1
|
Dewey JB. Cubic and quadratic distortion products in vibrations of the mouse cochlear apex. JASA EXPRESS LETTERS 2022; 2:114402. [PMID: 36456371 PMCID: PMC9704500 DOI: 10.1121/10.0015244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
When the ear is stimulated by two tones presented at frequencies f1 and f2, nonlinearity in the cochlea's vibratory response leads to the generation of distortion products (DPs), with the cubic 2f1-f2 DP commonly viewed as the most prominent. While the quadratic f2-f1 DP is also evident in numerous physiological and perceptual studies, its presence in the cochlea's mechanical response has been less well documented. Here, examination of vibratory DPs within the mouse cochlea confirmed that f2-f1 was a significant and sometimes dominant component, whether DPs were measured near their generation site, or after having propagated from more basal locations.
Collapse
Affiliation(s)
- James B Dewey
- Caruso Department of Otolaryngology-Head & Neck Surgery, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
2
|
Burwood G, He WX, Fridberger A, Ren TY, Nuttall AL. Outer hair cell driven reticular lamina mechanical distortion in living cochleae. Hear Res 2022; 423:108405. [PMID: 34916081 PMCID: PMC9170269 DOI: 10.1016/j.heares.2021.108405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Cochlear distortions afford researchers and clinicians a glimpse into the conditions and properties of inner ear signal processing mechanisms. Until recently, our examination of these distortions has been limited to measuring the vibration of the basilar membrane or recording acoustic distortion output in the ear canal. Despite its importance, the generation mechanism of cochlear distortion remains a substantial task to understand. The ability to measure the vibration of the reticular lamina in rodent models is a recent experimental advance. Surprising mechanical properties have been revealed. These properties merit both discussion in context with our current understanding of distortion, and appraisal of the significance of new interpretations of cochlear mechanics. This review focusses on some of the recent data from our research groups and discusses the implications of these data on our understanding of vocalization processing in the periphery, and their influence upon future experimental directions. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- G Burwood
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - W X He
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - A Fridberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - T Y Ren
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - A L Nuttall
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States.
| |
Collapse
|
3
|
Sadreev II, Burwood GWS, Flaherty SM, Kim J, Russell IJ, Abdullin TI, Lukashkin AN. Drug Diffusion Along an Intact Mammalian Cochlea. Front Cell Neurosci 2019; 13:161. [PMID: 31080407 PMCID: PMC6497751 DOI: 10.3389/fncel.2019.00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
Intratympanic drug administration depends on the ability of drugs to pass through the round window membrane (RW) at the base of the cochlea and diffuse from this location to the apex. While the RW permeability for many different drugs can be promoted, passive diffusion along the narrowing spiral of the cochlea is limited. Earlier measurements of the distribution of marker ions, corticosteroids, and antibiotics demonstrated that the concentration of substances applied to the RW was two to three orders of magnitude higher in the base compared to the apex. The measurements, however, involved perforating the cochlear bony wall and, in some cases, sampling perilymph. These manipulations can change the flow rate of perilymph and lead to intake of perilymph through the cochlear aqueduct, thereby disguising concentration gradients of the delivered substances. In this study, the suppressive effect of salicylate on cochlear amplification via block of the outer hair cell (OHC) somatic motility was utilized to assess salicylate diffusion along an intact guinea pig cochlea in vivo. Salicylate solution was applied to the RW and threshold elevation of auditory nerve responses was measured at different times and frequencies after application. Resultant concentrations of salicylate along the cochlea were calculated by fitting the experimental data using a mathematical model of the diffusion and clearing of salicylate in a tube of variable diameter combined with a model describing salicylate action on cochlear amplification. Concentrations reach a steady-state at different times for different cochlear locations and it takes longer to reach the steady-state at more apical locations. Even at the steady-state, the predicted concentration at the apex is negligible. Model predictions for the geometry of the longer human cochlea show even higher differences in the steady-state concentrations of the drugs between cochlear base and apex. Our findings confirm conclusions that achieving therapeutic drug concentrations throughout the entire cochlear duct is hardly possible when the drugs are applied to the RW and are distributed via passive diffusion. Assisted methods of drug delivery are needed to reach a more uniform distribution of drugs along the cochlea.
Collapse
Affiliation(s)
- Ildar I Sadreev
- Department of Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | - George W S Burwood
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Samuel M Flaherty
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Jongrae Kim
- School of Mechanical Engineering, Institute of Design, Robotics and Optimisation, Aerospace Systems Engineering, University of Leeds, Leeds, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Timur I Abdullin
- Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
4
|
A Gain-of-Function Mutation in the α9 Nicotinic Acetylcholine Receptor Alters Medial Olivocochlear Efferent Short-Term Synaptic Plasticity. J Neurosci 2018; 38:3939-3954. [PMID: 29572431 DOI: 10.1523/jneurosci.2528-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
Gain control of the auditory system operates at multiple levels. Cholinergic medial olivocochlear (MOC) fibers originate in the brainstem and make synaptic contacts at the base of the outer hair cells (OHCs), the final targets of several feedback loops from the periphery and higher-processing centers. Efferent activation inhibits OHC active amplification within the mammalian cochlea, through the activation of a calcium-permeable α9α10 ionotropic cholinergic nicotinic receptor (nAChR), functionally coupled to calcium activated SK2 potassium channels. Correct operation of this feedback requires careful matching of acoustic input with the strength of cochlear inhibition (Galambos, 1956; Wiederhold and Kiang, 1970; Gifford and Guinan, 1987), which is driven by the rate of MOC activity and short-term facilitation at the MOC-OHC synapse (Ballestero et al., 2011; Katz and Elgoyhen, 2014). The present work shows (in mice of either sex) that a mutation in the α9α10 nAChR with increased duration of channel gating (Taranda et al., 2009) greatly elongates hair cell-evoked IPSCs and Ca2+ signals. Interestingly, MOC-OHC synapses of L9'T mice presented reduced quantum content and increased presynaptic facilitation. These phenotypic changes lead to enhanced and sustained synaptic responses and OHC hyperpolarization upon high-frequency stimulation of MOC terminals. At the cochlear physiology level these changes were matched by a longer time course of efferent MOC suppression. This indicates that the properties of the MOC-OHC synapse directly determine the efficacy of the MOC feedback to the cochlea being a main player in the "gain control" of the auditory periphery.SIGNIFICANCE STATEMENT Plasticity can involve reciprocal signaling across chemical synapses. An opportunity to study this phenomenon occurs in the mammalian cochlea whose sensitivity is regulated by efferent olivocochlear neurons. These release acetylcholine to inhibit sensory hair cells. A point mutation in the hair cell's acetylcholine receptor that leads to increased gating of the receptor greatly elongates IPSCs. Interestingly, efferent terminals from mutant mice present a reduced resting release probability. However, upon high-frequency stimulation transmitter release facilitates strongly to produce stronger and far longer-lasting inhibition of cochlear function. Thus, central neuronal feedback on cochlear hair cells provides an opportunity to define plasticity mechanisms in cholinergic synapses other than the highly studied neuromuscular junction.
Collapse
|
5
|
A Comparison of Distortion Product Otoacoustic Emission Properties in Ménière’s Disease Patients and Normal-Hearing Participants. Ear Hear 2018; 39:42-47. [DOI: 10.1097/aud.0000000000000461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Burwood GWS, Russell IJ, Lukashkin AN. Rippling pattern of distortion product otoacoustic emissions evoked by high-frequency primaries in guinea pigs. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:855. [PMID: 28863551 DOI: 10.1121/1.4998584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The origin of ripples in distortion product otoacoustic emission (DPOAE) amplitude which appear at specific DPOAE frequencies during f1 tone sweeps using fixed high frequency f2 (>20 kHz) in guinea pigs is investigated. The peaks of the ripples, or local DPOAE amplitude maxima, are separated by approximately half octave intervals and are accompanied by phase oscillations. The local maxima appear at the same frequencies in DPOAEs of different order and velocity responses of the stapes and do not shift with increasing levels of the primaries. A suppressor tone had little effect on the frequencies of the maxima, but partially suppressed DPOAE amplitude when it was placed close to the f2 frequencies. These findings agree with earlier observations that the maxima occur at the same DPOAE frequencies, which are independent of the f2 and the primary ratio, and thus are likely to be associated with DPOAE propagation mechanisms. Furthermore, the separation of the local maxima by approximately half an octave may suggest that the maxima are due to interference of the travelling waves along the basilar membrane at the frequency of the DPOAE. It is suggested that the rippling pattern appears because of interaction between DPOAE reverse travelling waves with standing waves formed in the cochlea.
Collapse
Affiliation(s)
- George W S Burwood
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
7
|
Dong W. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil. J Assoc Res Otolaryngol 2016; 18:209-225. [PMID: 27909837 DOI: 10.1007/s10162-016-0602-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
Sound energy propagates in the cochlea through a forward-traveling or slow wave supported by the cochlear partition and fluid inertia. Additionally, cochlear models support traveling wave propagation in the reverse direction as the expected mechanism for conveying otoacoustic emissions out of the cochlea. Recently, however, this hypothesis has been questioned, casting doubt on the process by which otoacoustic emissions travel back out through the cochlea. The proposed alternative reverse travel path for emissions is directly through the fluids of the cochlea as a compression pressure in the form of a fast wave. In the present study, a custom-made micro-pressure sensor was used in vivo in the gerbil cochlea to map two-tone-evoked pressure responses at distinct longitudinal and vertical locations in both the scala tympani and scala vestibuli. Analyses of the magnitude and phase of intracochlear pressure responses at the primary tone and distortion product frequencies were used to distinguish between fast and slow waves in both the forward- and reverse-propagation directions. Results demonstrated that distortion products may travel in both forward and reverse directions post-generation and the existence of both traveling and compression waves. The forward-traveling component appeared to duplicate the process of any external tone, tuned to the local characteristic-frequency place, as it increased compressively and nonlinearly with primary-tone levels. A compression wave was evidenced at frequencies above the cutoff of the recording site. In the opposite direction, a reverse-traveling wave played the major role in driving the stapes reversely and contributed to the distortion product otoacoustic emission. The compression wave may also play a role in reverse propagation when distortion products are generated at a region close to the stapes.
Collapse
Affiliation(s)
- Wei Dong
- Research Service (151), VA Loma Linda Healthcare System, 11201 Benton St, Loma Linda, CA, 92357, USA. .,Department of Otolaryngology--Head & Neck Surgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
8
|
Comparison of distortion product otoacoustic emissions and pure tone audiometry in occupational screening for auditory deficit due to noise exposure. The Journal of Laryngology & Otology 2015; 129:1174-81. [PMID: 26549131 DOI: 10.1017/s0022215115002790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To examine whether distortion product otoacoustic emissions can serve as a replacement for pure tone audiometry in longitudinal screening for occupational noise exposure related auditory deficit. METHODS A retrospective review was conducted of pure tone audiometry and distortion product otoacoustic emission data obtained sequentially during mandatory screening of brickyard workers (n = 16). Individual pure tone audiometry thresholds were compared with distortion product otoacoustic emission amplitudes, and a correlation of these measurements was conducted. RESULTS Pure tone audiometry threshold elevation was identified in 13 out of 16 workers. When distortion product otoacoustic emission amplitudes were compared with pure tone audiometry thresholds at matched frequencies, no evidence of a robust relationship was apparent. Seven out of 16 workers had substantial distortion product otoacoustic emissions with elevated pure tone audiometry thresholds. CONCLUSION No clinically relevant predictive relationship between distortion product otoacoustic emission amplitude and pure tone audiometry threshold was apparent. These results do not support the replacement of pure tone audiometry with distortion product otoacoustic emissions in screening. Distortion product otoacoustic emissions at frequencies associated with elevated pure tone audiometry thresholds are evidence of intact outer hair cell function, suggesting that sites distinct from these contribute to auditory deficit following ototrauma.
Collapse
|
9
|
Influence of ketamine-xylazine anaesthesia on cubic and quadratic high-frequency distortion-product otoacoustic emissions. J Assoc Res Otolaryngol 2014; 15:695-705. [PMID: 25070925 DOI: 10.1007/s10162-014-0470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/28/2014] [Indexed: 01/13/2023] Open
Abstract
Ketamine is a dissociative anaesthetic, analgesic drug as well as an N-methyl-D-aspartate receptor antagonist and has been reported to influence otoacoustic emission amplitudes. In the present study, we assess the effect of ketamine-xylazine on high-frequency distortion-product otoacoustic emissions (DPOAE) in the bat species Carollia perspicillata, which serves as model for sensitive high-frequency hearing. Cubic DPOAE provide information about the nonlinear gain of the cochlear amplifier, whereas quadratic DPOAE are used to assess the symmetry of cochlear amplification and potential efferent influence on the operating state of the cochlear amplifier. During anaesthesia, maximum cubic DPOAE levels can increase by up to 35 dB within a medium stimulus level range from 35 to 60 dB SPL. Close to the -10 dB SPL threshold, at stimulus levels below about 20-30 dB SPL, anaesthesia reduces cubic DPOAE amplitudes and raises cubic DPOAE thresholds. This makes DPOAE growth functions steeper. Additionally, ketamine increases the optimum stimulus frequency ratio which is indicative of a reduction of cochlear tuning sharpness. The effect of ketamine on cubic DPOAE thresholds becomes stronger at higher stimulus frequencies and is highly significant for f2 frequencies above 40 kHz. Quadratic DPOAE levels are increased by up to 25 dB by ketamine at medium stimulus levels. In contrast to cubic DPOAEs, quadratic DPOAE threshold changes are variable and there is no significant loss of sensitivity during anaesthesia. We discuss that ketamine effects could be caused by modulation of middle ear function or a release from ipsilateral efferent modulation that mainly affects the gain of cochlear amplification.
Collapse
|
10
|
Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity. Int J Dev Neurosci 2014; 37:41-51. [PMID: 24911434 DOI: 10.1016/j.ijdevneu.2014.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022] Open
Abstract
Sound is an important part of man's contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97 dB SPL, 2 h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes.
Collapse
|
11
|
Abstract
To enhance weak sounds while compressing the dynamic intensity range, auditory sensory cells amplify sound-induced vibrations in a nonlinear, intensity-dependent manner. In the course of this process, instantaneous waveform distortion is produced, with two conspicuous kinds of interwoven consequences, the introduction of new sound frequencies absent from the original stimuli, which are audible and detectable in the ear canal as otoacoustic emissions, and the possibility for an interfering sound to suppress the response to a probe tone, thereby enhancing contrast among frequency components. We review how the diverse manifestations of auditory nonlinearity originate in the gating principle of their mechanoelectrical transduction channels; how they depend on the coordinated opening of these ion channels ensured by connecting elements; and their links to the dynamic behavior of auditory sensory cells. This paper also reviews how the complex properties of waves traveling through the cochlea shape the manifestations of auditory nonlinearity. Examination methods based on the detection of distortions open noninvasive windows on the modes of activity of mechanosensitive structures in auditory sensory cells and on the distribution of sites of nonlinearity along the cochlear tonotopic axis, helpful for deciphering cochlear molecular physiology in hearing-impaired animal models. Otoacoustic emissions enable fast tests of peripheral sound processing in patients. The study of auditory distortions also contributes to the understanding of the perception of complex sounds.
Collapse
Affiliation(s)
- Paul Avan
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| | - Béla Büki
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| | - Christine Petit
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| |
Collapse
|
12
|
Martin GK, Stagner BB, Lonsbury-Martin BL. Time-domain demonstration of distributed distortion-product otoacoustic emission components. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:342-55. [PMID: 23862812 PMCID: PMC3724727 DOI: 10.1121/1.4809676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 05/23/2023]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) were measured in rabbits as time waveforms by employing a phase-rotation technique to cancel all components in the final average, except the 2f1-f2 DPOAE. Subsequent filtering allowed the DPOAE waveform to be clearly visualized in the time domain. In most conditions, f2 was turned off for 6 ms, which produced a gap so that the DPOAE was no longer generated. These procedures allowed the DPOAE onset as well as the decay during the gap to be observed in the time domain. DPOAEs were collected with L1 = L2 = 65-dB sound pressure level primary-tone levels for f2/f1 ratios from 1.25 to 1.01 in 0.02 steps. Findings included the appearance of complex onsets and decays for the DPOAE time waveforms as the f2/f1 ratio was decreased and the DPOAE level was reduced. These complexities were unaffected by interference tones (ITs) near the DPOAE frequency place (fdp), but could be removed by ITs presented above f2, which also increased DPOAE levels. Similar outcomes were observed when DPOAEs were measured at a sharp notch in the DPOAE level as a function of the f2 primary tone frequency, i.e., DP-gram. Both findings were consistent with the hypothesis that the DPOAE-ratio function, and some notches in the DP-gram, are caused by interactions of distributed DPOAE components with unique phases.
Collapse
Affiliation(s)
- Glen K Martin
- Research Service, Veterans Administration Loma Linda Healthcare System and Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Health, 11201 Benton Street, Loma Linda, California 92357, USA.
| | | | | |
Collapse
|
13
|
Möckel D, Kössl M, Lang J, Nowotny M. Temperature dependence of distortion-product otoacoustic emissions in tympanal organs of locusts. J Exp Biol 2012; 215:3309-16. [DOI: 10.1242/jeb.074377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Distortion-product otoacoustic emissions (DPOAEs) in tympanal organs of insects are vulnerable to manipulations that interfere with the animal's physiological state. Starting at a medium temperature, we raised and lowered the locust's body temperature within the range of 12 to 35°C by changing the temperature of the surrounding air, while recording DPOAEs. These experimental manipulations resulted in reversible amplitude changes of the 2f1–f2 emission, which were dependent on stimulus frequency and level. Using low f2 frequencies of up to 10 kHz, a temperature increase (median +8–9°C) led to an upward shift of DPOAE amplitudes of approximately +10 dB, whereas a temperature decrease (median −7°C) was followed by a reduction of DPOAE amplitudes by 3 to 5 dB. Both effects were only present in the range of the low-level component of DPOAE growth functions below L2 levels (levels of the f2 stimulus) of approximately 30 dB SPL. DPOAEs evoked by higher stimulus levels as well as measurements using higher stimulation frequencies above 10 kHz remained unaffected by any temperature shifts. The Arrhenius activation energy was calculated from the −10 dB SPL thresholds (representing the low-level component) of growth functions, which had been measured with 8 and 10 kHz as f2 frequencies and amounted to up to ~34 and 41 kJ mol−1, respectively. Such activation energy values provide a hint that the dynein-tubulin system within the scolopidial receptors could play an essential part in the DPOAE generation in tympanal organs.
Collapse
Affiliation(s)
- Doreen Möckel
- Institut für Zellbiologie und Neurowissenschaft, J. W. Goethe-Universität, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, J. W. Goethe-Universität, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Julian Lang
- Institut für Zellbiologie und Neurowissenschaft, J. W. Goethe-Universität, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Manuela Nowotny
- Institut für Zellbiologie und Neurowissenschaft, J. W. Goethe-Universität, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Xia A, Gao SS, Yuan T, Osborn A, Bress A, Pfister M, Maricich SM, Pereira FA, Oghalai JS. Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation. Dis Model Mech 2010; 3:209-23. [PMID: 20142329 DOI: 10.1242/dmm.004135] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most forms of hearing loss are associated with loss of cochlear outer hair cells (OHCs). OHCs require the tectorial membrane (TM) for stereociliary bundle stimulation (forward transduction) and active feedback (reverse transduction). Alpha tectorin is a protein constituent of the TM and the C1509G mutation in alpha tectorin in humans results in autosomal dominant hearing loss. We engineered and validated this mutation in mice and found that the TM was shortened in heterozygous Tecta(C1509G/+) mice, reaching only the first row of OHCs. Thus, deficient forward transduction renders OHCs within the second and third rows non-functional, producing partial hearing loss. Surprisingly, both Tecta(C1509G/+) and Tecta(C1509G/C1509G) mice were found to have increased reverse transduction as assessed by sound- and electrically-evoked otoacoustic emissions. We show that an increase in prestin, a protein necessary for electromotility, in all three rows of OHCs underlies this phenomenon. This mouse model demonstrates a human hearing loss mutation in which OHC function is altered through a non-cell-autonomous variation in prestin.
Collapse
Affiliation(s)
- Anping Xia
- The Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Extraction of sources of distortion product otoacoustic emissions by onset-decomposition. Hear Res 2009; 256:21-38. [DOI: 10.1016/j.heares.2009.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/22/2022]
|
16
|
Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: a 3-year follow-up study. Hear Res 2009; 251:10-6. [PMID: 19249340 DOI: 10.1016/j.heares.2009.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/27/2009] [Accepted: 02/11/2009] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Distortion product otoacoustic emissions (DPOAEs) are known to represent the contractile amplifier function of cochlear outer hair cells. It is known that low or absent DPOAEs are associated with hearing loss on audiograms. However, low DPOAEs can also be found associated with normal audiograms. It is unknown whether low DPOAEs in normal hearing ears are risk markers for subsequent early hearing loss when subjects are exposed to noise. MATERIALS AND METHODS A 3-year follow-up study was carried out on a population of pilots aged 20-40 years (n=521). Data collection consisted of tonal audiograms, DPOAEs measurements with a calculation of an index of abnormality (the IaDPOAE). Of the 521 pilots enrolled, 350 (67%) had follow-up data 3 years later. In pilots with normal audiograms (n=219, all frequencies=10dB HL), we observed the occurrence of hearing threshold shifts after 3 years depending on whether the IaDPOAE was initially high (group 1) or low (group 2). We used this index to test the hypothesis that reduced DPOAEs levels are potential ear vulnerability biomarkers in apparent normal hearing ears. After a 3-year follow-up, the initial IaDPOAE in normal hearing subjects was correlated with final noise-induced hearing threshold shifts at high frequencies (p<0.01). The occurrence of abnormal audiograms was significantly higher in group 1 compared to group 2 (p=0.003). In group 1, 13% of audiograms were found with at least one frequency 25dB HL compared to 3% of audiograms in group 2. In both groups, impairments occurred at high frequencies and hearing in the 4kHz frequency range was significantly more impaired in group 1 (p=0.035). Group 1 was associated with a relative risk of 2.29 (95% CI 1.26-4.16, p=0.005) of sustaining early hearing loss. There was no significant differences between groups for age and noise exposure. DISCUSSION In adults with a normal audiogram, ear vulnerability to noise could be elicited by the use of objective DPOAE measurements. A high IaDPOAE that corresponded to reduced DPOAE levels constitutes a risk for early hearing loss. This study emphasised the interest of DPOAE measurements in public health and occupational noise prevention policies. The IaDPOAE calculation may also be interesting for clinicians because no DPOAE index of abnormality is currently available.
Collapse
|
17
|
Fahey PF, Stagner BB, Martin GK. Source of level dependent minima in rabbit distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:3694-707. [PMID: 19206797 PMCID: PMC2737247 DOI: 10.1121/1.3003078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sharp level dependent minima (commonly called nulls or notches) in the distortion product otoacoustic emissions (DPOAEs) have been postulated to be due to two different mechanisms. It is shown here that the level dependent nulls in rabbit 2f(1)-f(2) DPOAEs carry the signature of the mixing of a third order nonlinear term with a fifth order nonlinear term. This suggests that the minima are not due to the mixing of signals from two different physical sites of origin, but rather are due to the nature of the nonlinearity itself. Model simulations show that null production is indifferent to several properties of nonlinear input/output functions.
Collapse
Affiliation(s)
- P F Fahey
- Department of Physics/EE, University of Scranton, Scranton, Pennsylvania 18510, USA.
| | | | | |
Collapse
|
18
|
Wittekindt A, Gaese BH, Kössl M. Influence of contralateral acoustic stimulation on the quadratic distortion product f2-f1 in humans. Hear Res 2008; 247:27-33. [PMID: 18951964 DOI: 10.1016/j.heares.2008.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/17/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Contralateral acoustic stimulation is known to activate the medial olivocochlear system which is capable of modulating the amplification process in the outer hair cells of the inner ear. We investigated the influence of different levels of contralateral broadband noise on distortion product otoacoustic emissions in humans, with a particular focus on the quadratic distortion product at f2-f1. The primary stimulus frequency ratio was optimized to yield maximum f2-f1 level. While the cubic distortion product at 2f1-f2 was not significantly affected during contralateral noise stimulation, the level of f2-f1 was reduced by up to 4.8dB on average (maximum: 10.1dB), with significant suppression occurring for noise levels as low as 40dB SPL. In addition, a significant phase lead was observed. Quadratic distortions are minimal at a symmetrical position of the transfer function of the cochlear amplifier. The observed sensitivity of f2-f1 to contralateral noise stimulation could hence be resulting from a shift of the operating state and/or a change in the gain of the cochlear amplification due to contralateral induced efferent modulation of the outer hair cell properties.
Collapse
Affiliation(s)
- Anna Wittekindt
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Siesmayerstrasse 70A, D-60323 Frankfurt/Main, Germany
| | | | | |
Collapse
|
19
|
Johannesen PT, Lopez-Poveda EA. Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:2149-2163. [PMID: 19062855 DOI: 10.1121/1.2968692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim was to investigate the correlation between compression exponent, compression threshold, and cochlear gain for normal-hearing subjects as inferred from temporal masking curves (TMCs) and distortion-product otoacoustic emission (DPOAEs) input-output (I/O) curves. Care was given to reduce the influence of DPOAE fine structure on the DPOAE I/O curves. A high correlation between compression exponent estimates obtained with the two methods was found at 4 kHz but not at 0.5 and 1 kHz. One reason is that the DPOAE I/O curves show plateaus or notches that result in unexpectedly high compression estimates. Moderately high correlation was found between compression threshold estimates obtained with the two methods, although DPOAE-based values were around 7 dB lower than those based on TMCs. Both methods show that compression exponent and threshold are approximately constant across the frequency range from 0.5 to 4 kHz. Cochlear gain as estimated from TMCs was found to be approximately 16 dB greater at 4 than at 0.5 kHz. In conclusion, DPOAEs and TMCs may be used interchangeably to infer precise individual nonlinear cochlear characteristics at 4 kHz, but it remains unclear that the same applies to lower frequencies.
Collapse
Affiliation(s)
- Peter T Johannesen
- Unidad de Audicion Computacional y Psicoacustica, Instituto de Neurociencias de Castilla y Leon, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
20
|
Martin GK, Stagner BB, Lonsbury-Martin BL. Assessment of cochlear function in mice: distortion-product otoacoustic emissions. ACTA ACUST UNITED AC 2008; Chapter 8:Unit8.21C. [PMID: 18428646 DOI: 10.1002/0471142301.ns0821cs34] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) can be measured in the ear canal following the presentation of two tones. These emissions are generated by the outer hair cells (OHCs) of the inner ear and they are reduced or absent when the OHCs are damaged by, for example, exposure to excessive noise or ototoxic drugs. Consequently, DPOAEs provide a powerful and noninvasive means to assess the robustness of OHC function. A detailed method is described for measuring DPOAEs to assess cochlear function in mice. Recommendations are given for the required equipment and instructions are presented for setting up a DPOAE system. Also, a protocol is outlined for measuring DPOAEs in mice and troubleshooting tips are provided. Examples of data analysis procedures following noise exposure in mice are included, as well. These methods are not only applicable to mice, but can be performed using essentially all small laboratory animals.
Collapse
Affiliation(s)
- Glen K Martin
- Jerry Pettis Memorial Veterans Medical Center and Loma Linda University, Loma Linda, California, USA
| | | | | |
Collapse
|
21
|
Kössl M, Möckel D, Weber M, Seyfarth EA. Otoacoustic emissions from insect ears: evidence of active hearing? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:597-609. [PMID: 18516607 DOI: 10.1007/s00359-008-0344-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 04/23/2008] [Accepted: 05/03/2008] [Indexed: 11/28/2022]
Abstract
Sensitive hearing organs often employ nonlinear mechanical sound processing which generates distortion-product otoacoustic emissions (DPOAE). Such emissions are also recordable from tympanal organs of insects. In vertebrates (including humans), otoacoustic emissions are considered by-products of active sound amplification through specialized sensory receptor cells in the inner ear. Force generated by these cells primarily augments the displacement amplitude of the basilar membrane and thus increases auditory sensitivity. As in vertebrates, the emissions from insect ears are based on nonlinear mechanical properties of the sense organ. Apparently, to achieve maximum sensitivity, convergent evolutionary principles have been realized in the micromechanics of these hearing organs-although vertebrates and insects possess quite different types of receptor cells in their ears. Just as in vertebrates, otoacoustic emissions from insects ears are vulnerable and depend on an intact metabolism, but so far in tympanal organs, it is not clear if auditory nonlinearity is achieved by active motility of the sensory neurons or if passive cellular characteristics cause the nonlinear behavior. In the antennal ears of flies and mosquitoes, however, active vibrations of the flagellum have been demonstrated. Our review concentrates on experiments studying the tympanal organs of grasshoppers and moths; we show that their otoacoustic emissions are produced in a frequency-specific way and can be modified by electrical stimulation of the sensory cells. Even the simple ears of notodontid moths produce distinct emissions, although they have just one auditory neuron. At present it is still uncertain, both in vertebrates and in insects, if the nonlinear amplification so essential for sensitive sound processing is primarily due to motility of the somata of specialized sensory cells or to active movement of their (stereo-)cilia. We anticipate that further experiments with the relatively simple ears of insects will help answer these questions.
Collapse
Affiliation(s)
- Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, J.W. Goethe-Universität, Siesmayerstrasse 70, 60323, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
22
|
Dong W, Olson ES. Supporting evidence for reverse cochlear traveling waves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:222-40. [PMID: 18177153 DOI: 10.1121/1.2816566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As a result of the cochlea's nonlinear mechanics, stimulation by two tones results in the generation of distortion products (DPs) at frequencies flanking the primary tones. DPs are measurable in the ear canal as oto-acoustic emissions, and are used to noninvasively explore cochlear mechanics and diagnose hearing loss. Theories of DP emissions generally include both forward and reverse cochlear traveling waves. However, a recent experiment failed to detect the reverse-traveling wave and concluded that the dominant emission path was directly through the fluid as a compression pressure [Ren, 2004, Nat. Neurosc.7, 333-334]. To explore this further, we measured intracochlear DPs simultaneously with emissions over a wide frequency range, both close to and remote from the basilar membrane. Our results support the existence of the reverse-traveling wave: (1) They show spatial variation in DPs that is at odds with a compression pressure. (2) Although they confirm a forward-traveling character of intraocochlear DPs in a broad frequency region of the best frequency, this behavior does not refute the existence of reverse-traveling waves. (3) Finally, the results show that, in cases in which it can be expected, the DP emission is delayed relative to the DP in a way that supports reverse-traveling-wave theory.
Collapse
Affiliation(s)
- W Dong
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, P & S 11-452, 630 West 168th Street, New York, New York 10032, USA.
| | | |
Collapse
|
23
|
Rhode WS. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:2725-2737. [PMID: 18189565 DOI: 10.1121/1.2785034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) and basilar membrane (BM) vibration were measured simultaneously in the 6-9 kHz region of chinchilla cochleae. BM-Input-Output functions in a two-tone paradigm behaved similarly to DPOAEs for the 2f1-f2 component, nonmonotonic growth with the intensity of the lower frequency primary and a notch in the functions around 60 dB SPL. Ripples in frequency functions occur in both BM and OAE curves as a function of the distortion frequency. Optimum f2/f1 ratios for DPOAE generation are near 1.2. The slope of phase curves indicates that for low f2f1(<1.1) the emission source is the place location while for f2f1>1.1 the relative constancy of the phase function suggests that the place is the nonlinear region of f2, i.e., the wave location. Magnitudes of the DPOAEs increase rapidly above 60 dB SPL suggesting a different source or mechanism at high levels. This is supported by the observation that the high level DPOAE and BM-DP responses remain for a considerable period postmortem.
Collapse
Affiliation(s)
- William S Rhode
- Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
24
|
Mazurek B, Haupt H, Amarjargal N, Yarin YM, Machulik A, Gross J. Up-regulation of prestin mRNA expression in the organs of Corti of guinea pigs and rats following unilateral impulse noise exposure. Hear Res 2007; 231:73-83. [PMID: 17592749 DOI: 10.1016/j.heares.2007.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 12/27/2022]
Abstract
Prestin is the motor protein of the outer hair cells (OHCs) and is required for both their electromotility and for cochlear amplification. We investigated the prestin mRNA expression in guinea pigs and rats in relation to the degree of noise-induced hearing loss (NIHL) induced by unilateral impulse noise exposure (167dB peak SPL) for 2.5-5 min. Distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses were recorded before and one week post exposure. Prestin mRNA was examined by quantitative reverse transcription-polymerase chain reaction. Either the whole organs of Corti or the apical, middle and basal parts were examined separately. The specimens were pooled and grouped according to the degree of NIHL measured in the exposed ears. In rats, the number of hair cells was counted. A clear base-to-apex gradient in the prestin mRNA expression was found to exist in guinea pig and rat controls. In both species, there was an increase in the number of prestin RNA transcripts at a mean NIHL of about 15-25 dB indicating an up-regulation in the remaining intact cells. In rats, this degree of NIHL corresponded to an OHC loss of about 40%. Interestingly, the contralateral ears also revealed an up-regulation of prestin mRNA accompanied by significant DPOAE improvements.
Collapse
Affiliation(s)
- Birgit Mazurek
- Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Department of Otorhinolaryngology, Molecular Biological Research Laboratory, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Kössl M, Coro F, Seyfarth EA, Nässig WA. Otoacoustic emissions from insect ears having just one auditory neuron. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:909-15. [PMID: 17572898 DOI: 10.1007/s00359-007-0244-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 05/14/2007] [Accepted: 05/20/2007] [Indexed: 11/26/2022]
Abstract
Sensitive hearing organs often employ nonlinear mechanical sound processing which produces distortion-product otoacoustic emissions. Such emissions are also recorded from insect tympanal organs. Here we report high frequency distortion-product emissions, evoked by stimulus frequencies up to 95 kHz, from the tympanal organ of a notodontid moth, Ptilodon cucullina, which contains only a single auditory receptor neuron. The 2f1-f2 distortion-product emission reaches sound levels above 40 dB SPL. Most emission growth functions show a prominent notch of 20 dB depth (n = 20 trials), accompanied by an average phase shift of 119 degrees , at stimulus levels between 60 and 70 dB SPL, which separates a low- and a high-level component. The emissions are vulnerable to topical application of ethyl ether which shifts growth functions by about 20 dB towards higher stimulus levels. For the mammalian cochlea, Lukashkin and colleagues have proposed that distinct level-dependent components of nonlinear amplification do not necessarily require interaction of several cellular sources but could be due to a single nonlinear source. In notodontids, such a physiologically vulnerable source could be the single receptor cell. Potential contributions from accessory cells to the nonlinear properties of the scolopidial hearing organ are still unclear.
Collapse
Affiliation(s)
- Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, J.W. Goethe-Universität, Siesmayerstrasse 70, 60323 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
26
|
Sellick PM. Long term effects of BAPTA in scala media on cochlear function. Hear Res 2007; 231:13-22. [PMID: 17509783 DOI: 10.1016/j.heares.2007.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/15/2007] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
BAPTA was iontophoresed or allowed to diffuse into the scala media of the first turn of the guinea pig cochlea via pipettes inserted through the round window and basilar membrane. Cochlear action potential (CAP) thresholds for basal turn frequencies were elevated, scala media cochlear microphonic in response to a 207Hz tone were drastically reduced and the distortion products 2f1-f2 and f2-f2 in response to primaries set at 18 and 21.6kHz were eliminated or severely reduced. The animals were recovered and the above measurements repeated between 24 and 240h after the application of BAPTA. In all animals thresholds for basal turn frequencies remained elevated, and the distortion components were severely reduced. The endolymphatic potential (EP), measured through the basilar membrane on recovery, was not significantly different from the values measured before BAPTA was applied. If the effect of BAPTA, in lowering endolymphatic Ca(2+) concentration, is restricted to the destruction of tip links, as has been shown in many other preparations, then these results suggest that this effect has permanent consequences, either because the tip links failed to regenerate or because their destruction precipitated the degeneration of OHCs. These results may have a bearing on the mechanisms behind permanent threshold shift.
Collapse
Affiliation(s)
- Peter M Sellick
- The Auditory Laboratory, Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
27
|
Maison SF, Vetter DE, Liberman MC. A novel effect of cochlear efferents: in vivo response enhancement does not require alpha9 cholinergic receptors. J Neurophysiol 2007; 97:3269-78. [PMID: 17344378 DOI: 10.1152/jn.00067.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Outer hair cells in the mammalian cochlea receive a cholinergic efferent innervation that constitutes the effector arm of a sound-evoked negative feedback loop. The well-studied suppressive effects of acetylcholine (ACh) release from efferent terminals are mediated by alpha9/alpha10 ACh receptors and are potently blocked by strychnine. Here, we report a novel, efferent-mediated enhancement of cochlear sound-evoked neural responses and otoacoustic emissions in mice. In controls, a slow enhancement of response amplitude to supranormal levels appears after recovery from the classic suppressive effects seen during a 70-s epoch of efferent shocks. The magnitude of post-shock enhancement can be as great as 10 dB and tends to be greater for high-frequency acoustic stimuli. Systemic strychnine at 10 mg/kg eliminates efferent-induced suppression, revealing a purely enhancing effect of efferent shocks, which peaks within 5 s after efferent-stimulation onset, maintains a constant level through the stimulation epoch, and slowly decays back to baseline with a time constant of approximately 100 s. In mice with targeted deletion of the alpha9 ACh receptor subunit, efferent-evoked effects resemble those in wild types with strychnine blockade, further showing that this novel efferent effect is fundamentally different from all cholinergic effects previously reported.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Acoustic Stimulation/methods
- Animals
- Cochlea/cytology
- Cochlea/drug effects
- Cochlea/physiology
- Dose-Response Relationship, Radiation
- Efferent Pathways/drug effects
- Efferent Pathways/physiology
- Evoked Potentials, Auditory/drug effects
- Evoked Potentials, Auditory/physiology
- Evoked Potentials, Auditory/radiation effects
- Glycine Agents/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Otoacoustic Emissions, Spontaneous/drug effects
- Otoacoustic Emissions, Spontaneous/physiology
- Reaction Time/drug effects
- Reaction Time/physiology
- Reaction Time/radiation effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/physiology
- Strychnine/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Stéphane F Maison
- Department of Otology and Laryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114-3096, USA.
| | | | | |
Collapse
|
28
|
Meenderink SWF, Narins PM. Suppression of distortion product otoacoustic emissions in the anuran ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:344-51. [PMID: 17297789 DOI: 10.1121/1.2382458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
When a two-tone stimulus is presented to the ear, so-called distortion product otoacoustic emissions (DPOAEs) are evoked. Adding an interference tone (IT) to these two DPOAE-evoking primaries affects normal DPOAE generation. The "effectiveness" of interference depends on the frequency of the IT in relation to the primary frequencies and this provides clues about the locus of emission generation within the inner ear. Here results are presented on the effects of ITs on DPOAEs thought to originate from the basilar papilla (BP) of a frog species. It is found that the IT always resulted in a reduction of the recorded DPOAE amplitude: DPOAE enhancement was not observed. Furthermore, iso-suppression curves (ISCs) exhibited two relative minima suggesting that the DPOAEs arise at different loci in the inner ear. These minima occurred at fixed frequencies, which coincided with those primary frequencies that resulted in maxima in DPOAE audiograms. The occurrence of two minima suggests that DPOAEs, which are presumed to originate exclusively from the BP, partially arise from the amphibian papilla as well. Finally, the finding that the minima in the ISCs are independent of the primary or DPOAE frequencies provides support for the notion that the BP functions as a single auditory filter.
Collapse
Affiliation(s)
- Sebastiaan W F Meenderink
- Department of Physiological Science, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California 90095-1606, USA
| | | |
Collapse
|
29
|
Kössl M, Coro F. L1,L2 maps of distortion-product otoacoustic emissions from a moth ear with only two auditory receptor neurons. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:3822-31. [PMID: 17225409 DOI: 10.1121/1.2363934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The tympanal organ of the moth Empyreuma affinis emits physiologically vulnerable distortion-product otoacoustic emissions. To assess the nature of underlying mechanical nonlinearities, we measured L1,L2 maps by varying both stimulus levels. Two types of maps were found: (1) Maps containing dominant islands centered at the L1=L2 diagonal as it is typical for saturating nonlinearities that can be described by Boltzmann functions. In contrast to maps published for mammals and frogs, the shape of such islands includes sharp ridges at L1 or L2 levels close to 70 dB sound pressure level. This could be produced by a strongly asymmetric operating point of the respective transfer functions, consistent with the fact that the auditory sensory cells are not hair cells but primary mechanoreceptors with a single cilium. The saturating map components could be selectively reduced by acoustic suppression. (2) Maps where separated islands were less conspicuous but in which the dominant feature consisted of contour lines which were orthogonal to the L1=2L2 diagonal and could be generated by an expansive nonlinearity. Maps showing strong islands were found for f2 frequencies between 26.7 and 45 kHz, maps without strong islands for f2 between 42 and 57.5 kHz. This suggests a frequency-dependent change regarding the involved mechanical nonlinearities.
Collapse
Affiliation(s)
- Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, J. W Goethe-Universität, Siesmayerstrasse 70, D-60323 Frankfurt am Main, Germany.
| | | |
Collapse
|
30
|
Abstract
It is commonly accepted that the cochlea emits sound by a backward traveling wave along the cochlear partition. This belief is mainly based on an observation that the group delay of the otoacoustic emission measured in the ear canal is twice as long as the forward delay. In this study, the otoacoustic emission was measured in the gerbil under anesthesia not only in the ear canal but also at the stapes, eliminating measurement errors arising from unknown external- and middle-ear delays. The emission group delay measured at the stapes was compared with the group delay of basilar membrane vibration at the putative emission-generation site, the forward delay. The results show that the total intracochlear delay of the emission is equal to or smaller than the forward delay. For emissions with an f2/f1 ratio <1.2, the data indicate that the reverse propagation of the emission from its generation site to the stapes is much faster than a forward traveling wave to the f2 location. In addition, that the round-trip delays are smaller than the forward delay implies a basal shift of the emission generation site, likely explained by the basal shift of primary-tone response peaks with increasing intensity. However, for emissions with an f1 ≪ f2, the data cannot distinguish backward traveling waves from compression waves because of a very small f1 delay at the f2 site.
Collapse
Affiliation(s)
- Tianying Ren
- Oregon Hearing Research Center, Department of Otolaryngology and Head and Neck Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, NRC04, Portland, OR 97239-3098, USA.
| | | | | | | |
Collapse
|
31
|
Maison SF, Rosahl TW, Homanics GE, Liberman MC. Functional role of GABAergic innervation of the cochlea: phenotypic analysis of mice lacking GABA(A) receptor subunits alpha 1, alpha 2, alpha 5, alpha 6, beta 2, beta 3, or delta. J Neurosci 2006; 26:10315-26. [PMID: 17021187 PMCID: PMC1806703 DOI: 10.1523/jneurosci.2395-06.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The olivocochlear efferent system is both cholinergic and GABAergic and innervates sensory cells and sensory neurons of the inner ear. Cholinergic effects on cochlear sensory cells are well characterized, both in vivo and in vitro; however, the robust GABAergic innervation is poorly understood. To explore the functional roles of GABA in the inner ear, we characterized the cochlear phenotype of seven mouse lines with targeted deletion of a GABA(A) receptor subunit (alpha1, alpha2, alpha5, alpha6, beta2, beta3, or delta). Four of the lines (alpha1, alpha2, alpha6, and delta) were normal: there was no cochlear histopathology, and cochlear responses suggested normal function of hair cells, afferent fibers, and efferent feedback. The other three lines (alpha5, beta2, and beta3) showed threshold elevations indicative of outer hair cell dysfunction. Alpha5 and beta2 lines also showed decreased effects of efferent bundle activation, associated with decreased density of efferent terminals on outer hair cells: although the onset of this degeneration was later in alpha5 (>6 weeks) than beta2 (<6 weeks), both lines shows normal efferent development (up to 3 weeks). Two lines (beta2 and beta3) showed signs of neuropathy, either decreased density of afferent innervation (beta3) or decreased neural responses without concomitant attenuation of hair cell responses (beta2). One of the lines (beta2) showed a clear sexual dimorphism in cochlear phenotype. Results suggest that the GABAergic component of the olivocochlear system contributes to the long-term maintenance of hair cells and neurons in the inner ear.
Collapse
Affiliation(s)
- Stéphane F Maison
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
32
|
Withnell RH, Lodde J. In search of basal distortion product generators. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:2116-23. [PMID: 17069309 DOI: 10.1121/1.2338291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The 2f1-f2 distortion product otoacoustic emission (DPOAE) is thought to arise primarily from the complex interaction of components that come from two different cochlear locations. Such distortion has its origin in the nonlinear interaction on the basilar membrane of the excitation patterns resulting from the two stimulus tones, f1 and f2. Here we examine the spatial extent of initial generation of the 2f1-f2 OAE by acoustically traumatizing the base of the cochlea and so eliminating the contribution of the basal region of the cochlea to the generation of 2f1-f2. Explicitly, amplitude-modulated, or continuously varying in level, stimulus tones with f2/f1= 1.2 and f2 =8000-8940 Hz were used to generate the 2f1-f2 DPOAE in guinea pig before and after acoustically traumatizing the basal region of the cochlea (the origin of any basal-to-f2 distortion product generators). It was found, based on correlation analysis, that there does not appear to be a basal-to-f2 distortion product generation mechanism contributing significantly to the guinea pig 2f1-f2 OAE up to L1 = 80 dB sound pressure level (SPL).
Collapse
Affiliation(s)
- Robert H Withnell
- Department of Speech and Hearing Sciences, Indiana University, 200 South Jordan Avenue, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
33
|
Oliver D, Taberner AM, Thurm H, Sausbier M, Arntz C, Ruth P, Fakler B, Liberman MC. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 2006; 26:6181-9. [PMID: 16763026 PMCID: PMC1806704 DOI: 10.1523/jneurosci.1047-06.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large-conductance voltage- and Ca(2+)-activated K+ channels (BKCa) are involved in shaping spiking patterns in many neurons. Less is known about their role in mammalian inner hair cells (IHCs), mechanosensory cells with unusually large BKCa currents. These currents may be involved in shaping the receptor potential, implying crucial importance for the properties of afferent auditory signals. We addressed the function of BKCa by recording sound-induced responses of afferent auditory nerve (AN) fibers from mice with a targeted deletion of the pore-forming alpha-subunit of BKCa (BKalpha(-/-)) and comparing these with voltage responses of current-clamped IHCs. BKCa-mediated currents in IHCs were selectively abolished in BKalpha(-/-), whereas cochlear physiology was essentially normal with respect to cochlear sensitivity and frequency tuning.BKalpha(-/-) AN fibers showed deteriorated precision of spike timing, measured as an increased variance of first spike latency in response to tone bursts. This impairment could be explained by a slowed voltage response in the presynaptic IHC resulting from the reduced K+ conductance in the absence of BKCa. Maximum spike rates of AN fibers were reduced nearly twofold in BKalpha(-/-), contrasting with increased voltage responses of IHCs. In addition to presynaptic changes, which may be secondary to a modest depolarization of BKalpha(-/-) IHCs, this reduction in AN rates suggests a role of BKCa in postsynaptic AN neurons, which was supported by increased refractory periods. In summary, our results indicate an essential role of IHC BKCa channels for precise timing of high-frequency cochlear signaling as well as a function of BKCa in the primary afferent neuron.
Collapse
Affiliation(s)
- Dominik Oliver
- Physiologisches Institut, Universität Freiburg, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bian L. Spectral fine-structures of low-frequency modulated distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 119:3872-85. [PMID: 16838531 DOI: 10.1121/1.2200068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Biasing of the cochlear partition with a low-frequency tone can produce an amplitude modulation of distortion product otoacoustic emissions (DPOAEs) in gerbils. In the time domain, odd- versus even-order DPOAEs demonstrated different modulation patterns depending on the bias tone phase. In the frequency domain, multiple sidebands are presented on either side of each DPOAE component. These sidebands were located at harmonic multiples of the biasing frequency from the DPOAE component. For odd-order DPOAEs, sidebands at the even-multiples of the biasing frequency were enhanced, while for even-order DPOAEs, the sidebands at the odd-multiples were elevated. When a modulation in DPOAE magnitude was presented, the magnitudes of the sidebands were enhanced and even greater than the DPOAEs. The amplitudes of these sidebands varied with the levels of the bias tone and two primary tones. The results indicate that the maximal amplitude modulations of DPOAEs occur at a confined bias and primary level space. This can provide a guide for optimal selections of signal conditions for better recordings of low-frequency modulated DPOAEs in future research and applications. Spectral fine-structure and its unique relation to the DPOAE modulation pattern may be useful for direct acquisition of cochlear transducer nonlinearity from a simple spectral analysis.
Collapse
Affiliation(s)
- Lin Bian
- Department of Speech and Hearing Science, Arizona State University, 3470 Coor Hall, Tempe, Arizona 85287-0102, USA.
| |
Collapse
|
35
|
Wenxuan H, Tianying R. Backward Propagation of Otoacoustic Emissions. J Otol 2006. [DOI: 10.1016/s1672-2930(06)50007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Legan PK, Lukashkina VA, Goodyear RJ, Lukashkin AN, Verhoeven K, Van Camp G, Russell IJ, Richardson GP. A deafness mutation isolates a second role for the tectorial membrane in hearing. Nat Neurosci 2005; 8:1035-42. [PMID: 15995703 DOI: 10.1038/nn1496] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/03/2005] [Indexed: 02/04/2023]
Abstract
Alpha-tectorin (encoded by Tecta) is a component of the tectorial membrane, an extracellular matrix of the cochlea. In humans, the Y1870C missense mutation in TECTA causes a 50- to 80-dB hearing loss. In transgenic mice with the Y1870C mutation in Tecta, the tectorial membrane's matrix structure is disrupted, and its adhesion zone is reduced in thickness. These abnormalities do not seriously influence the tectorial membrane's known role in ensuring that cochlear feedback is optimal, because the sensitivity and frequency tuning of the mechanical responses of the cochlea are little changed. However, neural thresholds are elevated, neural tuning is broadened, and a sharp decrease in sensitivity is seen at the tip of the neural tuning curve. Thus, using Tecta(Y1870C/+) mice, we have genetically isolated a second major role for the tectorial membrane in hearing: it enables the motion of the basilar membrane to optimally drive the inner hair cells at their best frequency.
Collapse
Affiliation(s)
- P Kevin Legan
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Meenderink SWF, van Dijk P. Characteristics of distortion product otoacoustic emissions in the frog from L1,L2 maps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:279-86. [PMID: 16119349 DOI: 10.1121/1.1925887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
For a given set of stimulus frequencies (f1 ,f2), the level of distortion product otoacoustic emissions (DPOAEs) varies with the levels of the stimulus tones. By variation of the stimulus levels, L1,L2-maps for DPOAEs can be constructed. Here, we report on L1 ,L2-maps for DPOAEs from the frog ear. In general, these maps were similar to those obtained from the mammalian cochlea. We found a conspicuous difference between the equal-level contour lines for low-level and high-level DPOAEs, which could be modeled by a saturating and an expansive nonlinearity, respectively. The transition from the high-level to the low-level response was accompanied by a DPOAE phase-change, which increased from 0 to pi rad with increasing frequency. These results suggest that in the frog low-level and high-level DPOAEs are generated by separate nonlinear mechanisms. Also, there was a conspicuous difference in the growth of the low-level emissions from the two anuran auditory papillae. In the basilar papilla, this growth was expansive for the lowest stimulus levels and saturated for intermediate levels. This is consistent with the behavior of a Boltzman nonlinearity. In the amphibian papilla this growth was compressive, suggesting the additional effect of a compressive amplification mechanism on the generation of DPOAEs.
Collapse
Affiliation(s)
- Sebastiaan W F Meenderink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Hospital Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | | |
Collapse
|
38
|
Relkin EM, Sterns A, Azeredo W, Prieve BA, Woods CI. Physiological mechanisms of onset adaptation and contralateral suppression of DPOAEs in the rat. J Assoc Res Otolaryngol 2005; 6:119-35. [PMID: 15952049 PMCID: PMC2538334 DOI: 10.1007/s10162-004-5047-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Accepted: 12/15/2004] [Indexed: 11/24/2022] Open
Abstract
An investigation was undertaken to measure medial olivocochlear (MOC) reflexes in anesthetized rats before and after sectioning of the middle-ear muscles. Distortion product otoacoustic emission (DPOAE) magnitude and phase temporal responses were measured ipsilaterally to study MOC-mediated "DPOAE onset adaptation" and in the presence of a contralateral noise to study MOC-mediated contralateral "suppression" (terms as used by previous researchers). Distortion product otoacoustic emission onset adaptation and contralateral suppression had predictable changes in direction of magnitude and phase that were dependent on the input-output function. After sectioning of the middle-ear muscles (MEMs), DPOAE onset adaptation and contralateral suppression were greatly reduced, and there were little, if any, changes in phase. These "residual" changes were interpreted as a result of the MOC reflex. The results suggest that what appears to be DPOAE onset adaptation and contralateral suppression can be mediated primarily by MEM reflexes. When studying MOC effects on otoacoustic emissions (OAEs) using acoustic stimulation, it is necessary to make recordings over a span of stimulus levels. In addition, looking at both magnitude and phase of the OAE may help separate what is due to the MOC reflex from MEM reflex.
Collapse
Affiliation(s)
- E. M. Relkin
- Institute for Sensory Research, Syracuse University, Syracuse, NY USA
- Bioengineering and Neuroscience, Syracuse University, Syracuse, NY USA
| | - A. Sterns
- Institute for Sensory Research, Syracuse University, Syracuse, NY USA
| | - W. Azeredo
- State University of New York Upstate Medical Center, Syracuse, NY USA
| | - B. A. Prieve
- Institute for Sensory Research, Syracuse University, Syracuse, NY USA
- Department of Communication Sciences and Disorders, Syracuse University, 805 S. Crouse Avenue, Syracuse, NY 13244-2280 USA
| | - C. I. Woods
- Institute for Sensory Research, Syracuse University, Syracuse, NY USA
- State University of New York Upstate Medical Center, Syracuse, NY USA
| |
Collapse
|
39
|
Drexl M, Henke J, Kössl M. Isoflurane increases amplitude and incidence of evoked and spontaneous otoacoustic emissions. Hear Res 2005; 194:135-42. [PMID: 15276684 DOI: 10.1016/j.heares.2004.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 04/07/2004] [Indexed: 11/30/2022]
Abstract
The volatile anesthetic isoflurane was tested for its effect on cochlear function by means of measuring distortion product otoacoustic emissions (DPOAE) and spontaneous otoacoustic emissions (SOAE) in the mustached bat (Pteronotus parnellii parnellii). Averaged growth functions of DPOAE and spontaneous otoacoustic emissions were assessed and compared between the control group (no isoflurane application) and the isoflurane group (application of isoflurane at vaporizer settings sof about 1.5-2%). Isoflurane significantly increases the DPOAE amplitude, e.g. at a primary tone level l2 of 40 dB SPL by 10.7 dB. Additionally, the incidence of SOAEs was highly increased during application of isoflurane. The sound-evoked efferent effect on the generation of otoacoustic emissions was significantly reduced in the isoflurane group. We suggest that isoflurane might affect the postsynaptic action of acetylcholine (ACh) released by the efferent terminals of outer hair cells (OHCs). This could lead to the observed decrease of efferent suppression and to a disinhibition of cochlear amplification.
Collapse
Affiliation(s)
- Markus Drexl
- Department Biologie II der Ludwig-Maximilians-Universität München, Luisenstr. 14, D-80333, München, Germany.
| | | | | |
Collapse
|
40
|
Dreisbach LE, Siegel JH. Level dependence of distortion-product otoacoustic emissions measured at high frequencies in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 117:2980-8. [PMID: 15957768 DOI: 10.1121/1.1880792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Given that high-frequency hearing is most vulnerable to cochlear pathology, it is important to characterize distortion-product otoacoustic emissions (DPOAEs) measured with higher-frequency stimuli in order to utilize these measures in clinical applications. The purpose of this study was to explore the dependence of DPOAE amplitude on the levels of the evoking stimuli at frequencies greater than 8 kHz, and make comparisons with those data that have been extensively measured with lower-frequency stimuli. To accomplish this, DPOAE amplitudes were measured at six different f2 frequencies (2, 5, 10, 12, 14, and 16 kHz), with a frequency ratio (f2/f1) of 1.2, at five fixed levels (30 to 70 dB SPL) of one primary (either f1 or f2), while the other primary was varied in level (30 to 70 dB SPL). Generally, the level separation between the two primary tones (L1 > L2) generating the largest DPOAE amplitude (referred to as the "optimal level separation") decreased as the level of the fixed primary increased. Additionally, the optimal level separation was frequency dependent, especially at the lower fixed primary tone levels ( < or = 50 dB SPL). In agreement with previous studies, the DPOAE level exhibited greater dependence on L1 than on L2.
Collapse
Affiliation(s)
- Laura E Dreisbach
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, California 92182-1578, USA.
| | | |
Collapse
|
41
|
Lukashkin AN, Russell IJ. Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition. Hear Res 2005; 203:45-53. [PMID: 15855029 DOI: 10.1016/j.heares.2004.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/19/2004] [Indexed: 11/23/2022]
Abstract
Distortion product otoacoustic emissions (DPOAEs) were recorded from guinea pigs in response to simultaneous increases in the levels of high frequency primary tones in the presence of a low frequency biasing tone of 30 Hz at 120 dB SPL. The DPOAE amplitudes plotted as functions of the biasing tone phase angle show distinctive repeatable minima, which are identical to the amplitude notches observed for the distortion products at the output of a single saturating non-linearity. The number of the amplitude minima grows with increasing order of the DPOAE, a feature that is also reproduced by the model. The model of DPOAE generation due to a single saturating non-linearity does not explain the experimentally observed asymmetry of the response of the DPOAEs to rising and falling half cycles of the biasing tone. This asymmetry is attributed to a hypothetical mechanism, which adjusts the operating point of the outer hair cell's mechanoelectrical transducer. Experimental data were consistent with a hypothesis that, for the parameters of stimulation used in this study, both lower and upper sideband DPOAEs are dominated by emission generated from a single and spatially localized place in the cochlea.
Collapse
Affiliation(s)
- Andrei N Lukashkin
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | |
Collapse
|
42
|
Dong W, Olson ES. Two-tone distortion in intracochlear pressure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 117:2999-3015. [PMID: 15957770 PMCID: PMC3565384 DOI: 10.1121/1.1880812] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two-tone distortion was measured in the intracochlear pressure in the base of the gerbil cochlea, close to the sensory tissue, where the local motions and forces of the organ of Corti can be detected. The measurements probe both the underlying nonlinear process that generates two-tone distortion, and the filtering and spreading of the distortion products. Some of our findings are as follows: (1) The observations were consistent with previous observations of two-tone distortion in BM motion [J. Neurophysiol. 77, 2385-2399 (1997); J. Neurophysiol. 78, 261-270 (1997)]. (2) Frequency sweeps show distortion product tuning and phase-versus-frequency behavior that is similar, but not identical, to single tone tuning. (3) The decay of distortion products with distance from the basilar membrane confirms the feasibility that they could drive the stapes by a direct fluid route, as proposed by Ren [Nat. Neurosci. 7, 333-334 (2004)]. (4) The phases of the distortion products within a single family (the group of distortion products generated by a single primary pair) in some cases alternated between 0 degrees and 180 degrees when referenced to the phases of the primaries. This behavior is predicted by a simple compressive nonlinearity.
Collapse
Affiliation(s)
- Wei Dong
- Columbia University, Department of Otolaryngology, Head and Neck Surgery, P & S 11-452, 630 W 168th Street, New York, New York 10032, USA.
| | | |
Collapse
|
43
|
Abstract
Outer hair cell (OHC) electromotility provides mechanical positive feedback that functions as the cochlear amplifier. In isolated OHCs, chlorpromazine shifts the electromotility voltage-displacement transfer function in a depolarizing direction without affecting its magnitude. This study sought to measure the effects of chlorpromazine on cochlear function in vivo. Salicylate, a drug that greatly reduces the magnitude of electromotility, was used for comparison. Perilymphatic perfusion of the guinea pig cochlea with chlorpromazine or salicylate increased the compound action potential (CAP) threshold across the frequency spectrum (1-20 kHz). Both drugs also increased distortion product otoacoustic emission (DPOAE) thresholds in the higher frequencies (10-20 kHz). Complete reversibility of these effects occurred after washout. Both drugs demonstrated concentration-dependent reductions in cochlear function that followed sigmoidal curves with similar fits to previously reported results in isolated OHCs. The endolymphatic potential was not affected by either of these drugs. Thus, chlorpromazine inhibits cochlear function in a manner consistent with what would be expected from data in isolated OHCs. This suggests that shifting the electromotility transfer function correspondingly reduces the gain of the cochlear amplifier.
Collapse
Affiliation(s)
- John S Oghalai
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143-0342, USA.
| |
Collapse
|
44
|
Schairer KS, Keefe DH. Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 117:818-832. [PMID: 15759702 DOI: 10.1121/1.1850341] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stimulus frequency otoacoustic emission (SFOAE) input-output (I/O) functions were elicited in normal-hearing adults using unequal-frequency primaries in equal-level and fixed-suppressor level (Ls) conditions. Responses were repeatable and similar across a range of primary frequency ratios in the fixed-Ls condition. In comparison to equal-frequency primary conditions [Schairer, Fitzpatrick, and Keefe, J. Acoust. Soc. Am. 114, 944-966 (2003)], the unequal-frequency, fixed-Ls condition appears to be more useful for characterizing SFOAE response growth and relating it to basilar-membrane response growth, and for testing the ability to predict audiometric thresholds. Simultaneously recorded distortion-product OAE (DPOAE) I/O functions had higher thresholds than SFOAE I/O functions, and they identified the onset of the nonlinear-distortion mechanism in SFOAEs. DPOAE threshold often corresponded to nonmonotonicities in SFOAE I/O functions. This suggests that the level-dependent nonmonotonicities and associated phase shifts in SFOAE I/O functions were due to varying degrees of cancellation of two sources of SFOAE, such as coherent reflection and distortion mechanisms. Level-dependent noise was observed on-band (at the frequencies of the stimuli) but not off-band, or in the DPOAEs. The variability was observed in ears with normal hearing and ears with cochlear implants. In general, these results indicate the source of the variability is biological, possibly from within the middle ear.
Collapse
Affiliation(s)
- Kim S Schairer
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA.
| | | |
Collapse
|
45
|
Vassilakis PN, Meenderink SWF, Narins PM. Distortion product otoacoustic emissions provide clues hearing mechanisms in the frog ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:3713-26. [PMID: 15658721 DOI: 10.1121/1.1811571] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
2f1-f2 and 2 f2-f1 distortion product otoacoustic emissions (DPOAEs) were recorded from both ears of male and female Rana pipiens pipiens and Rana catesbeiana. The input-output (I/O) curves obtained from the amphibian papilla (AP) of both frog species are analogous to I/O curves recorded from mammals suggesting that, similarly to the mammalian cochlea, there may be an amplification process present in the frog AP. DPOAE level dependence on L1-L2 is different from that in mammals and consistent with intermodulation distortion expectations. Therefore, if a mechanical structure in the frog inner ear is functioning analogously to the mammalian basilar membrane, it must be more broadly tuned. DPOAE audiograms were obtained for primary frequencies spanning the animals' hearing range and selected stimulus levels. The results confirm that DPOAEs are produced in both papillae, with R. catesbeiana producing stronger emissions than R. p. pipiens. Consistent with previously reported sexual dimorphism in the mammalian and anuran auditory systems, females of both species produce stronger emissions than males. Moreover, it appears that 2 f1-f2 in the frog is generated primarily at the DPOAE frequency place, while 2 f2-f1 is generated primarily at a frequency place around the primaries. Regardless of generation place, both emissions within the AP may be subject to the same filtering mechanism, possibly the tectorial membrane.
Collapse
Affiliation(s)
- Pantelis N Vassilakis
- Department of Physiological Science, University of California at Los Angeles, Los Angeles, California 90095-1606, USA.
| | | | | |
Collapse
|
46
|
Bian L. Cochlear compression: effects of low-frequency biasing on quadratic distortion product otoacoustic emission. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:3559-3571. [PMID: 15658707 DOI: 10.1121/1.1819501] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) are generated from the nonlinear transduction n cochlear outer hair cells. The transducer function demonstrating a compressive nonlinearity can be estimated from low-frequency modulation of DPOAEs. Experimental results from the gerbils showed that the magnitude of quadratic difference tone (QDT, f2-f1) was either enhanced or suppressed depending on the phase of the low-frequency bias tone. Within one period of the bias tone, QDT magnitudes exhibited two similar modulation patterns, each resembling the absolute value of the second derivative of the transducer function. In the time domain, the center notches of the modulation patterns occurred around the zero crossings of the bias pressure, whereas peaks corresponded to the increase or decrease in bias pressure. Evaluated with respect to the bias pressure, modulated QDT magnitude displayed a double-modulation pattern marked by a separation of the center notches. Loading/unloading of the cochlear transducer or rise/fall in bias pressure shifted the center notch to positive or negative sound pressures, indicating a mechanical hysteresis. These results suggest that QDT arises from the compression that coexists with the active hysteresis in cochlear transduction. Modulation of QDT magnitude reflects the dynamic regulation of cochlear transducer gain and compression.
Collapse
Affiliation(s)
- Lin Bian
- Department of Hearing and Speech, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
47
|
Carvalho S, Mom T, Gilain L, Avan P. Frequency specificity of distortion-product otoacoustic emissions produced by high-level tones despite inefficient cochlear electromechanical feedback. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:1639-1648. [PMID: 15478430 DOI: 10.1121/1.1777873] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) are thought to stem from the outer hair cells (OHCs) around the normally narrow place tuned to the primary tone stimuli. They are thus said to be frequency-specific: their local absence should accurately pinpoint local OHC damage. Yet the influence of impaired tuning on DPOAE frequency specificity is poorly documented. Mice with local damage to OHCs were examined. Their DPOAEs were frequency-specific in that audiometric notches were accurately tracked. The same cochleae were further impaired by ischemia or furosemide injection inducing strial dysfunction with flat loss of sensitivity and tuning, while the preexisting pattern of damaged OHCs remained unaltered. Despite the loss of cochlear activity, DPOAEs produced by high-level (> or =70 dB SPL) primaries remained large in about the same interval where they had been initially normal, i.e., that with nondamaged OHCs, albeit with a slight frequency shift, of -1.1 kHz on average. Thus, the ability of DPOAEs to map structurally intact OHCs cannot be a mere consequence of cochlear tuning as it largely persists in its absence. The key element for this correct mapping is likely part of intact OHC structures (e.g., stereocilia bundles) and must have some tuning of its own.
Collapse
Affiliation(s)
- Sirley Carvalho
- Laboratory of Sensory Biophysics, School of Medicine, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
48
|
Liberman MC, Zuo J, Guinan JJ. Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea? THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:1649-55. [PMID: 15478431 PMCID: PMC1805783 DOI: 10.1121/1.1775275] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) evoked by low-level tones are a sensitive indicator of outer hair cell (OHC) function. High-level DPOAEs are less vulnerable to cochlear insult, and their dependence on the OHC function is more controversial. Here, the mechanism underlying high-level DPOAE generation is addressed using a mutant mouse line lacking prestin, the molecular motor driving OHC somatic motility, required for cochlear amplification. With prestin deletion, attenuated DPOAEs were measurable at high sound levels. DPOAE thresholds were shifted by approximately 50 dB, matching the loss of cochlear amplifier gain measured in compound action potentials. In contrast, at high sound levels, distortion products in the cochlear microphonic (CM) of mutants were not decreased re wildtypes (expressed re CM at the primaries). Distortion products in both CM and otoacoustic emissions disappeared rapidly after death. The results show that OHC somatic motility is not necessary for the production of DPOAEs at high SPLs. They also suggest that the small, physiologically vulnerable DPOAE that remains without prestin-based motility is due directly to the mechanical nonlinearity associated with stereociliary transduction, and that this stereocilia mechanical nonlinearity is robustly coupled to the motion of the cochlear partition to the extent that it can drive the middle ear.
Collapse
Affiliation(s)
- M C Liberman
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
49
|
Mulheran M, Wiselka M, Johnston MN. Evidence of Subtle Auditory Deficit in a Group of Patients Recovered from Bacterial Meningitis. Otol Neurotol 2004; 25:302-7. [PMID: 15129110 DOI: 10.1097/00129492-200405000-00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Sensorineural hearing loss of greater than 30 dB hearing loss occurs in up to 30% of patients after acute bacterial meningitis. This study investigated whether postbacterial meningitic patients with no apparent clinical sensorineural hearing loss had any evidence of more subtle subclinical cochlear deficit. DESIGN Prospective case-controlled clinical trial. SETTING Departments of Otolaryngology in Leicester and Nottingham, England, UK. PATIENTS Fifty-eight controls and 20 postbacterial meningitic patients aged between 18 and 38 years were screened by a questionnaire and tympanometry to exclude hearing loss attributable to other causes. All participants fell below the 90th percentile pure-tone audiometry threshold of the Lutman and Davis UK data sets. MAIN OUTCOME MEASURES In both ears, standard (0.25-8 kHz) pure-tone audiometry, high-frequency pure-tone audiometry (10-16 kHz), and distortion product otoacoustic emissions at 2, 4, and 6 kHz were measured. RESULTS Mean thresholds over the range of standard pure-tone audiometry (analyzed independently) for the postbacterial meningitic patients were significantly elevated at most frequencies (p < 0.05-p < 0.001) between 4 and 7 dB in both ears above control group values. There was no evidence of significant high-frequency threshold elevation (10-16 kHz). The mean iso-distortion product values at 2, 4, and 6 kHz were elevated in both ears in the meningitis group; significantly so (p < 0.05-p < 0.01) at all three frequencies in the right ear and at 4 kHz in the left. CONCLUSIONS Postbacterial meningitic patients with hearing below the 90th percentile range had a slight but significant subclinical threshold elevation over the standard pure-tone audiometry. This may reflect a real effect of the infection at the level of the cochlea, or it may be attributable to a mild residual cognitive defect. The moderate increases in iso-distortion product values are more likely to be real and reflect an effect on outer hair cell function in response to lower stimulus intensities.
Collapse
Affiliation(s)
- Mike Mulheran
- Medical Research Council, Center for Mechanism of Human Toxicity, Leicester University, Leicester, England, UK.
| | | | | |
Collapse
|
50
|
Bian L, Linhardt EE, Chertoff ME. Cochlear hysteresis: observation with low-frequency modulated distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 115:2159-2172. [PMID: 15139627 DOI: 10.1121/1.1690081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low-frequency modulation of distortion product otoacoustic emissions (DPOAEs) can be used to estimate a nonlinear transducer function (fTr) of the cochlea. From gerbils, DPOAEs were measured while presenting a high-level bias tone. Within one period of the bias tone, the magnitudes of the cubic difference tone (CDT, 2f1 - f2) demonstrated two similar modulation patterns (MPs) each resembled the absolute value of the third derivative of the fTr. The center peaks of the MPs occurred at positive sound pressures for rising in bias pressure or loading of the cochlear transducer, and more negative pressures while decreasing bias amplitude or unloading. The corresponding fTr revealed a sigmoid-shaped hysteresis loop with counterclockwise traversal. Physiologic indices that characterized the double MP varied with primary level. A Boltzmann-function-based model with negative damping as a feedback component was proposed. The model was able to replicate the experimental results. Model parameters that fit to the CDT data indicated higher transducer gain and more prominent feedback role at lower primary levels. Both physiologic indices and model parameters suggest that the cochlear transducer dynamically changes its gain with input signal level and the nonlinear mechanism is a time-dependent feedback process.
Collapse
Affiliation(s)
- Lin Bian
- Department of Hearing and Speech, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|