1
|
Naessig M, Hernandez S, Astorga NR, McCulloch J, Saenz D, Myers P, Rasmussen K, Stathakis S, Ha CS, Papanikolaou N, Ford J, Kirby N. A customizable aluminum compensator system for total body irradiation. J Appl Clin Med Phys 2021; 22:36-44. [PMID: 34432944 PMCID: PMC8504611 DOI: 10.1002/acm2.13393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose To develop a simplified aluminum compensator system for total body irradiation (TBI) that is easy to assemble and modify in a short period of time for customized patient treatments. Methods The compensator is composed of a combination of 0.3 cm thick aluminum bars, two aluminum T‐tracks, spacers, and metal bolts. The system is mounted onto a plexiglass block tray. The design consists of 11 fixed sectors spanning from the patient's head to feet. The outermost sectors utilize 7.6 cm wide aluminum bars, while the remaining sectors use 2.5 cm wide aluminum bars. There is a magnification factor of 5 from the compensator to the patient treatment plane. Each bar of aluminum is interconnected at each adjacent sector with a tongue and groove arrangement and fastened to the T‐track using a metal washer, bolt, and nut. Inter‐bar leakage of the compensator was tested using a water tank and diode. End‐to‐end measurements were performed with an ion chamber in a solid water phantom and also with a RANDO phantom using internal and external optically stimulated luminescent detectors (OSLDs). In‐vivo patient measurements from the first 20 patients treated with this aluminum compensator were compared to those from 20 patients treated with our previously used lead compensator system. Results The compensator assembly time was reduced to 20–30 min compared to the 2–4 h it would take with the previous lead design. All end‐to‐end measurements were within 10% of that expected. The median absolute in‐vivo error for the aluminum compensator was 3.7%, with 93.8% of measurements being within 10% of that expected. The median error for the lead compensator system was 5.3%, with 85.1% being within 10% of that expected. Conclusion This design has become the standard compensator at our clinic. It allows for quick assembly and customization along with meeting the Task Group 29 recommendations for dose uniformity.
Collapse
Affiliation(s)
- Madison Naessig
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Nuclear Engineering, Texas A&M University, College Station, Texas, USA
| | - Soleil Hernandez
- Department of Nuclear Engineering, Texas A&M University, College Station, Texas, USA
| | - Nestor Rodrigo Astorga
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - James McCulloch
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daniel Saenz
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Pamela Myers
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Karl Rasmussen
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Chul S Ha
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - John Ford
- Department of Nuclear Engineering, Texas A&M University, College Station, Texas, USA
| | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Sabloff M, Tisseverasinghe S, Babadagli ME, Samant R. Total Body Irradiation for Hematopoietic Stem Cell Transplantation: What Can We Agree on? ACTA ACUST UNITED AC 2021; 28:903-917. [PMID: 33617507 PMCID: PMC7985756 DOI: 10.3390/curroncol28010089] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/23/2023]
Abstract
Total body irradiation (TBI), used as part of the conditioning regimen prior to allogeneic and autologous hematopoietic cell transplantation, is the delivery of a relatively homogeneous dose of radiation to the entire body. TBI has a dual role, being cytotoxic and immunosuppressive. This allows it to eliminate disease and create “space” in the marrow while also impairing the immune system from rejecting the foreign donor cells being transplanted. Advantages that TBI may have over chemotherapy alone are that it may achieve greater tumour cytotoxicity and better tissue penetration than chemotherapy as its delivery is independent of vascular supply and physiologic barriers such as renal and hepatic function. Therefore, the so-called “sanctuary” sites such as the central nervous system (CNS), testes, and orbits or other sites with limited blood supply are not off-limits to radiation. Nevertheless, TBI is hampered by challenging logistics of administration, coordination between hematology and radiation oncology departments, increased rates of acute treatment-related morbidity and mortality along with late toxicity to other tissues. Newer technologies and a better understanding of the biology and physics of TBI has allowed the field to develop novel delivery systems which may help to deliver radiation more safely while maintaining its efficacy. However, continued research and collaboration are needed to determine the best approaches for the use of TBI in the future.
Collapse
Affiliation(s)
- Mitchell Sabloff
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - Mustafa Ege Babadagli
- Division of Radiation Oncology, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada;
- Correspondence:
| | - Rajiv Samant
- Division of Radiation Oncology, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada;
| |
Collapse
|
3
|
Losert C, Shpani R, Kießling R, Freislederer P, Li M, Walter F, Niyazi M, Reiner M, Belka C, Corradini S. Novel rotatable tabletop for total-body irradiation using a linac-based VMAT technique. Radiat Oncol 2019; 14:244. [PMID: 31888680 PMCID: PMC6937701 DOI: 10.1186/s13014-019-1445-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/12/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Volumetric Modulated Arc Therapy (VMAT) techniques have recently been implemented in clinical practice for total-body irradiation (TBI). To date, most techniques still use special couches, translational tables, or other self-made immobilization devices for dose delivery. Aim of the present study was to report the first results of a newly developed rotatable tabletop designed for VMAT-TBI. METHODS The VMAT-TBI technique theoretically allows the use of any standard positioning device at the linear accelerator. Nevertheless, the main problem is that patients taller than 120 cm cannot be treated in one position due to the limited cranial-caudal couch shift capacities of the linac. Therefore, patients are usually turned from a head-first supine position (HFS) to a feet-first supine position (FFS) to overcome this limitation. The newly developed rotatable tabletop consists completely of carbon fiber, including the ball bearing within the base plate of the rotation unit. The patient can be turned 180° from a HFS to a FFS position within a few seconds, without the need of repositioning. RESULTS The first 20 patients had a median age of 47 years, and received TBI before bone marrow transplantation for acute myeloid leukemia. Most patients (13/20) received a TBI dose of 4 Gy in 2 fractions, twice daily. The mean number of applied monitor units (MU) was 6476 MU using a multi-arcs and multi-isocenter VMAT-TBI technique. The tabletop has been successfully used in daily clinical practice and helped to keep the treatment times at an acceptable level. During the first treatment fraction, the mean overall treatment time (OTT) was 57 min. Since no additional image guidance was used in fraction 2 of the same day, the OTT was reduced to mean 38 min. CONCLUSIONS The easy and reproducible rotation of the patient on the treatment couch using the rotatable tabletop, is time-efficient and overcomes the need of repositioning the patient after turning from a HFS to a FFS position during VMAT TBI. Furthermore, it prevents couch-gantry collisions, incorrect isocenter shifts and beam mix-up due to predicted absolute table coordinates, which are recorded to the R + V system with the corresponding beams.
Collapse
Affiliation(s)
- Christoph Losert
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Roel Shpani
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Robert Kießling
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Philipp Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|