1
|
Ma YQ, Reynolds T, Ehtiati T, Weiss C, Hong K, Theodore N, Gang GJ, Stayman JW. Fully automatic online geometric calibration for non-circular cone-beam CT orbits using fiducials with unknown placement. Med Phys 2024; 51:3245-3264. [PMID: 38573172 DOI: 10.1002/mp.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Cone-beam CT (CBCT) with non-circular scanning orbits can improve image quality for 3D intraoperative image guidance. However, geometric calibration of such scans can be challenging. Existing methods typically require a prior image, specialized phantoms, presumed repeatable orbits, or long computation time. PURPOSE We propose a novel fully automatic online geometric calibration algorithm that does not require prior knowledge of fiducial configuration. The algorithm is fast, accurate, and can accommodate arbitrary scanning orbits and fiducial configurations. METHODS The algorithm uses an automatic initialization process to eliminate human intervention in fiducial localization and an iterative refinement process to ensure robustness and accuracy. We provide a detailed explanation and implementation of the proposed algorithm. Physical experiments on a lab test bench and a clinical robotic C-arm scanner were conducted to evaluate spatial resolution performance and robustness under realistic constraints. RESULTS Qualitative and quantitative results from the physical experiments demonstrate high accuracy, efficiency, and robustness of the proposed method. The spatial resolution performance matched that of our existing benchmark method, which used a 3D-2D registration-based geometric calibration algorithm. CONCLUSIONS We have demonstrated an automatic online geometric calibration method that delivers high spatial resolution and robustness performance. This methodology enables arbitrary scan trajectories and should facilitate translation of such acquisition methods in a clinical setting.
Collapse
Affiliation(s)
- Yiqun Q Ma
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Tess Reynolds
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | | | - Kelvin Hong
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
2
|
Belotti G, Rossi M, Pella A, Cerveri P, Baroni G. A new system for in-room image guidance in particle therapy at CNAO. Phys Med 2023; 114:103162. [PMID: 37820507 DOI: 10.1016/j.ejmp.2023.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
This paper describes the design, installation, and commissioning of an in-room imaging device developed at the Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy). The system is an upgraded version of the one previously installed in 2014, and its design accounted for the experience gained in a decade of clinical practice of patient setup verification and correction through robotic-supported, off-isocenter in-room image guidance. The system's basic feature consists of image-based setup correction through 2D/3D and 3D/3D registration through a dedicated HW/SW platform. The major update with respect to the device already under clinical usage resides in the implementation of a functionality for extending the field of view of the reconstructed Cone Beam CT (CBCT) volume, along with improved overall safety and functional optimization. We report here details on the procedures implemented for system calibration under all imaging modalities and the results of the technical and preclinical commissioning of the device performed on two different phantoms. In the technical commissioning, specific attention was given to the assessment of the accuracy with which the six-degrees-of-freedom correction vector computed at the off-isocenter imaging position was propagated to the planned isocentric irradiation geometry. During the preclinical commissioning, the entire clinical-like procedure for detecting and correcting imposed, known setup deviation was tested on an anthropomorphic radioequivalent phantom. Results showed system performance within the sub-millimeter and sub-degree range according to project specifications under each imaging modality, making it ready for clinical application.
Collapse
Affiliation(s)
- Gabriele Belotti
- Department of Electronics, Information and Bioengineering, CartCasLab, Politecnico di Milano, MI, Italy.
| | - Matteo Rossi
- Department of Electronics, Information and Bioengineering, CartCasLab, Politecnico di Milano, MI, Italy; Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Andrea Pella
- Bioengineering Unit - Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, CartCasLab, Politecnico di Milano, MI, Italy; Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, CartCasLab, Politecnico di Milano, MI, Italy; Bioengineering Unit - Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV, Italy
| |
Collapse
|
3
|
Supanich M, Siewerdsen J, Fahrig R, Farahani K, Gang GJ, Helm P, Jans J, Jones K, Koenig T, Kuhls-Gilcrist A, Lin M, Riddell C, Ritschl L, Schafer S, Schueler B, Silver M, Timmer J, Trousset Y, Zhang J. AAPM Task Group Report 238: 3D C-arms with volumetric imaging capability. Med Phys 2023; 50:e904-e945. [PMID: 36710257 DOI: 10.1002/mp.16245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
This report reviews the image acquisition and reconstruction characteristics of C-arm Cone Beam Computed Tomography (C-arm CBCT) systems and provides guidance on quality control of C-arm systems with this volumetric imaging capability. The concepts of 3D image reconstruction, geometric calibration, image quality, and dosimetry covered in this report are also pertinent to CBCT for Image-Guided Radiation Therapy (IGRT). However, IGRT systems introduce a number of additional considerations, such as geometric alignment of the imaging at treatment isocenter, which are beyond the scope of the charge to the task group and the report. Section 1 provides an introduction to C-arm CBCT systems and reviews a variety of clinical applications. Section 2 briefly presents nomenclature specific or unique to these systems. A short review of C-arm fluoroscopy quality control (QC) in relation to 3D C-arm imaging is given in Section 3. Section 4 discusses system calibration, including geometric calibration and uniformity calibration. A review of the unique approaches and challenges to 3D reconstruction of data sets acquired by C-arm CBCT systems is give in Section 5. Sections 6 and 7 go in greater depth to address the performance assessment of C-arm CBCT units. First, Section 6 describes testing approaches and phantoms that may be used to evaluate image quality (spatial resolution and image noise and artifacts) and identifies several factors that affect image quality. Section 7 describes both free-in-air and in-phantom approaches to evaluating radiation dose indices. The methodologies described for assessing image quality and radiation dose may be used for annual constancy assessment and comparisons among different systems to help medical physicists determine when a system is not operating as expected. Baseline measurements taken either at installation or after a full preventative maintenance service call can also provide valuable data to help determine whether the performance of the system is acceptable. Collecting image quality and radiation dose data on existing phantoms used for CT image quality and radiation dose assessment, or on newly developed phantoms, will inform the development of performance criteria and standards. Phantom images are also useful for identifying and evaluating artifacts. In particular, comparing baseline data with those from current phantom images can reveal the need for system calibration before image artifacts are detected in clinical practice. Examples of artifacts are provided in Sections 4, 5, and 6.
Collapse
Affiliation(s)
- Mark Supanich
- Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | | - Pat Helm
- Medtronic Inc., Minneapolis, Minnesota, USA
| | | | - Kyle Jones
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - MingDe Lin
- Yale University, New Haven, Connecticut, USA
| | | | | | | | | | - Mike Silver
- Canon Medical Systems USA, Long Beach, California, USA
| | | | | | - Jie Zhang
- University of Kentucky, Lexington, Kentucky
| |
Collapse
|
4
|
Fahrig R, Jaffray DA, Sechopoulos I, Webster Stayman J. Flat-panel conebeam CT in the clinic: history and current state. J Med Imaging (Bellingham) 2021; 8:052115. [PMID: 34722795 DOI: 10.1117/1.jmi.8.5.052115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Research into conebeam CT concepts began as soon as the first clinical single-slice CT scanner was conceived. Early implementations of conebeam CT in the 1980s focused on high-contrast applications where concurrent high resolution ( < 200 μ m ), for visualization of small contrast-filled vessels, bones, or teeth, was an imaging requirement that could not be met by the contemporaneous CT scanners. However, the use of nonlinear imagers, e.g., x-ray image intensifiers, limited the clinical utility of the earliest diagnostic conebeam CT systems. The development of consumer-electronics large-area displays provided a technical foundation that was leveraged in the 1990s to first produce large-area digital x-ray detectors for use in radiography and then compact flat panels suitable for high-resolution and high-frame-rate conebeam CT. In this review, we show the concurrent evolution of digital flat panel (DFP) technology and clinical conebeam CT. We give a brief summary of conebeam CT reconstruction, followed by a brief review of the correction approaches for DFP-specific artifacts. The historical development and current status of flat-panel conebeam CT in four clinical areas-breast, fixed C-arm, image-guided radiation therapy, and extremity/head-is presented. Advances in DFP technology over the past two decades have led to improved visualization of high-contrast, high-resolution clinical tasks, and image quality now approaches the soft-tissue contrast resolution that is the standard in clinical CT. Future technical developments in DFPs will enable an even broader range of clinical applications; research in the arena of flat-panel CT shows no signs of slowing down.
Collapse
Affiliation(s)
- Rebecca Fahrig
- Innovation, Advanced Therapies, Siemens Healthcare GmbH, Forchheim, Germany.,Friedrich-Alexander Universitat, Department of Computer Science 5, Erlangen, Germany
| | - David A Jaffray
- MD Anderson Cancer Center, Departments of Radiation Physics and Imaging Physics, Houston, Texas, United States
| | - Ioannis Sechopoulos
- Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands.,Dutch Expert Center for Screening (LRCB), Nijmegen, The Netherlands.,University of Twente, Technical Medical Center, Enschede, The Netherlands
| | - J Webster Stayman
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Kyme AZ, Fulton RR. Motion estimation and correction in SPECT, PET and CT. Phys Med Biol 2021; 66. [PMID: 34102630 DOI: 10.1088/1361-6560/ac093b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 11/11/2022]
Abstract
Patient motion impacts single photon emission computed tomography (SPECT), positron emission tomography (PET) and X-ray computed tomography (CT) by giving rise to projection data inconsistencies that can manifest as reconstruction artifacts, thereby degrading image quality and compromising accurate image interpretation and quantification. Methods to estimate and correct for patient motion in SPECT, PET and CT have attracted considerable research effort over several decades. The aims of this effort have been two-fold: to estimate relevant motion fields characterizing the various forms of voluntary and involuntary motion; and to apply these motion fields within a modified reconstruction framework to obtain motion-corrected images. The aims of this review are to outline the motion problem in medical imaging and to critically review published methods for estimating and correcting for the relevant motion fields in clinical and preclinical SPECT, PET and CT. Despite many similarities in how motion is handled between these modalities, utility and applications vary based on differences in temporal and spatial resolution. Technical feasibility has been demonstrated in each modality for both rigid and non-rigid motion, but clinical feasibility remains an important target. There is considerable scope for further developments in motion estimation and correction, and particularly in data-driven methods that will aid clinical utility. State-of-the-art machine learning methods may have a unique role to play in this context.
Collapse
Affiliation(s)
- Andre Z Kyme
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| | - Roger R Fulton
- Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| |
Collapse
|
6
|
Falk KL, Schafer S, Speidel MA, Strother CM. 4D-DSA: Development and Current Neurovascular Applications. AJNR Am J Neuroradiol 2021; 42:214-220. [PMID: 33243899 PMCID: PMC7872169 DOI: 10.3174/ajnr.a6860] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022]
Abstract
Originally described by Davis et al in 2013, 4D-Digital Subtraction Angiography (4D-DSA) has developed into a commercially available application of DSA in the angiography suite. 4D-DSA provides the user with 3D time-resolved images, allowing observation of a contrast bolus at any desired viewing angle through the vasculature and at any time point during the acquisition (any view at any time). 4D-DSA mitigates some limitations that are intrinsic to both 2D- and 3D-DSA images. The clinical applications for 4D-DSA include evaluations of AVMs and AVFs, intracranial aneurysms, and atherosclerotic occlusive disease. Recent advances in blood flow quantification using 4D-DSA indicate that these data provide both the velocity and geometric information necessary for the quantification of blood flow. In this review, we will discuss the development, acquisition, reconstruction, and current neurovascular applications of 4D-DSA volumes.
Collapse
Affiliation(s)
- K L Falk
- From the School of Medicine and Public Health (K.L.R.)
- Department of Biomedical Engineering (K.L.R.)
| | - S Schafer
- Siemens Healthineers (S.S.), Malvern, Pennsylvania
| | - M A Speidel
- Medical Physics (M.A.S.), University of Wisconsin-Madison, Madison, Wisconsin
| | - C M Strother
- Radiology (C.M.S.), University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
7
|
Wagner MG, Hatt CR, Dunkerley DAP, Bodart LE, Raval AN, Speidel MA. A dynamic model-based approach to motion and deformation tracking of prosthetic valves from biplane x-ray images. Med Phys 2018; 45:2583-2594. [PMID: 29659023 PMCID: PMC6205814 DOI: 10.1002/mp.12913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure in which a prosthetic heart valve is placed and expanded within a defective aortic valve. The device placement is commonly performed using two-dimensional (2D) fluoroscopic imaging. Within this work, we propose a novel technique to track the motion and deformation of the prosthetic valve in three dimensions based on biplane fluoroscopic image sequences. METHODS The tracking approach uses a parameterized point cloud model of the valve stent which can undergo rigid three-dimensional (3D) transformation and different modes of expansion. Rigid elements of the model are individually rotated and translated in three dimensions to approximate the motions of the stent. Tracking is performed using an iterative 2D-3D registration procedure which estimates the model parameters by minimizing the mean-squared image values at the positions of the forward-projected model points. Additionally, an initialization technique is proposed, which locates clusters of salient features to determine the initial position and orientation of the model. RESULTS The proposed algorithms were evaluated based on simulations using a digital 4D CT phantom as well as experimentally acquired images of a prosthetic valve inside a chest phantom with anatomical background features. The target registration error was 0.12 ± 0.04 mm in the simulations and 0.64 ± 0.09 mm in the experimental data. CONCLUSIONS The proposed algorithm could be used to generate 3D visualization of the prosthetic valve from two projections. In combination with soft-tissue sensitive-imaging techniques like transesophageal echocardiography, this technique could enable 3D image guidance during TAVR procedures.
Collapse
Affiliation(s)
- Martin G. Wagner
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Charles R. Hatt
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - Lindsay E. Bodart
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Amish N. Raval
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Michael A. Speidel
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
8
|
Sawall S, Maier J, Leinweber C, Funck C, Kuntz J, Kachelrieß M. Model-based sphere localization (MBSL) in x-ray projections. Phys Med Biol 2017. [PMID: 28632499 DOI: 10.1088/1361-6560/aa7a96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than [Formula: see text] of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.
Collapse
Affiliation(s)
- Stefan Sawall
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Keuschnigg P, Kellner D, Fritscher K, Zechner A, Mayer U, Huber P, Sedlmayer F, Deutschmann H, Steininger P. Nine-degrees-of-freedom flexmap for a cone-beam computed tomography imaging device with independently movable source and detector. Med Phys 2017; 44:132-142. [DOI: 10.1002/mp.12033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Peter Keuschnigg
- Institute for Research and Development on Advanced Radiation Technologies (radART); Paracelsus Medical University; Salzburg Austria
| | - Daniel Kellner
- Institute for Research and Development on Advanced Radiation Technologies (radART); Paracelsus Medical University; Salzburg Austria
- medPhoton GmbH; Salzburg Austria
| | - Karl Fritscher
- medPhoton GmbH; Salzburg Austria
- Division for Biomedical Image Analysis, Department for Biomedical Informatics and Mechatronics; University for Health Sciences, Medical Informatics and Technology (UMIT); Hall in Tyrol Austria
| | | | - Ulrich Mayer
- Institute for Research and Development on Advanced Radiation Technologies (radART); Paracelsus Medical University; Salzburg Austria
- medPhoton GmbH; Salzburg Austria
| | - Philipp Huber
- Institute for Research and Development on Advanced Radiation Technologies (radART); Paracelsus Medical University; Salzburg Austria
| | - Felix Sedlmayer
- Institute for Research and Development on Advanced Radiation Technologies (radART); Paracelsus Medical University; Salzburg Austria
- University Clinic for Radiotherapy and Radio-Oncology, Paracelsus Medical University; Salzburg Austria
| | - Heinz Deutschmann
- Institute for Research and Development on Advanced Radiation Technologies (radART); Paracelsus Medical University; Salzburg Austria
- medPhoton GmbH; Salzburg Austria
- University Clinic for Radiotherapy and Radio-Oncology, Paracelsus Medical University; Salzburg Austria
| | - Philipp Steininger
- Institute for Research and Development on Advanced Radiation Technologies (radART); Paracelsus Medical University; Salzburg Austria
- medPhoton GmbH; Salzburg Austria
| |
Collapse
|
10
|
Rogers TW, Ollier J, Morton EJ, Griffin LD. Measuring and correcting wobble in large-scale transmission radiography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:57-77. [PMID: 27802248 DOI: 10.3233/xst-160607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Large-scale transmission radiography scanners are used to image vehicles and cargo containers. Acquired images are inspected for threats by a human operator or a computer algorithm. To make accurate detections, it is important that image values are precise. However, due to the scale (∼5 m tall) of such systems, they can be mechanically unstable, causing the imaging array to wobble during a scan. This leads to an effective loss of precision in the captured image. OBJECTIVE We consider the measurement of wobble and amelioration of the consequent loss of image precision. METHODS Following our previous work, we use Beam Position Detectors (BPDs) to measure the cross-sectional profile of the X-ray beam, allowing for estimation, and thus correction, of wobble. We propose: (i) a model of image formation with a wobbling detector array; (ii) a method of wobble correction derived from this model; (iii) methods for calibrating sensor sensitivities and relative offsets; (iv) a Random Regression Forest based method for instantaneous estimation of detector wobble; and (v) using these estimates to apply corrections to captured images of difficult scenes. RESULTS We show that these methods are able to correct for 87% of image error due wobble, and when applied to difficult images, a significant visible improvement in the intensity-windowed image quality is observed. CONCLUSIONS The method improves the precision of wobble affected images, which should help improve detection of threats and the identification of different materials in the image.
Collapse
Affiliation(s)
- Thomas W Rogers
- Department of Computer Science, University College London, London, UK
- Department of Security and Crime Science, University College London, London, UK
| | - James Ollier
- Rapiscan Systems Ltd., Stoke-On-Trent, Staffordshire, UK
| | | | - Lewis D Griffin
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
11
|
Szczykutowicz TP, Labby ZE, Rubert N, Wallace C. Technical Note: Confirming the prescribed angle of CT localizer radiographs and c-arm projection acquisitions. Med Phys 2016; 43:865-9. [PMID: 26843247 DOI: 10.1118/1.4940124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Accurate CT radiograph angle is not usually important in diagnostic CT. However, there are applications in radiation oncology and interventional radiology in which the orientation of the x-ray source and detector with respect to the patient is clinically important. The authors present a method for measuring the accuracy of the tube/detector assembly with respect to the prescribed tube/detector position for CT localizer, fluoroscopic, and general radiograph imaging using diagnostic, mobile, and c-arm based CT systems. METHODS A mathematical expression relating the x-ray projection of two metal BBs is related to gantry angle. Measurement of the BBs at a prescribed gantry (i.e., c-arm) angle can be obtained and using this relation the prescribed versus actual gantry angle compared. No special service mode or proprietary information is required, only access to projection images is required. Projection images are available in CT via CT localizer radiographs and in the interventional setting via fluorography. RESULTS The technique was demonstrated on two systems, a mobile CT scanner and a diagnostic CT scanner. The results confirmed a known issue with the mobile scanner and accurately described the CT localizer angle of the diagnostic system tested. CONCLUSIONS This method can be used to quantify gantry angle, which is important when projection images are used for procedure guidance, such as in brachytherapy and interventional radiology applications.
Collapse
Affiliation(s)
- Timothy P Szczykutowicz
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705; and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Zacariah E Labby
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Nicholas Rubert
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Charles Wallace
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
12
|
Graham SA, Moseley DJ, Siewerdsen JH, Jaffray DA. Compensators for dose and scatter management in cone-beam computed tomography. Med Phys 2016; 34:2691-703. [PMID: 17821977 DOI: 10.1118/1.2740466] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The ability of compensators (e.g., bow-tie filters) designed for kV cone-beam computed tomography (CT) to reduce both scatter reaching the detector and dose to the patient is investigated. Scattered x rays reaching the detector are widely recognized as one of the most significant challenges to cone-beam CT imaging performance. With cone-beam CT gaining popularity as a method of guiding treatments in radiation therapy, any methods that have the potential to reduce the dose to patients and/or improve image quality should be investigated. Simple compensators with a design that could realistically be implemented on a cone-beam CT imaging system have been constructed to determine the magnitude of reduction of scatter and/or dose for various cone-beam CT imaging conditions. Depending on the situation, the compensators were shown to reduce x-ray scatter at the detector and dose to the patient by more than a factor of 2. Further optimization of the compensators is a possibility to achieve greater reductions in both scatter and dose.
Collapse
Affiliation(s)
- S A Graham
- Ontario Cancer Institute, Princess Margaret Hospital, Department of Medical Biophysics, University of Toronto, Ontario, M5G 2M9, Canada
| | | | | | | |
Collapse
|
13
|
Ritschl L, Kuntz J, Fleischmann C, Kachelrieß M. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation. Med Phys 2016; 43:2295. [DOI: 10.1118/1.4944785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Tillner F, Thute P, Löck S, Dietrich A, Fursov A, Haase R, Lukas M, Rimarzig B, Sobiella M, Krause M, Baumann M, Bütof R, Enghardt W. Precise image-guided irradiation of small animals: a flexible non-profit platform. Phys Med Biol 2016; 61:3084-108. [DOI: 10.1088/0031-9155/61/8/3084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Deng L, Xi X, Li L, Han Y, Yan B. A method to determine the detector locations of the cone-beam projection of the balls' centers. Phys Med Biol 2015; 60:9295-311. [PMID: 26580684 DOI: 10.1088/0031-9155/60/24/9295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In geometric calibration of cone-beam computed tomography (CBCT), sphere-like objects such as balls are widely imaged, the positioning information of which is obtained to determine the unknown geometric parameters. In this process, the accuracy of the detector location of CB projection of the center of the ball, which we call the center projection, is very important, since geometric calibration is sensitive to errors in the positioning information. Currently in almost all the geometric calibration using balls, the center projection is invariably estimated by the center of the support of the projection or the centroid of the intensity values inside the support approximately. Clackdoyle's work indicates that the center projection is not always at the center of the support or the centroid of the intensity values inside, and has given a quantitative analysis of the maximum errors in evaluating the center projection by the centroid. In this paper, an exact method is proposed to calculate the center projection, utilizing both the detector location of the ellipse center and the two axis lengths of the ellipse. Numerical simulation results have demonstrated the precision and the robustness of the proposed method. Finally there are some comments on this work with non-uniform density balls, as well as the effect by the error occurred in the evaluation for the location of the orthogonal projection of the cone vertex onto the detector.
Collapse
Affiliation(s)
- Lin Deng
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450002, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Abstract
The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.
Collapse
Affiliation(s)
- Christian G. Graff
- Division of Imaging, Diagnostics and Software Reliability, U.S. Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring MD 20993, USA
- Corresponding author:
| | - Emil Y. Sidky
- Department of Radiology MC-2026, The University of Chicago, 5841 S. Maryland Ave., Chicago IL 60637, USA
| |
Collapse
|
17
|
Yu Z, Maier A, Lauritsch G, Vogt F, Schonborn M, Kohler C, Hornegger J, Noo F. Axially extended-volume C-arm CT using a reverse helical trajectory in the interventional room. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:203-215. [PMID: 25167545 DOI: 10.1109/tmi.2014.2350986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
C-arm computed tomography (CT) is an innovative technique that enables a C-arm system to generate 3-D images from a set of 2-D X-ray projections. This technique can reduce treatment-related complications and may improve interventional efficacy and safety. However, state-of-the-art C-arm systems rely on a circular short scan for data acquisition, which limits coverage in the axial direction. This limitation was reported as a problem in hepatic vascular interventions. To solve this problem, as well as to further extend the value of C-arm CT, axially extended-volume C-arm CT is needed. For example, such an extension would enable imaging the full aorta, the peripheral arteries or the spine in the interventional room, which is currently not feasible. In this paper, we demonstrate that performing long object imaging using a reverse helix is feasible in the interventional room. This demonstration involved developing a novel calibration method, assessing geometric repeatability, implementing a reconstruction method that applies to real reverse helical data, and quantitatively evaluating image quality. Our results show that: 1) the reverse helical trajectory can be implemented and reliably repeated on a multiaxis C-arm system; and 2) a long volume can be reconstructed with satisfactory image quality using reverse helical data.
Collapse
|
18
|
Lindsay PE, Granton PV, Gasparini A, Jelveh S, Clarkson R, van Hoof S, Hermans J, Kaas J, Wittkamper F, Sonke JJ, Verhaegen F, Jaffray DA. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators. Med Phys 2014; 41:031714. [DOI: 10.1118/1.4866215] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Thibaudeau C, Leroux JD, Fontaine R, Lecomte R. Fully 3D iterative CT reconstruction using polar coordinates. Med Phys 2013; 40:111904. [DOI: 10.1118/1.4822514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
20
|
Toward the era of a one-stop imaging service using an angiography suite for neurovascular disorders. BIOMED RESEARCH INTERNATIONAL 2013; 2013:873614. [PMID: 23762863 PMCID: PMC3666363 DOI: 10.1155/2013/873614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 01/01/2023]
Abstract
Transportation of patients requiring multiple diagnostic and imaging-guided therapeutic modalities is unavoidable in current radiological practice. This clinical scenario causes time delays and increased risk in the management of stroke and other neurovascular emergencies. Since the emergence of flat-detector technology in imaging practice in recent decades, studies have proven that flat-detector X-ray angiography in conjunction with contrast medium injection and specialized reconstruction algorithms can provide not only high-quality and high-resolution CT-like images but also functional information. This improvement in imaging technology allows quantitative assessment of intracranial hemodynamics and, subsequently in the same imaging session, provides treatment guidance for patients with neurovascular disorders by using only a flat-detector angiographic suite-a so-called one-stop quantitative imaging service (OSIS). In this paper, we review the recent developments in the field of flat-detector imaging and share our experience of applying this technology in neurovascular disorders such as acute ischemic stroke, cerebral aneurysm, and stenoocclusive carotid diseases.
Collapse
|
21
|
Linte CA, Davenport KP, Cleary K, Peters C, Vosburgh KG, Navab N, Edwards PE, Jannin P, Peters TM, Holmes DR, Robb RA. On mixed reality environments for minimally invasive therapy guidance: systems architecture, successes and challenges in their implementation from laboratory to clinic. Comput Med Imaging Graph 2013; 37:83-97. [PMID: 23632059 PMCID: PMC3796657 DOI: 10.1016/j.compmedimag.2012.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/16/2012] [Accepted: 12/24/2012] [Indexed: 11/21/2022]
Abstract
Mixed reality environments for medical applications have been explored and developed over the past three decades in an effort to enhance the clinician's view of anatomy and facilitate the performance of minimally invasive procedures. These environments must faithfully represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical instrument tracking, and display technology into a common framework centered around and registered to the patient. However, in spite of their reported benefits, few mixed reality environments have been successfully translated into clinical use. Several challenges that contribute to the difficulty in integrating such environments into clinical practice are presented here and discussed in terms of both technical and clinical limitations. This article should raise awareness among both developers and end-users toward facilitating a greater application of such environments in the surgical practice of the future.
Collapse
|
22
|
Nyiri BJ, Smale JR, Gerig LH. Two self-referencing methods for the measurement of beam spot position. Med Phys 2012; 39:7635-43. [DOI: 10.1118/1.4766270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Sawall S, Knaup M, Kachelrieß M. A robust geometry estimation method for spiral, sequential and circular cone-beam micro-CT. Med Phys 2012; 39:5384-92. [PMID: 22957606 DOI: 10.1118/1.4739506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors propose a novel method for misalignment estimation of micro-CT scanners using an adaptive genetic algorithm. METHODS The proposed algorithm is able to estimate the rotational geometry, the direction vector of table movement and the displacement between different imaging threads of a dual source or even multisource scanner. The calibration procedure does not rely on dedicated calibration phantoms and a sequence scan of a single metal bead is sufficient to geometrically calibrate the whole imaging system for spiral, sequential, and circular scan protocols. Dual source spiral and sequential scan protocols in micro-computed tomography result in projection data that-besides the source and detector positions and orientations-also require a precise knowledge of the table direction vector to be reconstructed properly. If those geometric parameters are not known accurately severe artifacts and a loss in spatial resolution appear in the reconstructed images as long as no geometry calibration is performed. The table direction vector is further required to ensure that consecutive volumes of a sequence scan can be stitched together and to allow the reconstruction of spiral data at all. RESULTS The algorithm's performance is evaluated using simulations of a micro-CT system with known geometry and misalignment. To assess the quality of the algorithm in a real world scenario the calibration of a micro-CT scanner is performed and several reconstructions with and without geometry estimation are presented. CONCLUSIONS The results indicate that the algorithm successfully estimates all geometry parameters, misalignment artifacts in the reconstructed volumes vanish, and the spatial resolution is increased as can be shown by the evaluation of modulation transfer function measurements.
Collapse
Affiliation(s)
- Stefan Sawall
- Institute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | |
Collapse
|
24
|
Otake Y, Schafer S, Stayman JW, Zbijewski W, Kleinszig G, Graumann R, Khanna AJ, Siewerdsen JH. Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery. Phys Med Biol 2012; 57:5485-508. [PMID: 22864366 DOI: 10.1088/0031-9155/57/17/5485] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surgical targeting of the incorrect vertebral level (wrong-level surgery) is among the more common wrong-site surgical errors, attributed primarily to the lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. The conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (namely CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and a CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved ten patient CT datasets from which 50 000 simulated fluoroscopic images were generated from C-arm poses selected to approximate the C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (namely mPD <5 mm). Simulation studies showed a success rate of 99.998% (1 failure in 50 000 trials) and computation time of 4.7 s on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated the robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific case of vertebral labeling, since any structure defined in pre-operative (or intra-operative) CT or cone-beam CT can be automatically registered to the fluoroscopic scene.
Collapse
Affiliation(s)
- Y Otake
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Du W, Gao S, Wang X, Kudchadker RJ. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy. Med Phys 2012; 39:2156-62. [PMID: 22482636 DOI: 10.1118/1.3697528] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Gantry sag is one of the well-known sources of mechanical imperfections that compromise the spatial accuracy of radiation dose delivery. The objectives of this study were to quantify the gantry sag on multiple linear accelerators (linacs), to investigate a multileaf collimator (MLC)-based strategy to compensate for gantry sag, and to verify the gantry sag and its compensation with film measurements. METHODS The authors used the Winston-Lutz method to measure gantry sag on three Varian linacs. A ball bearing phantom was imaged with megavolt radiation fields at 10° gantry angle intervals. The images recorded with an electronic portal imaging device were analyzed to derive the radiation isocenter and the gantry sag, that is, the superior-inferior wobble of the radiation field center, as a function of the gantry angle. The authors then attempted to compensate for the gantry sag by applying a gantry angle-specific correction to the MLC leaf positions. The gantry sag and its compensation were independently verified using film measurements. RESULTS Gantry sag was reproducible over a six-month measurement period. The maximum gantry sag was found to vary from 0.7 to 1.0 mm, depending on the linac and the collimator angle. The radiation field center moved inferiorly (i.e., away from the gantry) when the gantry was rotated from 0° to 180°. After the MLC leaf position compensation was applied at 90° collimator angle, the maximum gantry sag was reduced to <0.2 mm. The film measurements at gantry angles of 0° and 180° verified the inferior shift of the radiation fields and the effectiveness of MLC compensation. CONCLUSIONS The results indicate that gantry sag on a linac can be quantitatively measured using a simple phantom and an electronic portal imaging device. Reduction of gantry sag is feasible by applying a gantry angle-specific correction to MLC leaf positions at 90° collimator angle.
Collapse
Affiliation(s)
- Weiliang Du
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
26
|
Chen X, Wang L, Fallavollita P, Navab N. Precise X-ray and video overlay for augmented reality fluoroscopy. Int J Comput Assist Radiol Surg 2012; 8:29-38. [PMID: 22592259 DOI: 10.1007/s11548-012-0746-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/02/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE The camera-augmented mobile C-arm (CamC) augments any mobile C-arm by a video camera and mirror construction and provides a co-registration of X-ray with video images. The accurate overlay between these images is crucial to high-quality surgical outcomes. In this work, we propose a practical solution that improves the overlay accuracy for any C-arm orientation by: (i) improving the existing CamC calibration, (ii) removing distortion effects, and (iii) accounting for the mechanical sagging of the C-arm gantry due to gravity. METHODS A planar phantom is constructed and placed at different distances to the image intensifier in order to obtain the optimal homography that co-registers X-ray and video with a minimum error. To alleviate distortion, both X-ray calibration based on equidistant grid model and Zhang's camera calibration method are implemented for distortion correction. Lastly, the virtual detector plane (VDP) method is adapted and integrated to reduce errors due to the mechanical sagging of the C-arm gantry. RESULTS The overlay errors are 0.38±0.06 mm when not correcting for distortion, 0.27±0.06 mm when applying Zhang's camera calibration, and 0.27±0.05 mm when applying X-ray calibration. Lastly, when taking into account all angular and orbital rotations of the C-arm, as well as correcting for distortion, the overlay errors are 0.53±0.24 mm using VDP and 1.67±1.25 mm excluding VDP. CONCLUSION The augmented reality fluoroscope achieves an accurate video and X-ray overlay when applying the optimal homography calculated from distortion correction using X-ray calibration together with the VDP.
Collapse
Affiliation(s)
- Xin Chen
- Fakultät für Informatik, Technische Universität München, Munich, Germany
| | | | | | | |
Collapse
|
27
|
Rowshanfarzad P, Sabet M, O'Connor DJ, Greer PB. Isocenter verification for linac-based stereotactic radiation therapy: review of principles and techniques. J Appl Clin Med Phys 2011; 12:3645. [PMID: 22089022 PMCID: PMC5718736 DOI: 10.1120/jacmp.v12i4.3645] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/31/2011] [Accepted: 06/02/2011] [Indexed: 11/23/2022] Open
Abstract
There have been several manual, semi-automatic and fully-automatic methods proposed for verification of the position of mechanical isocenter as part of comprehensive quality assurance programs required for linear accelerator-based stereotactic radiosurgery/radiotherapy (SRS/SRT) treatments. In this paper, a systematic review has been carried out to discuss the present methods for isocenter verification and compare their characteristics, to help physicists in making a decision on selection of their quality assurance routine.
Collapse
Affiliation(s)
- Pejman Rowshanfarzad
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia.
| | | | | | | |
Collapse
|
28
|
Clackdoyle R, Mennessier C. Centers and centroids of the cone-beam projection of a ball. Phys Med Biol 2011; 56:7371-91. [DOI: 10.1088/0031-9155/56/23/003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Ford JC, Zheng D, Williamson JF. Estimation of CT cone-beam geometry using a novel method insensitive to phantom fabrication inaccuracy: implications for isocenter localization accuracy. Med Phys 2011; 38:2829-40. [PMID: 21815358 DOI: 10.1118/1.3589130] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Mechanical instabilities that occur during gantry rotation of on-board cone-beam computed tomography (CBCT) imaging systems limit the efficacy of image-guided radiotherapy. Various methods for calibrating the CBCT geometry and correcting errors have been proposed, including some that utilize dedicated fiducial phantoms. The purpose of this work was to investigate the role of phantom fabrication imprecision on the accuracy of a particular CT cone-beam geometry estimate and to test a new method to mitigate errors in beam geometry arising from imperfectly fabricated phantoms. METHODS The authors implemented a fiducial phantom-based beam geometry estimation following the one described by Cho et al. [Med Phys 32(4), 968-983 (2005)]. The algorithm utilizes as input projection images of the phantom at various gantry angles and provides a full nine parameter beam geometry characterization of the source and detector position and detector orientation versus gantry angle. A method was developed for recalculating the beam geometry in a coordinate system with origin at the source trajectory center and aligned with the axis of gantry rotation, thus making the beam geometry estimation independent of the placement of the phantom. A second CBCT scan with the phantom rotated 180 degrees about its long axis was averaged with the first scan to mitigate errors from phantom imprecision. Computer simulations were performed to assess the effect of 2D fiducial marker positional error on the projections due to image discretization, as well as 3D fiducial marker position error due to phantom fabrication imprecision. Experimental CBCT images of a fiducial phantom were obtained and the algorithm used to measure beam geometry for a Varian Trilogy with an on-board CBCT. RESULTS Both simulations and experimental results reveal large sinusoidal oscillations in the calculated beam geometry parameters with gantry angle due to displacement of the phantom from CBCT isocenter and misalignment with the gantry axis, which are eliminated by recalculating the beam geometry in the source coordinate system. Simulations and experiments also reveal an additional source of oscillations arising from fiducial marker position error due to phantom fabrication imprecision that are mitigated by averaging the results with those of a second CBCT scan with phantom rotated. With a typical fiducial marker position error of 0.020 mm (0.001 in.), source and detector position are found in simulations to be within 250 microm of the true values, and detector and gantry angles less than 0.2 degrees. Detector offsets are within 100 microm of the known value. Experimental results verify the efficacy of the second scan in mitigating beam geometry errors, as well as large apparent source/detector isocenter offsets arising from phantom fabrication imprecision. CONCLUSIONS The authors have developed and validated a novel fiducial phantom-based CBCT beam geometry estimation algorithm that does not require precise positioning of the phantom at machine isocenter and is insensitive to positional imprecision of fiducial markers within the phantom due to fabrication errors. The method can accurately locate source and detector isocenters even when using an imprecise phantom, which is very important for measurement of isocenter coincidence of the therapy and on-board imaging systems.
Collapse
Affiliation(s)
- J Chetley Ford
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | |
Collapse
|
30
|
Mao W, Speiser M, Medin P, Papiez L, Solberg T, Xing L. Initial application of a geometric QA tool for integrated MV and kV imaging systems on three image guided radiotherapy systems. Med Phys 2011; 38:2335-41. [PMID: 21776767 DOI: 10.1118/1.3570768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Several linacs with integrated kilovoltage (kV) imaging have been developed for delivery of image guided radiation therapy (IGRT). High geometric accuracy and coincidence of kV imaging systems and megavoltage (MV) beam delivery are essential for successful image guidance. A geometric QA tool has been adapted for routine QA for evaluating and characterizing the geometric accuracy of kV and MV cone-beam imaging systems. The purpose of this work is to demonstrate the application of methodology to routine QA across three IGRT-dedicated linac platforms. METHODS It has been applied to a Varian Trilogy (Varian Medical Systems, Palo Alto, CA), an Elekta SynergyS (Elekta, Stockholm, Sweden), and a Brainlab Vero (Brainlab AG, Feldkirchen, Germany). Both the Trilogy and SynergyS linacs are equipped with a retractable kV x-ray tube and a flat panel detector. The Vero utilizes a rotating, rigid ring structure integrating a MV x-ray head mounted on orthogonal gimbals, an electronic portal imaging device (EPID), two kV x-ray tubes, and two fixed flat panel detectors. This dual kV imaging system provides orthogonal radiographs, CBCT images, and real-time fluoroscopic monitoring. Two QA phantoms were built to suit different field sizes. Projection images of a QA phantom were acquired using MV and kV imaging systems at a series of gantry angles. Software developed for this study was used to analyze the projection images and calculate nine geometric parameters for each projection. The Trilogy was characterized five times over one year, while the SynergyS was characterized four times and the Vero once. Over 6500 individual projections were acquired and analyzed. Quantitative geometric parameters of both MV and kV imaging systems, as well as the isocenter consistency of the imaging systems, were successfully evaluated. RESULTS A geometric tool has been successfully implemented for calibration and QA of integrated kV and MV across a variety of radiotherapy platforms. X-ray source angle deviations up to 0.8 degrees, and detector center offsets up to 3 mm, were observed for three linacs, with the exception of the Vero, for which a significant center offset of one kV detector (prior to machine commissioning) was observed. In contrast, the gimbal-based MV source positioning of the Vero demonstrated differences between observed and expected source positions of less than 0.2 mm, both with and without gimbal rotation. CONCLUSIONS This initial application of this geometric QA tool shows promise as a universal, independent tool for quantitative evaluation of geometric accuracies of both MV and integrated kV imaging systems across a range of platforms. It provides nine geometric parameters of any imaging system at every gantry angle as well as the isocenter coincidence of the MV and kV image systems.
Collapse
Affiliation(s)
- Weihua Mao
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Siewerdsen JH. Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2011; 648:S241-S250. [PMID: 22942510 PMCID: PMC3429946 DOI: 10.1016/j.nima.2010.11.088] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical performance under CBCT guidance, and early clinical trials demonstrate feasibility, workflow, and image quality within the surgical theatre.
Collapse
Affiliation(s)
- Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD 21205
| |
Collapse
|
32
|
Ruijters D, Homan R, Mielekamp P, van de Haar P, Babic D. Validation of 3D multimodality roadmapping in interventional neuroradiology. Phys Med Biol 2011; 56:5335-54. [PMID: 21799235 DOI: 10.1088/0031-9155/56/16/017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three-dimensional multimodality roadmapping is entering clinical routine utilization for neuro-vascular treatment. Its purpose is to navigate intra-arterial and intra-venous endovascular devices through complex vascular anatomy by fusing pre-operative computed tomography (CT) or magnetic resonance (MR) with the live fluoroscopy image. The fused image presents the real-time position of the intra-vascular devices together with the patient's 3D vascular morphology and its soft-tissue context. This paper investigates the effectiveness, accuracy, robustness and computation times of the described methods in order to assess their suitability for the intended clinical purpose: accurate interventional navigation. The mutual information-based 3D-3D registration proved to be of sub-voxel accuracy and yielded an average registration error of 0.515 mm and the live machine-based 2D-3D registration delivered an average error of less than 0.2 mm. The capture range of the image-based 3D-3D registration was investigated to characterize its robustness, and yielded an extent of 35 mm and 25° for >80% of the datasets for registration of 3D rotational angiography (3DRA) with CT, and 15 mm and 20° for >80% of the datasets for registration of 3DRA with MR data. The image-based 3D-3D registration could be computed within 8 s, while applying the machine-based 2D-3D registration only took 1.5 µs, which makes them very suitable for interventional use.
Collapse
Affiliation(s)
- Daniel Ruijters
- Interventional X-Ray (iXR), Philips Healthcare, Best, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Rowshanfarzad P, Sabet M, O'Connor DJ, Greer PB. Verification of the linac isocenter for stereotactic radiosurgery using cine-EPID imaging and arc delivery. Med Phys 2011; 38:3963-70. [DOI: 10.1118/1.3597836] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
34
|
Mistretta CA. Sub-Nyquist acquisition and constrained reconstruction in time resolved angiography. Med Phys 2011; 38:2975-85. [PMID: 21815371 PMCID: PMC3125079 DOI: 10.1118/1.3589132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 11/07/2022] Open
Abstract
In 1980 DSA provided a real time series of digitally processed angiographic images that facilitated and reduced the risk of angiographic procedures. This technique has become an enabling technology for interventional radiology. Initially it was hoped that intravenous DSA could eliminate the need for arterial injections. However the 2D nature of the images resulted in overlap of vessels and repeat injections were often required. Ultimately the use of smaller arterial catheters and reduced iodine injections resulted in significant reduction in complications. During the next two decades time resolved MR DSA angiographic methods were developed that produced time series of 3D images. These 4D displays were initially limited by tradeoffs in temporal and spatial resolution when acquisitions obeying the Nyquist criteria were employed. Then substantial progress was made in the implementation of undersampled non-Cartesian acquisitions such as VIPR and constrained reconstruction methods such as HYPR, which removed this tradeoff and restored SNR usually lost by accelerated techniques. Recently, undersampled acquisition and constrained reconstruction have been applied to generate time series of 3D x-ray DSA volumes reconstructed using rotational C-arm acquisition completing a 30 year evolution from DSA to 4D DSA. These 4D DSA volumes provide a flexible series of roadmaps for interventional procedures and solve the problem of vessel overlap for intravenous angiography. Full time-dependent behavior can be visualized in three dimensions. When a biplane system is used, 4D fluoroscopy is also possible, enabling the interventionalist to track devices in vascular structures from any angle without moving the C-arm gantrys. Constrained reconstruction methods have proved useful in a broad range of medical imaging applications, where substantial acquisition accelerations and dose reductions have been reported.
Collapse
Affiliation(s)
- Charles A Mistretta
- University of Wisconsin International Center for Accelerated Medical Imaging, Department of Medical Physics, The University of Wisconsin, Madison, Wisconsin 53704, USA.
| |
Collapse
|
35
|
Qiu W, Tong JR, Mitchell CN, Marchant T, Spencer P, Moore CJ, Soleimani M. New iterative cone beam CT reconstruction software: parameter optimisation and convergence study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2010; 100:166-174. [PMID: 20471711 DOI: 10.1016/j.cmpb.2010.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/29/2010] [Accepted: 03/21/2010] [Indexed: 05/29/2023]
Abstract
Cone beam computed tomography (CBCT) provides a volumetric image reconstruction from tomographic projection data. Image quality is the main concern for reconstruction in comparison to conventional CT. The reconstruction algorithm used is clearly important and should be carefully designed, developed and investigated before it can be applied clinically. The Multi-Instrument Data Analysis System (MIDAS) tomography software originally designed for geophysical applications has been modified to CBCT image reconstruction. In CBCT reconstruction algorithms, iterative methods offer the potential to generate high quality images and would be an advantage especially for down-sampling projection data. In this paper, studies of the CBCT iterative algorithms implemented in MIDAS are presented. Stability, convergence rate, quality of reconstructed image and edge recovery are suggested as the main criteria for monitoring reconstructive performance. Accordingly, the selection of relaxation parameter and number of iterations are studied in detail. Results are presented, where images are reconstructed from full and down-sampled cone beam CT projection data using iterative algorithms. Various iterative algorithms have been implemented and the best selection of the iteration number and relaxation parameters are investigated for ART. Optimal parameters are chosen where the errors in projected data as well as image errors are minimal.
Collapse
Affiliation(s)
- W Qiu
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Ritschl L, Bergner F, Fleischmann C, Kachelrieß M. Water calibration for CT scanners with tube voltage modulation. Phys Med Biol 2010; 55:4107-17. [DOI: 10.1088/0031-9155/55/14/010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Li X, Da Z, Liu B. A generic geometric calibration method for tomographic imaging systems with flat-panel detectors-A detailed implementation guide. Med Phys 2010; 37:3844-54. [DOI: 10.1118/1.3431996] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Xinhua Li
- Department of Radiology, Division of Diagnostic Imaging Physics, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
38
|
Du W, Yang J, Luo D, Martel M. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Med Phys 2010; 37:2256-63. [PMID: 20527559 DOI: 10.1118/1.3397452] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this study was to develop a computerized method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Three types of graticules were included in this study: Megavoltage (MV) mechanical graticule, MV electronic portal imaging device digital graticule, and kilovoltage (kV) on-board imaging digital graticule. METHODS A metal ball bearing (BB) was imaged with MV and kV x-ray beams in a procedure similar to a Winston-Lutz test. The radiation fields, graticules, and BB were localized in eight portal images using Hough transform-based computer algorithms. The center of the BB served as a static reference point in the 3D space so that the distances between the graticule centers and the radiation field centers were calculated. The radiation isocenter was determined from the radiation field centers at different gantry angles. RESULTS Misalignments of MV and kV portal imaging graticules varied with the gantry or x-ray source angle as a result of mechanical imperfections of the linear accelerator and its imaging system. While the three graticules in this study were aligned to the radiation field centers and the radiation isocenter within 2.0 mm, misalignments of 1.5-2.0 mm were found at certain gantry angles. These misalignments were highly reproducible with the gantry rotation. CONCLUSIONS A simple method was developed to quantify the alignments of portal image graticules directly against the radiation field centers or the radiation isocenter. The advantage of this method is that it does not require the BB to be placed exactly at the radiation isocenter through a precalibrated surrogating device such as room lasers or light field crosshairs. The present method is useful for radiation therapy modalities that require high-precision portal imaging such as image-guided stereotactic radiotherapy.
Collapse
Affiliation(s)
- Weiliang Du
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
39
|
Lu B, Lu H, Palta J. A comprehensive study on decreasing the kilovoltage cone-beam CT dose by reducing the projection number. J Appl Clin Med Phys 2010; 11:3274. [PMID: 20717096 PMCID: PMC5720437 DOI: 10.1120/jacmp.v11i3.3274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/14/2010] [Accepted: 03/16/2010] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to evaluate the effect of kilovoltage cone‐beam computed tomography (CBCT) on registration accuracy and image qualities with a reduced number of planar projections used in volumetric imaging reconstruction. The ultimate goal is to evaluate the possibility of reducing the patient dose while maintaining registration accuracy under different projection‐number schemes for various clinical sites. An Elekta Synergy Linear accelerator with an onboard CBCT system was used in this study. The quality of the Elekta XVI cone‐beam three‐dimensional volumetric images reconstructed with a decreasing number of projections was quantitatively evaluated by a Catphan phantom. Subsequently, we tested the registration accuracy of imaging data sets on three rigid anthropomorphic phantoms and three real patient sites under the reduced projection‐number (as low as 1/6th) reconstruction of CBCT data with different rectilinear shifts and rotations. CBCT scan results of the Catphan phantom indicated the CBCT images got noisier when the number of projections was reduced, but their spatial resolution and uniformity were hardly affected. The maximum registration errors under the small amount transformation of the reference CT images were found to be within 0.7 mm translation and 0.3° rotation. However, when the projection number was lower than one‐fourth of the full set with a large amount of transformation of reference CT images, the registration could easily be trapped into local minima solutions for a nonrigid anatomy. We concluded, by using projection‐number reduction strategy under conscientious care, imaging‐guided localization procedure could achieve a lower patient dose without losing the registration accuracy for various clinical sites and situations. A faster scanning time is the main advantage compared to the mA decrease‐based, dose‐reduction method. PACS numbers: 87.57.C‐, 87.57.cf, 87.57.cj, 87.57.cm, 87.57.cp, 87.57.N‐, 87.57.nf, 87.57.nj
Collapse
Affiliation(s)
- Bo Lu
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA.
| | | | | |
Collapse
|
40
|
Linte CA, White J, Eagleson R, Guiraudon GM, Peters TM. Virtual and Augmented Medical Imaging Environments: Enabling Technology for Minimally Invasive Cardiac Interventional Guidance. IEEE Rev Biomed Eng 2010; 3:25-47. [DOI: 10.1109/rbme.2010.2082522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Patel V, Chityala RN, Hoffmann KR, Ionita CN, Bednarek DR, Rudin S. Self-calibration of a cone-beam micro-CT system. Med Phys 2009; 36:48-58. [PMID: 19235373 DOI: 10.1118/1.3026615] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CBmicroCT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CBmicrouCT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantifled using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 microm in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates calibration runs, but it also provides quality control data for each data set.
Collapse
Affiliation(s)
- V Patel
- Toshiba Stroke Research Center, Department of Physics, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Habets DF, Pollmann SI, Yuan X, Peters TM, Holdsworth DW. Error analysis of marker-based object localization using a single-plane XRII. Med Phys 2009; 36:190-200. [PMID: 19235387 DOI: 10.1118/1.3041167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The role of imaging and image guidance is increasing in surgery and therapy, including treatment planning and follow-up. Fluoroscopy is used for two-dimensional (2D) guidance or localization; however, many procedures would benefit from three-dimensional (3D) guidance or localization. Three-dimensional computed tomography (CT) using a C-arm mounted x-ray image intensifier (XRII) can provide high-quality 3D images; however, patient dose and the required acquisition time restrict the number of 3D images that can be obtained. C-arm based 3D CT is therefore limited in applications for x-ray based image guidance or dynamic evaluations. 2D-3D model-based registration, using a single-plane 2D digital radiographic system, does allow for rapid 3D localization. It is our goal to investigate-over a clinically practical range-the impact of x-ray exposure on the resulting range of 3D localization precision. In this paper it is assumed that the tracked instrument incorporates a rigidly attached 3D object with a known configuration of markers. A 2D image is obtained by a digital fluoroscopic x-ray system and corrected for XRII distortions (+/- 0.035 mm) and mechanical C-arm shift (+/- 0.080 mm). A least-square projection-Procrustes analysis is then used to calculate the 3D position using the measured 2D marker locations. The effect of x-ray exposure on the precision of 2D marker localization and on 3D object localization was investigated using numerical simulations and x-ray experiments. The results show a nearly linear relationship between 2D marker localization precision and the 3D localization precision. However, a significant amplification of error, nonuniformly distributed among the three major axes, occurs, and that is demonstrated. To obtain a 3D localization error of less than +/- 1.0 mm for an object with 20 mm marker spacing, the 2D localization precision must be better than +/- 0.07 mm. This requirement was met for all investigated nominal x-ray exposures at 28 cm FOV, and for all but the lowest two at 40 cm FOV. However, even for those two nominal exposures, the expected 3D localization error is less than +/- 1.2 mm. The tracking precision was +/- 0.65 mm for the out-of-plane translations, +/- 0.05 mm for in-plane translations, and +/- 0.05 degrees for the rotations. The root mean square (RMS) difference between the true and projection-Procrustes calculated location was 1.07 mm. It is believed these results show the potential of this technique for dynamic evaluations or real-time image guidance using a single x-ray source and XRII detector.
Collapse
Affiliation(s)
- Damiaan F Habets
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, 100 Perth Drive, London, Ontario N6A 5K8, Canada.
| | | | | | | | | |
Collapse
|
43
|
Mennessier C, Clackdoyle R, Noo F. Direct determination of geometric alignment parameters for cone-beam scanners. Phys Med Biol 2009; 54:1633-60. [PMID: 19242049 DOI: 10.1088/0031-9155/54/6/016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique.
Collapse
Affiliation(s)
- C Mennessier
- Laboratoire Hubert Curien, Unité Mixte de Recherche CNRS and Université Jean Monnet, 18 Rue du Professeur Benoit Lauras, 42000 Saint Etienne, France
| | | | | |
Collapse
|
44
|
Du W, Yang J. A robust Hough transform algorithm for determining the radiation centers of circular and rectangular fields with subpixel accuracy. Phys Med Biol 2009; 54:555-67. [DOI: 10.1088/0031-9155/54/3/006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Patel V, Hoffmann KR, Ionita CN, Keleshis C, Bednarek DR, Rudin S. Rotational micro-CT using a clinical C-arm angiography gantry. Med Phys 2008; 35:4757-64. [PMID: 18975720 DOI: 10.1118/1.2989989] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Rotational angiography (RA) gantries are used routinely to acquire sequences of projection images of patients from which 3D renderings of vascular structures are generated using Feldkamp cone-beam reconstruction algorithms. However, these systems have limited resolution (<4 lp/mm). Micro-computed tomography (micro-CT) systems have better resolution (>10 lp/mm) but to date have relied either on rotating object imaging or small bore geometry for small animal imaging, and thus are not used for clinical imaging. The authors report here the development and use of a 3D rotational micro-angiography (RMA) system created by mounting a micro-angiographic fluoroscope (MAF) [35 microm pixel, resolution >10 microp/mm, field of view (FOV)=3.6 cm] on a standard clinical FPD-based RA gantry (Infinix, Model RTP12303J-G9E, Toshiba Medical Systems Corp., Tustin, CA). RA image sequences are obtained using the MAF and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to MAF acquisition) full-FOV (FFOV) FPD RA sequences (194 microm pixel, FOV=20 cm) were also obtained to complete the missing data. The RA gantry was calibrated using a helical bead phantom. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF were aligned spatially with the lower-dose FPD images, and the pixel values in the FPD image data were scaled to match those of the MAF. Images of a rabbit with a coronary stent placed in an artery in the Circle of Willis were obtained and reconstructed. The MAF images appear well aligned with the FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97, respectively) Greater details without any visible truncation artifacts are seen in 3D RMA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 microm diameter) are approximately 192+/-21 and 313+/-38 microm for the 3D RMA and FPD data, respectively. In addition, for the dual-acquisition 3D RMA, FFOV FPD data need not be of the highest quality, and thus may be acquired at lower dose compared to a standard FPD acquisition. These results indicate that this system could provide the basis for high resolution images of regions of interest in patients with a reduction in the integral dose compared to the standard FPD approach.
Collapse
|
46
|
Kyriakou Y, Lapp RM, Hillebrand L, Ertel D, Kalender WA. Simultaneous misalignment correction for approximate circular cone-beam computed tomography. Phys Med Biol 2008; 53:6267-89. [PMID: 18936522 DOI: 10.1088/0031-9155/53/22/001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Currently, CT scanning is often performed using flat detectors which are mounted on C-arm units or dedicated gantries as in radiation therapy or micro CT. For perspective cone-beam backprojection of the Feldkamp type (FDK) the geometry of an approximately circular scan trajectory has to be available for reconstruction. If the system or the scan geometry is afflicted with geometrical instabilities, referred to as misalignment, a non-perfect approximate circular scan is the case. Reconstructing a misaligned scan without knowledge of the true trajectory results in severe artefacts in the CT images. Unlike current methods which use a pre-scan calibration of the geometry for defined scan protocols and calibration phantoms, we propose a real-time iterative restoration of reconstruction geometry by means of entropy minimization. Entropy minimization is performed combining a simplex algorithm for multi-parameter optimization and iterative graphics card (GPU)-based FDK-reconstructions. Images reconstructed with the misaligned geometry were used as an input for the entropy minimization algorithm. A simplex algorithm changes the geometrical parameters of the source and detector with respect to the reduction of entropy. In order to reduce the size of the high-dimensional space required for minimization, the trajectory was described by only eight fix points. A virtual trajectory is generated for each iteration using a least-mean-squares algorithm to calculate an approximately circular path including these points. Entropy was minimal for the ideal dataset, whereas strong misalignment resulted in a higher entropy value. For the datasets used in this study, the simplex algorithm required 64-200 iterations to achieve an entropy value equivalent to the ideal dataset, depending on the grade of misalignment using random initialization conditions. The use of the GPU reduced the time per iteration as compared to a quad core CPU-based backprojection by a factor of 10 resulting in a total of 15-20 ms per iteration, and thus providing an online geometry restoration after a total computation time of approximately 1-3 s, depending on the number of iterations. The proposed method provides accurate geometry restoration for approximately circular scans and eliminates the need for an elaborate off-line calibration for each scan. If a priori information about the trajectory is used to initialize the simplex algorithm, it is expected that the entropy minimization will converge significantly faster.
Collapse
Affiliation(s)
- Y Kyriakou
- Institute of Medical Physics, University of Erlangen-Nuremberg, Germany
| | | | | | | | | |
Collapse
|
47
|
Pan X, Siewerdsen J, La Riviere PJ, Kalender WA. Anniversary paper. Development of x-ray computed tomography: the role of medical physics and AAPM from the 1970s to present. Med Phys 2008; 35:3728-39. [PMID: 18777932 PMCID: PMC3910137 DOI: 10.1118/1.2952653] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 01/17/2023] Open
Abstract
The AAPM, through its members, meetings, and its flagship journal Medical Physics, has played an important role in the development and growth of x-ray tomography in the last 50 years. From a spate of early articles in the 1970s characterizing the first commercial computed tomography (CT) scanners through the "slice wars" of the 1990s and 2000s, the history of CT and related techniques such as tomosynthesis can readily be traced through the pages of Medical Physics and the annals of the AAPM and RSNA/AAPM Annual Meetings. In this article, the authors intend to give a brief review of the role of Medical Physics and the AAPM in CT and tomosynthesis imaging over the last few decades.
Collapse
Affiliation(s)
- Xiaochuan Pan
- Department of Radiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
48
|
Daly MJ, Siewerdsen JH, Cho YB, Jaffray DA, Irish JC. Geometric calibration of a mobile C-arm for intraoperative cone-beam CT. Med Phys 2008; 35:2124-36. [PMID: 18561688 DOI: 10.1118/1.2907563] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A geometric calibration method that determines a complete description of source-detector geometry was adapted to a mobile C-arm for cone-beam computed tomography (CBCT). The non-iterative calibration algorithm calculates a unique solution for the positions of the source (X(s), Y(s), Z(s)), detector (X(d), Y(d), Z(d)), piercing point (U(o), V(o)), and detector rotation angles (phi, theta, eta) based on projections of a phantom consisting of two plane-parallel circles of ball bearings encased in a cylindrical acrylic tube. The prototype C-arm system was based on a Siemens PowerMobil modified to provide flat-panel CBCT for image-guided interventions. The magnitude of geometric nonidealities in the source-detector orbit was measured, and the short-term (approximately 4 h) and long-term (approximately 6 months) reproducibility of the calibration was evaluated. The C-arm exhibits large geometric nonidealities due to mechanical flex, with maximum departures from the average semicircular orbit of deltaU(o) = 15.8 mm and deltaV(o) = 9.8 mm (for the piercing point), deltaX and deltaY = 6-8 mm and deltaZ = 1 mm (for the source and detector), and deltaphi approximately 2.9 degrees, deltatheta approximately 1.9 degrees, and delta eta approximately 0.8 degrees (for the detector tilt/rotation). Despite such significant departures from a semicircular orbit, these system parameters were found to be reproducible, and therefore correctable by geometric calibration. Short-term reproducibility was < 0.16 mm (subpixel) for the piercing point coordinates, < 0.25 mm for the source-detector X and Y, < 0.035 mm for the source-detector Z, and < 0.02 degrees for the detector angles. Long-term reproducibility was similarly high, demonstrated by image quality and spatial resolution measurements over a period of 6 months. For example, the full-width at half-maximum (FWHM) in axial images of a thin steel wire increased slightly as a function of the time (delta) between calibration and image acquisition: FWHM=0.62, 0.63, 0.66, 0.71, and 0.72 mm at delta = 0 s, 1 h, 1 day, 1 month, and 6 months, respectively. For ongoing clinical trials in CBCT-guided surgery at our institution, geometric calibration is conducted monthly to provide sufficient three-dimensional (3D) image quality while managing time and workflow considerations of the calibration and quality assurance process. The sensitivity of 3D image quality to each of the system parameters was investigated, as was the tolerance to systematic and random errors in the geometric parameters, showing the most sensitive parameters to be the piercing point coordinates (U(o), V(o)) and in-plane positions of the source (X(s), Y(s)) and detector (X(d), Y(d)). Errors in the out-of-plane position of the source (Z(s)) and detector (Z(d)) and the detector angles (phi, theta, eta) were shown to have subtler effects on 3D image quality.
Collapse
Affiliation(s)
- M J Daly
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
49
|
Johnston SM, Johnson GA, Badea CT. Geometric calibration for a dual tube/detector micro-CT system. Med Phys 2008; 35:1820-9. [PMID: 18561657 DOI: 10.1118/1.2900000] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The authors describe a dual tube/detector micro-computed tomography (micro-CT) system that has the potential to improve temporal resolution and material contrast in small animal imaging studies. To realize this potential, it is necessary to precisely calibrate the geometry of a dual micro-CT system to allow the combination of projection data acquired with each individual tube/detector in a single reconstructed image. The authors present a geometric calibration technique that uses multiple projection images acquired with the two imaging chains while rotating a phantom containing a vertical array of regularly spaced metallic beads. The individual geometries of the imaging chains are estimated from the phantom projection images using analytical methods followed by a refinement procedure based on nonlinear optimization. The geometric parameters are used to create the cone beam projection matrices required by the reconstruction process for each imaging chain. Next, a transformation between the two projection matrices is found that allows the combination of projection data in a single reconstructed image. The authors describe this technique, test it with a series of computer simulations, and then apply it to data collected from their dual tube/detector micro-CT system. The results demonstrate that the proposed technique is accurate, robust, and produces images free of misalignment artifacts.
Collapse
Affiliation(s)
- Samuel M Johnston
- Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
50
|
Mao W, Lee L, Xing L. Development of a QA phantom and automated analysis tool for geometric quality assurance of on-board MV and kV x-ray imaging systems. Med Phys 2008; 35:1497-506. [PMID: 18491545 DOI: 10.1118/1.2885719] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The medical linear accelerator (linac) integrated with a kilovoltage (kV) flat-panel imager has been emerging as an important piece of equipment for image-guided radiation therapy. Due to the sagging of the linac head and the flexing of the robotic arms that mount the x-ray tube and flat-panel detector, geometric nonidealities generally exist in the imaging geometry no matter whether it is for the two-dimensional projection image or three-dimensional cone-beam computed tomography. Normally, the geometric parameters are established during the commissioning and incorporated in correction software in respective image formation or reconstruction. A prudent use of an on-board imaging system necessitates a routine surveillance of the geometric accuracy of the system like the position of the x-ray source, imager position and orientation, isocenter, rotation trajectory, and source-to-imager distance. Here we describe a purposely built phantom and a data analysis software for monitoring these important parameters of the system in an efficient and automated way. The developed tool works equally well for the megavoltage (MV) electronic portal imaging device and hence allows us to measure the coincidence of the isocenters of the MV and kV beams of the linac. This QA tool can detect an angular uncertainty of 0.1 degrees of the x-ray source. For spatial uncertainties, such as the source position, the imager position, or the kV/MV isocenter misalignment, the demonstrated accuracy of this tool was better than 1.6 mm. The developed tool provides us with a simple, robust, and objective way to probe and monitor the geometric status of an imaging system in a fully automatic process and facilitate routine QA workflow in a clinic.
Collapse
Affiliation(s)
- Weihua Mao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|