michael Lian Chek Wang
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Duke‐NUS Graduate Medical SchoolSingaporeSingapore
| | - Jason Wei Siang Chan
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Gee Keng Low
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Irene Kai Ling Seah
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | | | - Jairia Yih Huei Chai
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Grace Chuk‐Kwan Ng
- Department of Clinical OncologyTuen Mun HospitalTuen Mun, New TerritoriesHong Kong
| | | | - Jeffrey Kit Loong Tuan
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Duke‐NUS Graduate Medical SchoolSingaporeSingapore
| |
Collapse
|
6
|
Hewson EA, Dipuglia A, Kipritidis J, Ge Y, O'Brien R, Roderick S, Bell L, Poulsen PR, Eade T, Booth JT, Keall PJ, Nguyen DT. First experimental evaluation of multi-target multileaf collimator tracking during volumetric modulated arc therapy for locally advanced prostate cancer. Radiother Oncol 2021; 160:212-220. [PMID: 33971194 DOI: 10.1016/j.radonc.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE Locally advanced and oligometastatic cancer patients require radiotherapy treatment to multiple independently moving targets. There is no existing commercial solution that can simultaneously track and treat multiple targets. This study experimentally implemented and evaluated a real-time multi-target tracking system for locally advanced prostate cancer. METHODS Real-time multi-target MLC tracking was integrated with 3D x-ray image guidance on a standard linac. Three locally advanced prostate cancer treatment plans were delivered to a static lymph node phantom and dynamic prostate phantom that reproduced three prostate trajectories. Treatments were delivered using multi-target MLC tracking, single-target MLC tracking, and no tracking. Doses were measured using Gafchromic film placed in the dynamic and static phantoms. Dosimetric error was quantified by the 2%/2 mm gamma failure rate. Geometric error was evaluated as the misalignment between target and aperture positions. The multi-target tracking system latency was measured. RESULTS The mean (range) gamma failure rates for the prostate and lymph nodes, were 18.6% (5.2%, 28.5%) and 7.5% (1.1%, 13.7%) with multi-target tracking, 7.9% (0.7%, 15.4%) and 37.8% (18.0%, 57.9%) with single-target tracking, and 38.1% (0.6%, 75.3%) and 37.2% (29%, 45.3%) without tracking. Multi-target tracking had the lowest geometric error with means and standard deviations within 0.2 ± 1.5 for the prostate and 0.0 ± 0.3 mm for the lymph nodes. The latency was 730 ± 20 ms. CONCLUSION This study presented the first experimental implementation of multi-target tracking to independently track prostate and lymph node displacement during VMAT. Multi-target tracking reduced dosimetric and geometric errors compared to single-target tracking and no tracking.
Collapse
Affiliation(s)
- Emily A Hewson
- ACRF Image X Institute, University of Sydney School of Health Sciences, Sydney, Australia.
| | - Andrew Dipuglia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - John Kipritidis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Yuanyuan Ge
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, Australia
| | - Ricky O'Brien
- ACRF Image X Institute, University of Sydney School of Health Sciences, Sydney, Australia
| | - Stephanie Roderick
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Linda Bell
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Per R Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Jeremy T Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; School of Physics, University of Sydney, Australia
| | - Paul J Keall
- ACRF Image X Institute, University of Sydney School of Health Sciences, Sydney, Australia
| | - Doan T Nguyen
- ACRF Image X Institute, University of Sydney School of Health Sciences, Sydney, Australia; Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; School of Biomedical Engineering, University of Technology Sydney, Australia
| |
Collapse
|
7
|
Ipsen S, Wulff D, Kuhlemann I, Schweikard A, Ernst F. Towards automated ultrasound imaging-robotic image acquisition in liver and prostate for long-term motion monitoring. Phys Med Biol 2021; 66. [PMID: 33770768 DOI: 10.1088/1361-6560/abf277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/26/2021] [Indexed: 11/12/2022]
Abstract
Real-time volumetric (4D) ultrasound has shown high potential for diagnostic and therapy guidance tasks. One of the main drawbacks of ultrasound imaging to date is the reliance on manual probe positioning and the resulting user dependence. Robotic assistance could help overcome this issue and facilitate the acquisition of long-term image data to observe dynamic processesin vivoover time. The aim of this study is to assess the feasibility of robotic probe manipulation and organ motion quantification during extended imaging sessions. The system consists of a collaborative robot and a 4D ultrasound system providing real-time data access. Five healthy volunteers received liver and prostate scans during free breathing over 30 min. Initial probe placement was performed with real-time remote control with a predefined contact force of 10 N. During scan acquisition, the probe position was continuously adjusted to the body surface motion using impedance control. Ultrasound volumes, the pose of the end-effector and the estimated contact forces were recorded. For motion analysis, one anatomical landmark was manually annotated in a subset of ultrasound frames for each experiment. Probe contact was uninterrupted over the entire scan duration in all ten sessions. Organ drift and imaging artefacts were successfully compensated using remote control. The median contact force along the probe's longitudinal axis was 10.0 N with maximum values of 13.2 and 21.3 N for liver and prostate, respectively. Forces exceeding 11 N only occurred in 0.3% of the time. Probe and landmark motion were more pronounced in the liver, with median interquartile ranges of 1.5 and 9.6 mm, compared to 0.6 and 2.7 mm in the prostate. The results show that robotic ultrasound imaging with dynamic force control can be used for stable, long-term imaging of anatomical regions affected by motion. The system facilitates the acquisition of 4D image datain vivoover extended scanning periods for the first time and holds the potential to be used for motion monitoring for therapy guidance as well as diagnostic tasks.
Collapse
Affiliation(s)
- Svenja Ipsen
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany.,Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Luebeck, Germany
| | - Daniel Wulff
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Ivo Kuhlemann
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| |
Collapse
|
8
|
Keikhai Farzaneh MJ, Momennezhad M, Naseri S. Gated Radiotherapy Development and its Expansion. J Biomed Phys Eng 2021; 11:239-256. [PMID: 33937130 PMCID: PMC8064130 DOI: 10.31661/jbpe.v0i0.948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/14/2018] [Indexed: 12/25/2022]
Abstract
One of the most important challenges in treatment of patients with cancerous tumors of chest and abdominal areas is organ movement. The delivery of treatment radiation doses to tumor tissue is a challenging matter while protecting healthy and radio sensitive tissues. Since the movement of organs due to respiration causes a discrepancy in the middle of planned and delivered dose distributions. The moderation in the fatalistic effect of intra-fractional target travel on the radiation therapy correctness is necessary for cutting-edge methods of motion remote monitoring and cancerous growth irradiancy. Tracking respiratory milling and implementation of breath-hold techniques by respiratory gating systems have been used for compensation of respiratory motion negative effects. Therefore, these systems help us to deliver precise treatments and also protect healthy and critical organs. It seems aspiration should be kept under observation all over treatment period employing tracking seed markers (e.g. fiducials), skin surface scanners (e.g. camera and laser monitoring systems) and aspiration detectors (e.g. spirometers). However, these systems are not readily available for most radiotherapy centers around the word. It is believed that providing and expanding the required equipment, gated radiotherapy will be a routine technique for treatment of chest and abdominal tumors in all clinical radiotherapy centers in the world by considering benefits of respiratory gating techniques in increasing efficiency of patient treatment in the near future. This review explains the different technologies and systems as well as some strategies available for motion management in radiotherapy centers.
Collapse
Affiliation(s)
- Mohammad Javad Keikhai Farzaneh
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Department of Medical Physics, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Momennezhad
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Naseri
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Keall PJ, Sawant A, Berbeco RI, Booth JT, Cho B, Cerviño LI, Cirino E, Dieterich S, Fast MF, Greer PB, Munck Af Rosenschöld P, Parikh PJ, Poulsen PR, Santanam L, Sherouse GW, Shi J, Stathakis S. AAPM Task Group 264: The safe clinical implementation of MLC tracking in radiotherapy. Med Phys 2021; 48:e44-e64. [PMID: 33260251 DOI: 10.1002/mp.14625] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
The era of real-time radiotherapy is upon us. Robotic and gimbaled linac tracking are clinically established technologies with the clinical realization of couch tracking in development. Multileaf collimators (MLCs) are a standard equipment for most cancer radiotherapy systems, and therefore MLC tracking is a potentially widely available technology. MLC tracking has been the subject of theoretical and experimental research for decades and was first implemented for patient treatments in 2013. The AAPM Task Group 264 Safe Clinical Implementation of MLC Tracking in Radiotherapy Report was charged to proactively provide the broader radiation oncology community with (a) clinical implementation guidelines including hardware, software, and clinical indications for use, (b) commissioning and quality assurance recommendations based on early user experience, as well as guidelines on Failure Mode and Effects Analysis, and (c) a discussion of potential future developments. The deliverables from this report include: an explanation of MLC tracking and its historical development; terms and definitions relevant to MLC tracking; the clinical benefit of, clinical experience with and clinical implementation guidelines for MLC tracking; quality assurance guidelines, including example quality assurance worksheets; a clinical decision pathway, future outlook and overall recommendations.
Collapse
Affiliation(s)
- Paul J Keall
- ACRF Image X Institute, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, 2006, Australia
| | - Amit Sawant
- Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ross I Berbeco
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeremy T Booth
- Radiation Oncology, Royal North Shore Hospital, St Leonards, 2065, NSW, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Byungchul Cho
- Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Laura I Cerviño
- Radiation Medicine & Applied Sciences, Radiation Oncology PET/CT Center, UC San Diego, LA Jolla, CA, 92093-0865, USA.,Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065-6007, USA
| | - Eileen Cirino
- Lahey Health and Medical Center, Burlington, MA, 01805, USA
| | - Sonja Dieterich
- Department of Radiation Oncology, UC Davis Medical Center, Sacramento, CA, 95618, USA
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Peter B Greer
- Calvary Mater Newcastle, Newcastle, NSW, 2310, Australia
| | - Per Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Parag J Parikh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Per Rugaard Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Lakshmi Santanam
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065-6007, USA
| | | | - Jie Shi
- Sun Nuclear Corp, Melbourne, FL, 32940, USA
| | - Sotirios Stathakis
- University of Texas Health San Antonio Cancer Center, San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Matrosic CK, Bednarz B, Culberson W. An improved abdominal phantom for intrafraction image guidance validation. Phys Med Biol 2020; 65:13NT02. [PMID: 32428876 DOI: 10.1088/1361-6560/ab9456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A dynamically compressible phantom of the human abdomen that simulates organ motion with breathing is being developed for possible testing of image-gated beam delivery in radiotherapy. The polyvinyl chloride plastisol (PVCP) phantom features a cavity that can contain a deformable normoxic polyacrylamide gel (nPAG) dosimeter that is intended for use with MRI to provide dosimetric data. The phantom has been improved by the inclusion of new components that are more realistic anatomically and exhibit CT values similar to those of the tissues they mimic. Component organs were made from 3D-printed molds developed from CT contours of a real patient and their radiodensities adjusted by varying the mass ratios of the PVCP hardener and softener during manufacture. To make the phantom more compatible with ultrasound imaging a graphite scatterer was mixed into some of the phantom components to produce a background speckle pattern. This provided contrast between the body and a moving anatomical target intended for motion tracking. Phantom insert motion magnitude and repeatibility was assessed using CT by imaging two phantom inserts, one containing fiducial markers and the other containing iodinated gelatin, at the same position after repeated cycles of deformation. The maximum motion of a phantom fiducial at the position of the phantom treatment target was found to be 12.2 mm. The phantom design resulted in dosimeter motion with a point-to-point repatability within 0.3 mm on average and contour repeatability resulting in Dice coefficients exceeding 0.98 on average.
Collapse
Affiliation(s)
- Charles K Matrosic
- School of Medicine and Public Health Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States of America
| | | | | |
Collapse
|
11
|
Kuo CC, Chuang HC, Liao AH, Yu HW, Cai SR, Tien DC, Jeng SC, Chiou JF. Fast Fourier transform combined with phase leading compensator for respiratory motion compensation system. Quant Imaging Med Surg 2020; 10:907-920. [PMID: 32489916 DOI: 10.21037/qims.2020.03.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background The reduction of the delaying effect in the respiratory motion compensation system (RMCS) is still impossible to completely correct the respiratory waveform of the human body due to each patient has a unique respiratory rate. In order to further improve the effectiveness of radiation therapy, this study evaluates our previously developed RMCS and uses the fast Fourier transform (FFT) algorithm combined with the phase lead compensator (PLC) to further improve the compensation rate (CR) of different respiratory frequencies and patterns of patients. Methods In this study, an algorithm of FFT automatic frequency detection was developed by using LabVIEW software, uisng FFT combined with PLC and RMCS to compensate the system delay time. Respiratory motion compensation experiments were performed using pre-recorded respiratory signals of 25 patients. During the experiment, the respiratory motion simulation system (RMSS) was placed on the RMCS, and the pre-recorded patient breathing signals were sent to the RMCS by using our previously developed ultrasound image tracking algorithm (UITA). The tracking error of the RMCS is obtained by comparing the encoder signals of the RMSS and RMCS. The compensation effect is verified by root mean squared error (RMSE) and system CR. Results The experimental results show that the patient's respiratory patterns compensated by the RMCS after using the proposed FFT combined with PLC control method, the RMSE is between 1.50-5.71 and 3.15-8.31 mm in the right-left (RL) and superior-inferior (SI) directions, respectively. CR is between 72.86-93.25% and 62.3-83.81% in RL and SI, respectively. Conclusions This study used FFT combined with PLC control method to apply to RMCS, and used UITA for respiratory motion compensation. Under the automatic frequency detection, the best dominant frequency of the human respiratory waveform can be determinated. In radiotherapy, it can be used to compensate the tumor movement caused by respiratory motion and reduce the radiation damage and side effects of normal tissues nearby the tumor.
Collapse
Affiliation(s)
- Chia-Chun Kuo
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiation Oncology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan.,School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Wei Yu
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Syue-Ru Cai
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Der-Chi Tien
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Shiu-Chen Jeng
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Pang EPP, Knight K, Park SY, Lian W, Master Z, Baird M, Chan JWX, Wang MLC, Tan TWK, Chua MLK, Chua ET, Looi WS, Nei WL, Tuan JKL. Duration-dependent margins for prostate radiotherapy-a practical motion mitigation strategy. Strahlenther Onkol 2020; 196:657-663. [PMID: 31932995 DOI: 10.1007/s00066-019-01558-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE The magnitude of intra-fractional prostate displacement (change from initial position over time) is associated with the duration of the patient lying on the radiotherapy treatment couch. This study reports a minute-by-minute association and calculates the impact of this displacement on duration-dependent margins using real-time intra-fractional position data monitored by four-dimensional transperineal ultrasound (4D TPUS). MATERIALS AND METHODS A total of 55 patients were recruited prospectively. Intra-fractional position of the prostate was monitored in real-time using a 4D TPUS Clarity® system. A total of 1745 monitoring sessions were analysed. Van Herk's margin recipe (2.5∑ + 1.64((σ2 + σp2)1/2 - σp)) was used to estimate the duration-dependant margins for every minute, up to the 15th minute. Linear regression analysis was then performed on the overall margins against time and direction. RESULTS The mean intra-fractional position was 0.76 mm Inferior (Inf), 0 mm Lateral (Lat) and 0.94 mm Posterior (Post) at the 15th minute. A minimum margin expansion of 2.42 mm (Superior/Inf), 1.02 mm (Left/Right) and 2.65 mm (Anterior/Post) was required for an 8‑minute treatment compared to 4.29 mm (Sup/Inf), 1.84 mm (Lt/Rt) and 4.63 mm (Ant/Post) for a 15-minute treatment. The required margin expansion increased linearly (R2 = 0.99) in all directions (p < 0.01). However, while there was no statistically significant difference (p = 0.10) in the required margin expansion in the Sup/Inf and Ant/Post directions respective of the time duration, the margins were much bigger compared to those in the Lt/Rt direction (p < 0.01). CONCLUSION We report our experience in deriving the minimum duration-dependant margin to generate the required planning target volume for prostate radiotherapy. The required margin increases linearly in all directions within the 15-min duration; thus, the margin will depend on the duration of the technique chosen (IMRT/VMAT/3DCRT/proton).
Collapse
Affiliation(s)
- Eric Pei Ping Pang
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore. .,Faculty of Medicine, Nursing and Health Sciences, Department of Medical Imaging & Radiation Sciences, Monash University, Wellington Road, Clayton VIC, 3800, Melbourne, Australia.
| | - Kellie Knight
- Faculty of Medicine, Nursing and Health Sciences, Department of Medical Imaging & Radiation Sciences, Monash University, Wellington Road, Clayton VIC, 3800, Melbourne, Australia
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore
| | - Weixiang Lian
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore
| | - Zubin Master
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore
| | - Marilyn Baird
- Faculty of Medicine, Nursing and Health Sciences, Department of Medical Imaging & Radiation Sciences, Monash University, Wellington Road, Clayton VIC, 3800, Melbourne, Australia
| | - Jason Wei Xiang Chan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore
| | - Michael Lian Chek Wang
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore.,Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Terence Wee Kiat Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore.,Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Melvin L K Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore.,Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore.,Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore
| | - Eu Tiong Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore.,Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Wen Shen Looi
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore.,Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Wen Long Nei
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore.,Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jeffrey Kit Loong Tuan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore, Singapore.,Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore
| |
Collapse
|
13
|
Boda-Heggemann J, Sihono DSK, Streb L, Mertens L, Vogel L, Stieler F, Wenz F, Giordano FA, Kalisch I, Lohr F, Fleckenstein J. Ultrasound-based repositioning and real-time monitoring for abdominal SBRT in DIBH. Phys Med 2019; 65:46-52. [DOI: 10.1016/j.ejmp.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
|
14
|
Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Nguyen DT, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019; 64:15TR01. [PMID: 31226704 PMCID: PMC7655120 DOI: 10.1088/1361-6560/ab2ba8] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
- Author to whom any correspondence should be
addressed
| | - Antje Knopf
- Department of Radiation Oncology,
University Medical Center
Groningen, University of Groningen, The
Netherlands
| | - Björn Eiben
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Jamie McClelland
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Alexander Grimwood
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Martin Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus,
Denmark
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
- School of Biomedical Engineering,
University of Technology
Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| |
Collapse
|
15
|
Ballhausen H, Li M, Reiner M, Belka C. Dosimetric impact of intrafraction motion on boosts on intraprostatic lesions: a simulation based on actual motion data from real time ultrasound tracking. Radiat Oncol 2019; 14:81. [PMID: 31096991 PMCID: PMC6524311 DOI: 10.1186/s13014-019-1285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/25/2019] [Indexed: 01/24/2023] Open
Abstract
Background Intrafraction motion is particularly problematic in case of small target volumes and narrow margins. Here we simulate the dose coverage of intraprostatic lesions (IPL) by simultaneous integrated boosts (SIB). For this purpose, we use a large sample of actual intrafraction motion data. Methods Fifty-three h of intra-fraction motion of the prostate were recorded in real-time by 4D ultrasound (4DUS) during 720 fractions in 28 patients. We simulate spherical IPLs with 3, 5, and 7 mm radius and matching spherical SIBs with 0, 2, and 5 mm safety margins. The volumetric overlap between IPLs and SIBs is calculated. Dose volume histograms (DVH) are estimated by Monte Carlo simulation. Results On average, the distance of the prostate was 1.3 mm from its initial position over all fractions and patients. Average volumetric overlap was 73, 82, and 87% of IPL volume in case of 3, 5, and 7 mm IPLs and SIBs without safety margins. These improved to 95% or more in case of 2 mm safety margins and 98% or more in case of 5 mm safety margins. DVHs showed that 80% of the IPL volume received 60, 72, and 79% of maximum dose in case of 3, 5, and 7 mm IPLs and SIBs without safety margins. These improved to 94% or more given moderately sized safety margins of 2 mm. Conclusions On average over all fractions and patients, the dose coverage would have been acceptable even for small target volumes such as IPLs of radius 3 to 7 mm and narrow fields. Moderate safety margins of 2 mm could have ensured a delivery of 90% or more of the SIB dose to the IPL. In this case, SIB volume would have been considerably larger than IPL volume, but still considerably smaller than the overall PTV of the prostate. Electronic supplementary material The online version of this article (10.1186/s13014-019-1285-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hendrik Ballhausen
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
16
|
Kuo CC, Chuang HC, Yu HW, Huang JW, Tien DC, Jeng SC, Chiou JF. Adaptive control of phase leading compensator parameters applied to respiratory motion compensation system. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:715-729. [PMID: 31227683 DOI: 10.3233/xst-190503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PURPOSE This study evaluates the feasibility of our previously developed Respiratory Motion Compensation System (RMCS) combined with the Phase Lead Compensator (PLC) to eliminate system delays during the compensation of respiration-induced tumor motion. The study objective is to improve the compensation effect of RMCS and the efficay of radiation therapy to reduce its side effects to the patients. MATERIAL AND METHODS In this study, LabVIEW was used to develop the proposed software for calculating real-time adaptive control parameters, combined with PLC and RMCS for the compensation of total system delay time. Experiments of respiratory motion compensation were performed using 6 pre-recorded human respiration patterns and 7 sets of different sine waves. During the experiments, a respiratory simulation device, Respiratory Motion Simulation System (RMSS), was placed on the RMCS, and the detected target motion signals by the Ultrasound Image Tracking Algorithm (UITA) were transmitted to the RMCS, and the compensation of respiration induced motion was started. Finally, the tracking error of the system is obtained by comparing the encoder signals bwtween RMSS and RMCS. The compensation efficacy is verified by the root mean squared error (RMSE) and the system compensation rate (CR). RESULTS The experimental results show that the calcuated CR with the simulated respiration patterns is between 42.85% ∼3.53% and 33.76% ∼2.62% in the Right-Left (RL) and Superior-Inferior (SI), respectively, after the RMCS compensation of using the adaptive control parameters in PLC. For the compensation results of human respiration patterns, the CR is between 58.95% ∼8.56% and 62.87% ∼9.05% in RL and SI, respectively. CONCLUSIONS During the respiratory motion compensation, the influence of the delay time of the entire system (RMCS+RMSS+UITA) on the compensation effect was improved by adding an adaptive control PLC, which reduces compensation error and helps improve efficacy of radiation therapy.
Collapse
Affiliation(s)
- Chia-Chun Kuo
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Radiation Oncology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering National Taipei University of Technology, Taipei, Taiwan
| | - Hsiao-Wei Yu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jeng-Wei Huang
- Department of Mechanical Engineering National Taipei University of Technology, Taipei, Taiwan
| | - Der-Chi Tien
- Department of Mechanical Engineering National Taipei University of Technology, Taipei, Taiwan
| | - Shiu-Chen Jeng
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Grimwood A, McNair HA, O'Shea TP, Gilroy S, Thomas K, Bamber JC, Tree AC, Harris EJ. In Vivo Validation of Elekta's Clarity Autoscan for Ultrasound-based Intrafraction Motion Estimation of the Prostate During Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 102:912-921. [PMID: 29859785 PMCID: PMC6202949 DOI: 10.1016/j.ijrobp.2018.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Our purpose was to perform an in vivo validation of ultrasound imaging for intrafraction motion estimation using the Elekta Clarity Autoscan system during prostate radiation therapy. The study was conducted as part of the Clarity-Pro trial (NCT02388308). METHODS AND MATERIALS Initial locations of intraprostatic fiducial markers were identified from cone beam computed tomography scans. Marker positions were translated according to Clarity intrafraction 3-dimensional prostate motion estimates. The updated locations were projected onto the 2-dimensional electronic portal imager plane. These Clarity-based estimates were compared with the actual portal-imaged 2-dimensional marker positions. Images from 16 patients encompassing 80 fractions were analyzed. To investigate the influence of intraprostatic markers and image quality on ultrasound motion estimation, 3 observers rated image quality, and the marker visibility on ultrasound images was assessed. RESULTS The median difference between Clarity-defined intrafraction marker locations and portal-imaged marker locations was 0.6 mm (with 95% limit of agreement at 2.5 mm). Markers were identified on ultrasound in only 3 of a possible 240 instances. No linear relationship between image quality and Clarity motion estimation confidence was identified. The difference between Clarity-based motion estimates and electronic portal-imaged marker location was also independent of image quality. Clarity estimation confidence was degraded in a single fraction owing to poor probe placement. CONCLUSIONS The accuracy of Clarity intrafraction prostate motion estimation is comparable with that of other motion-monitoring systems in radiation therapy. The effect of fiducial markers in the study was deemed negligible as they were rarely visible on ultrasound images compared with intrinsic anatomic features. Clarity motion estimation confidence was robust to variations in image quality and the number of ultrasound-imaged anatomic features; however, it was degraded as a result of poor probe placement.
Collapse
Affiliation(s)
- Alexander Grimwood
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK.
| | - Helen A McNair
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Tuathan P O'Shea
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Stephen Gilroy
- North West Cancer Centre, Altnagelvin Area Hospital, Londonderry, Ireland
| | - Karen Thomas
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Jeffrey C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Alison C Tree
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Emma J Harris
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| |
Collapse
|
18
|
Han B, Najafi M, Cooper DT, Lachaine M, von Eyben R, Hancock S, Hristov D. Evaluation of transperineal ultrasound imaging as a potential solution for target tracking during hypofractionated radiotherapy for prostate cancer. Radiat Oncol 2018; 13:151. [PMID: 30126434 PMCID: PMC6102861 DOI: 10.1186/s13014-018-1097-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Emerging hypofractionated prostate radiotherapy regimens require solutions for accurate target tracking during beam delivery. The goal of this study is to evaluate the performance of the Clarity ultrasound monitoring system for prostate motion tracking. Methods Five prostate patients underwent continuous perineum ultrasound imaging during their daily treatments. Initial absolute 3D positions of fiducials implanted in the prostate were estimated from the KV images. Fiducial positions in MV images acquired during beam delivery were compared with predicted positions based on Clarity 3D tracking. The uncertainty in the comparison results was evaluated in a phantom validation study. Results Continuous real-time ultrasound motion tracking was recorded in 5 patients and 167 fractions for overall of 39.7 h. Phantom validation of the proposed procedure demonstrated that predicted and observed fiducial positions agree within 1.1 mm. In patients agreement between predicted and actual fiducial positions varied between 1.3 mm and 3.3 mm. On average ultrasound tracking reduced the maximum localization error in patients by 20% on average. With the motion corrected, the duration prostate beyond 1 mm from its initial treatment position can be reduced from 37 to 22% of the total treatment time. Conclusion Real-time ultrasound tracking reduces uncertainty in prostate position due to intra-fractional motion. Trial registration IRB Protocol #27372. Date of registration of trial: 12/17/2013.
Collapse
Affiliation(s)
- Bin Han
- Department of Radiation Oncology, School of Medicine, Stanford University, 875 Blake Wilbur Drive, Room G203, Palo Alto, CA, 94304, USA
| | - Mohammad Najafi
- Department of Radiation Oncology, School of Medicine, Stanford University, 875 Blake Wilbur Drive, Room G203, Palo Alto, CA, 94304, USA
| | - David T Cooper
- Elekta Ltd, 2050 Bleury Suite 200, Montréal, QC, H3A 2J5, Canada
| | - Martin Lachaine
- Elekta Ltd, 2050 Bleury Suite 200, Montréal, QC, H3A 2J5, Canada
| | - Rie von Eyben
- Department of Radiation Oncology, School of Medicine, Stanford University, 875 Blake Wilbur Drive, Room G203, Palo Alto, CA, 94304, USA
| | - Steven Hancock
- Department of Radiation Oncology, School of Medicine, Stanford University, 875 Blake Wilbur Drive, Room G203, Palo Alto, CA, 94304, USA
| | - Dimitre Hristov
- Department of Radiation Oncology, School of Medicine, Stanford University, 875 Blake Wilbur Drive, Room G203, Palo Alto, CA, 94304, USA.
| |
Collapse
|
19
|
Saito N, Schmitt D, Bangert M. Correlation between intrafractional motion and dosimetric changes for prostate IMRT: Comparison of different adaptive strategies. J Appl Clin Med Phys 2018; 19:87-97. [PMID: 29862644 PMCID: PMC6036361 DOI: 10.1002/acm2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/15/2018] [Accepted: 04/03/2018] [Indexed: 12/04/2022] Open
Abstract
Purpose To retrospectively analyze and estimate the dosimetric benefit of online and offline motion mitigation strategies for prostate IMRT. Methods Intrafractional motion data of 21 prostate patients receiving intensity‐modulated radiotherapy was acquired with an electromagnetic tracking system. Target trajectories of 734 fractions were analyzed per delivered multileaf‐collimator segment in five motion metrics: three‐dimensional displacement, distance from beam axis (DistToBeam), and three orthogonal components. Time‐resolved dose calculations have been performed by shifting the target according to the sampled motion for the following scenarios: without adaptation, online‐repositioning with a minimum threshold of 3 mm, and an offline approach using a modified field order applying horizontal before vertical beams. Change of D95 (targets) or V65 (organs at risk) relative to the static case, that is, ΔD95 or ΔV65, was extracted per fraction in percent. Correlation coefficients (CC) between the motion metrics and the dose metrics were extracted. Mean of patient‐wise CC was used to evaluate the correlation of motion metric and dosimetric changes. Mean and standard deviation of the patient‐wise correlation slopes (in %/mm) were extracted. Results For ΔD95 of the prostate, mean DistToBeam per fraction showed the highest correlation for all scenarios with a relative change of −0.6 ± 0.7%/mm without adaptation and −0.4 ± 0.5%/mm for the repositioning and field order strategies. For ΔV65 of the bladder and the rectum, superior–inferior and posterior–anterior motion components per fraction showed the highest correlation, respectively. The slope of bladder (rectum) was 14.6 ± 5.8 (15.1 ± 6.9) %/mm without adaptation, 14.0 ± 4.9 (14.5 ± 7.4) %/mm for repositioning with 3 mm, and 10.6 ± 2.5 (8.1 ± 4.6) %/mm for the field order approach. Conclusions The correlation slope is a valuable concept to estimate dosimetric deviations from static plan quality directly based on the observed motion. For the prostate, both mitigation strategies showed comparable benefit. For organs at risk, the field order approach showed less sensitive response regarding motion and reduced interpatient variation.
Collapse
Affiliation(s)
- Nami Saito
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Schmitt
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mark Bangert
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
20
|
Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy. Phys Med 2018; 49:11-18. [PMID: 29866336 DOI: 10.1016/j.ejmp.2018.04.393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
This study proposed respiratory motion compensation system (RMCS) combined with an ultrasound image tracking algorithm (UITA) to compensate for respiration-induced tumor motion during radiotherapy, and to address the problem of inaccurate radiation dose delivery caused by respiratory movement. This study used an ultrasound imaging system to monitor respiratory movements combined with the proposed UITA and RMCS for tracking and compensation of the respiratory motion. Respiratory motion compensation was performed using prerecorded human respiratory motion signals and also sinusoidal signals. A linear accelerator was used to deliver radiation doses to GAFchromic EBT3 dosimetry film, and the conformity index (CI), root-mean-square error, compensation rate (CR), and planning target volume (PTV) were used to evaluate the tracking and compensation performance of the proposed system. Human respiratory pattern signals were captured using the UITA and compensated by the RMCS, which yielded CR values of 34-78%. In addition, the maximum coronal area of the PTV ranged from 85.53 mm2 to 351.11 mm2 (uncompensated), which reduced to from 17.72 mm2 to 66.17 mm2 after compensation, with an area reduction ratio of up to 90%. In real-time monitoring of the respiration compensation state, the CI values for 85% and 90% isodose areas increased to 0.7 and 0.68, respectively. The proposed UITA and RMCS can reduce the movement of the tracked target relative to the LINAC in radiation therapy, thereby reducing the required size of the PTV margin and increasing the effect of the radiation dose received by the treatment target.
Collapse
|
21
|
De Roover R, Crijns W, Poels K, Peeters R, Draulans C, Haustermans K, Depuydt T. Characterization of a novel liquid fiducial marker for multimodal image guidance in stereotactic body radiotherapy of prostate cancer. Med Phys 2018. [PMID: 29537613 DOI: 10.1002/mp.12860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Liquid fiducial markers have shown to be a promising alternative to solid gold markers in terms of imaging artifact reduction, patient comfort, and compatibility with different imaging modalities. This study aims to investigate the performance of the novel BioXmark® liquid marker for state-of-the-art multimodal imaging used in prostate cancer (PCa) radiotherapy, encompassing kV CT/CBCT, multiparametric MRI, and kV x-ray imaging. In addition, automatic detection of the liquid markers in x-ray imaging for prostate motion monitoring during treatment was investigated. METHODS A total of eight BioXmark® liquid markers with varying volumes (range 5-300 μL) were casted on a square grid into a gelatin phantom insert. A cylindrical gold marker (QLRAD, length = 7 mm, Ø = 1 mm) was inserted for reference. Liquid marker visibility and streaking artifacts in CT/CBCT imaging were evaluated by placing the gelatin phantom into a CIRS anthropomorphic phantom. Relevant MRI characteristics such as the T2 and T1 relaxation times, the ADC value, and the relative proton density (ρH) were quantified by placing the gelatin phantom insert next to a T1MES mapping phantom and a water-filled syringe for reference. Ex vivo multiparametric MRI images were acquired by placing the gelatin phantom next to a resected prostate specimen. Anterior-posterior x-ray projection images were obtained by placing the gelatin phantom insert on top of an anthropomorphic pelvic phantom with internal pelvic bony structures and were acquired for five positions relative to the bony anatomy and 24 clinically relevant x-ray exposure settings. To quantify individual automatic marker detection, single markers were artificially isolated in the x-ray images using postprocessing. RESULTS Markers of all sizes were clearly visible on CT and CBCT images with only the largest marker volumes (100-300 μL) displaying artifacts similar in size to the gold fiducial marker. Artifact size increased with increasing liquid marker volume. Liquid markers displayed good contrast in ex vivo T1-weighted and ρH-weighted images. The markers were not visible in the ex vivo T2-weighted image. The liquid markers induced a chemical shift artifact in the obtained ADC-map. Automated detection in x-ray imaging was feasible with high detection success (four of five positions) for marker volumes in the range of 25-200 μL. None of the liquid markers were detected successfully when superimposed on a bony edge, independent of their size. CONCLUSIONS This study is the first to show the compatibility of BioXmark® liquid markers with multimodal image-guided radiotherapy for PCa. Compared to a solid gold marker, they had favorable results in both visibility and induced imaging artifacts. Liquid marker visibility in MRI imaging of the prostate does not solely depend on the low ρH value (not visible on T2-weighted image) but is also influenced by its relaxation times. Automated marker detection in x-ray images was feasible but better adapted marker detection algorithms are necessary for marker localization in the presence of bony edges. Hence, the liquid marker provides a minimally invasive (fine needles) and highly applicable alternative to current solid gold markers for multimodal image-guided prostate radiotherapy treatments.
Collapse
Affiliation(s)
- Robin De Roover
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Wouter Crijns
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Kenneth Poels
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Cédric Draulans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Tom Depuydt
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
22
|
Klawikowski S, Tai A, Ates O, Ahunbay E, Li XA. A fast 4D IMRT/VMAT planning method based on segment aperture morphing. Med Phys 2018; 45:1594-1602. [DOI: 10.1002/mp.12778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Slade Klawikowski
- Department of Radiation Oncology; The Medical College of Wisconsin; Milwaukee WI USA
| | - An Tai
- Department of Radiation Oncology; The Medical College of Wisconsin; Milwaukee WI USA
| | - Ozgur Ates
- Department of Radiation Oncology; The Medical College of Wisconsin; Milwaukee WI USA
| | - Ergun Ahunbay
- Department of Radiation Oncology; The Medical College of Wisconsin; Milwaukee WI USA
| | - X. Allen Li
- Department of Radiation Oncology; The Medical College of Wisconsin; Milwaukee WI USA
| |
Collapse
|
23
|
Martyn M, O'Shea TP, Harris E, Bamber J, Gilroy S, Foley MJ. A Monte Carlo study of the effect of an ultrasound transducer on surface dose during intrafraction motion imaging for external beam radiation therapy. Med Phys 2017; 44:5020-5033. [PMID: 28688115 DOI: 10.1002/mp.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The aim of this study was to estimate changes in surface dose due to the presence of the Clarity Autoscan™ ultrasound (US) probe during prostate radiotherapy using Monte Carlo (MC) methods. METHODS MC models of the Autoscan US probe were developed using the BEAMnrc/DOSXYZnrc code based on kV and MV CT images. CT datasets were converted to voxelized mass density phantoms using a CT number-to-mass density calibration. The dosimetric effect of the probe, in the contact region (an 8 mm × 12 mm single layer of voxels), was investigated using a phantom set-up mimicking two scenarios (a) a transperineal imaging configuration (radiation beam perpendicular to the central US axial direction), and (b) a transabdominal imaging configuration (radiation beam parallel to the central US axial direction). For scenario (a), the dosimetric effect was evaluated as a function of the probe to inferior radiation field edge distance. Clinically applicable distances from 5 mm separation to 2 mm overlap were determined from the radiotherapy plans of 27 patients receiving Clarity imaging. Overlaps of 3 to 14 (1 to 3 SD) mm were also considered to include the effect of interfraction motion correction. The influence of voxel size on surface dose estimation was investigated. Approved clinical plans from two prostate patients were used to simulate worst-case dosimetric impact of the probe when large couch translations were applied to correct for interfraction prostate motion. RESULTS The dosimetric impact of both the MV and kV probe models agreed within ±2% for both beam configurations. For scenario (a) and 1 mm voxel model, the probe gave mean dose increases of 1.2% to 4.6% (of the dose at isocenter) for 5 mm separation to 0 mm overlap in the probe-phantom contact region, respectively. This increased to 27.5% for the largest interfraction motion correction considered (14 mm overlap). For separations of ≥ 2 mm dose differences were < 2%. Simulated dose perturbations were found to be superficial; for the 14 mm overlap the dose increase reduced to < 3% at 5.0 mm within the phantom. For scenario (b), dose increases due to the probe were < 5% in all cases. The dose increase was underestimated by up to ~13% when the voxel size was increased from 1 mm to 3 mm. MC simulated dose to the PTV and OARs for the two clinical plans considered showed good agreement with commercial treatment planning system results (within 2%). Mean dose increases due to the presence of the probe, after the maximum interfraction motion correction, were ~16.3% and ~8.0%, in the contact region, for plan 1 and plan 2, respectively. CONCLUSIONS The presence of the probe results in superficial dose perturbations for patients with an overlap between the probe and the radiation field present in either the original treatment plan or due to translation of the radiation field to simulate correction of interfraction internal prostate motion.
Collapse
Affiliation(s)
- Michael Martyn
- School of Physics, National University of Ireland Galway, University Road, Galway, Ireland
| | - Tuathan P O'Shea
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Jeffrey Bamber
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Stephen Gilroy
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Mark J Foley
- School of Physics, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
24
|
Archibald-Heeren BR, Byrne MV, Hu Y, Cai M, Wang Y. Robust optimization of VMAT for lung cancer: Dosimetric implications of motion compensation techniques. J Appl Clin Med Phys 2017; 18:104-116. [PMID: 28786213 PMCID: PMC5874938 DOI: 10.1002/acm2.12142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
In inverse planning of lung radiotherapy, techniques are required to ensure dose coverage of target disease in the presence of tumor motion as a result of respiration. A range of published techniques for mitigating motion effects were compared for dose stability across 5 breath cycles of ±2 cm. Techniques included planning target volume (PTV) expansions, internal target volumes with (OITV) and without tissue override (ITV), average dataset scans (ADS), and mini-max robust optimization. Volumetric arc therapy plans were created on a thorax phantom and verified with chamber and film measurements. Dose stability was compared by DVH analysis in calculations across all geometries. The lung override technique resulted in a substantial lack of dose coverage (-10%) to the tumor in the presence of large motion. PTV, ITV and ADS techniques resulted in substantial (up to 25%) maximum dose increases where solid tissue travelled into low density optimized regions. The results highlight the need for care in optimization of highly heterogeneous where density variations may occur with motion. Robust optimization was shown to provide greater stability in both maximum (<3%) and minimum dose variations (<2%) over all other techniques.
Collapse
Affiliation(s)
- Ben R Archibald-Heeren
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Mikel V Byrne
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Yunfei Hu
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Meng Cai
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Yang Wang
- Radiation Oncology Centre, Sydney Adventist Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
25
|
Gerlach S, Kuhlemann I, Ernst F, Fürweger C, Schlaefer A. Impact of robotic ultrasound image guidance on plan quality in SBRT of the prostate. Br J Radiol 2017; 90:20160926. [PMID: 28749165 DOI: 10.1259/bjr.20160926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Ultrasound provides good image quality, fast volumetric imaging and is established for abdominal image guidance. Robotic transducer placement may facilitate intrafractional motion compensation in radiation therapy. We consider integration with the CyberKnife and study whether the kinematic redundancy of a seven-degrees-of-freedom robot allows for acceptable plan quality for prostate treatments. METHODS Reference treatment plans were generated for 10 prostate cancer cases previously treated with the CyberKnife. Considering transducer and prostate motion by different safety margins, 10 different robot poses, and 3 different elbow configurations, we removed all beams colliding with robot or transducer. For each combination, plans were generated using the same strict dose constraints and the objective to maximize the target coverage. Additionally, plans for the union of all unblocked beams were generated. RESULTS In 9 cases the planning target coverage with the ultrasound robot was within 1.1 percentage points of the reference coverage. It was 1.7 percentage points for one large prostate. For one preferable robot position, kinematic redundancy decreased the average number of blocked beam directions from 23.1 to 14.5. CONCLUSION The impact of beam blocking can largely be offset by treatment planning and using a kinematically redundant robot. Plan quality can be maintained by carefully choosing the ultrasound robot position and pose. For smaller planning target volumes the difference in coverage is negligible for safety margins of up to 35 mm. Advances in knowledge: Integrating a robot for online intrafractional image guidance based on ultrasound can be realized while maintaining acceptable plan quality for prostate cancer treatments with the CyberKnife.
Collapse
Affiliation(s)
- Stefan Gerlach
- 1 Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| | - Ivo Kuhlemann
- 2 Institute for Robotics and Cognitive Systems, Universität zu Lübeck, Lübeck, Germany
| | - Floris Ernst
- 2 Institute for Robotics and Cognitive Systems, Universität zu Lübeck, Lübeck, Germany
| | | | - Alexander Schlaefer
- 1 Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
26
|
Ting LL, Chuang HC, Kuo CC, Jian LA, Huang MY, Liao AH, Tien DC, Jeng SC, Chiou JF. Tracking and compensation of respiration pattern by an automatic compensation system. Med Phys 2017; 44:2077-2095. [DOI: 10.1002/mp.12239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Lai-Lei Ting
- Department of Radiation Oncology; Taipei Medical University Hospital; No. 252, Wu-Hsing St. Taipei 11031 Taiwan
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering; National Taipei University of Technology; No. 1, Sec. 3, Chung-Hsiao E. Rd. Taipei 10608 Taiwan
| | - Chia-Chun Kuo
- Department of Radiation Oncology; Taipei Medical University Hospital; No. 252, Wu-Hsing St. Taipei 11031 Taiwan
| | - Li-An Jian
- Department of Mechanical Engineering; National Taipei University of Technology; No. 1, Sec. 3, Chung-Hsiao E. Rd. Taipei 10608 Taiwan
| | - Ming-Yuan Huang
- Department of Emergency Medicine; Mackay Memorial Hospital; Taipei 10449 Taiwan
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
| | - Der-Chi Tien
- Department of Mechanical Engineering; National Taipei University of Technology; No. 1, Sec. 3, Chung-Hsiao E. Rd. Taipei 10608 Taiwan
| | - Shiu-Chen Jeng
- Department of Radiation Oncology; Taipei Medical University Hospital; No. 252, Wu-Hsing St. Taipei 11031 Taiwan
- School of Dentistry; College of Oral Medicine; Taipei Medical University; No. 250, Wu-Hsing St. Taipei 11031 Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology; Taipei Medical University Hospital; No. 252, Wu-Hsing St. Taipei 11031 Taiwan
- Department of Radiology; School of Medicine; College of Medicine; Taipei Medical University; No. 250, Wu-Hsing St. Taipei 11031 Taiwan
- Taipei Cancer Center; Taipei Medical University; No. 252, Wu Hsing Street Taipei City 110 Taiwan
| |
Collapse
|
27
|
Kamerling CP, Fast MF, Ziegenhein P, Menten MJ, Nill S, Oelfke U. Real-time 4D dose reconstruction for tracked dynamic MLC deliveries for lung SBRT. Med Phys 2016; 43:6072. [PMID: 27806589 PMCID: PMC5965366 DOI: 10.1118/1.4965045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/26/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE This study provides a proof of concept for real-time 4D dose reconstruction for lung stereotactic body radiation therapy (SBRT) with multileaf collimator (MLC) tracking and assesses the impact of tumor tracking on the size of target margins. METHODS The authors have implemented real-time 4D dose reconstruction by connecting their tracking and delivery software to an Agility MLC at an Elekta Synergy linac and to their in-house treatment planning software (TPS). Actual MLC apertures and (simulated) target positions are reported to the TPS every 40 ms. The dose is calculated in real-time from 4DCT data directly after each reported aperture by utilization of precalculated dose-influence data based on a Monte Carlo algorithm. The dose is accumulated onto the peak-exhale (reference) phase using energy-mass transfer mapping. To investigate the impact of a potentially reducible safety margin, the authors have created and delivered treatment plans designed for a conventional internal target volume (ITV) + 5 mm, a midventilation approach, and three tracking scenarios for four lung SBRT patients. For the tracking plans, a moving target volume (MTV) was established by delineating the gross target volume (GTV) on every 4DCT phase. These were rigidly aligned to the reference phase, resulting in a unified maximum GTV to which a 1, 3, or 5 mm isotropic margin was added. All scenarios were planned for 9-beam step-and-shoot IMRT to meet the criteria of RTOG 1021 (3 × 18 Gy). The GTV 3D center-of-volume shift varied from 6 to 14 mm. RESULTS Real-time dose reconstruction at 25 Hz could be realized on a single workstation due to the highly efficient implementation of dose calculation and dose accumulation. Decreased PTV margins resulted in inadequate target coverage during untracked deliveries for patients with substantial tumor motion. MLC tracking could ensure the GTV target dose for these patients. Organ-at-risk (OAR) doses were consistently reduced by decreased PTV margins. The tracked MTV + 1 mm deliveries resulted in the following OAR dose reductions: lung V20 up to 3.5%, spinal cord D2 up to 0.9 Gy/Fx, and proximal airways D2 up to 1.4 Gy/Fx. CONCLUSIONS The authors could show that for patient data at clinical resolution and realistic motion conditions, the delivered dose could be reconstructed in 4D for the whole lung volume in real-time. The dose distributions show that reduced margins yield lower doses to healthy tissue, whilst target dose can be maintained using dynamic MLC tracking.
Collapse
Affiliation(s)
- Cornelis Ph Kamerling
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Martin F Fast
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Peter Ziegenhein
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Martin J Menten
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Simeon Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| |
Collapse
|