1
|
Guest DR, Rajappa N, Oxenham AJ. Limitations in human auditory spectral analysis at high frequencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:326-340. [PMID: 38990035 PMCID: PMC11240212 DOI: 10.1121/10.0026475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Humans are adept at identifying spectral patterns, such as vowels, in different rooms, at different sound levels, or produced by different talkers. How this feat is achieved remains poorly understood. Two psychoacoustic analogs of spectral pattern recognition are spectral profile analysis and spectrotemporal ripple direction discrimination. This study tested whether pattern-recognition abilities observed previously at low frequencies are also observed at extended high frequencies. At low frequencies (center frequency ∼500 Hz), listeners were able to achieve accurate profile-analysis thresholds, consistent with prior literature. However, at extended high frequencies (center frequency ∼10 kHz), listeners' profile-analysis thresholds were either unmeasurable or could not be distinguished from performance based on overall loudness cues. A similar pattern of results was observed with spectral ripple discrimination, where performance was again considerably better at low than at high frequencies. Collectively, these results suggest a severe deficit in listeners' ability to analyze patterns of intensity across frequency in the extended high-frequency region that cannot be accounted for by cochlear frequency selectivity. One interpretation is that the auditory system is not optimized to analyze such fine-grained across-frequency profiles at extended high frequencies, as they are not typically informative for everyday sounds.
Collapse
Affiliation(s)
- Daniel R Guest
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA
| | - Neha Rajappa
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
2
|
Sturm JJ, Ma C, McRackan TR, Schvartz-Leyzac KC. Frequency-to-Place Mismatch Impacts Cochlear Implant Quality of Life, But Not Speech Recognition. Laryngoscope 2024; 134:2898-2905. [PMID: 38214299 PMCID: PMC11078615 DOI: 10.1002/lary.31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To retrospectively compare frequency-place mismatch among adult cochlear implant (CI) recipients with lateral wall (LW) and perimodiolar/Mid Scala (PM/MS) arrays, and to quantify the impact of these factors on early post-activation (3 months) speech recognition abilities and CI-specific quality of life. METHODS One hundred and twenty-six adult participants were separated into two groups: (1) 83 participants who underwent CI with a PM/MS array and 43 patients who underwent CI with a LW array. All participants completed the Cochlear Implant Quality of Life Profile (CIQOL-35 Profile) instrument. Angular insertion depth and semitone mismatch, which contribute to frequency-place mismatch, were assessed using post-operative CT scans. Word and speech recognition in quiet were determined using the Consonant-Nucleus-Consonant (CNC) and the AzBio tests, respectively (n = 82 patients). RESULTS LW arrays were more deeply inserted and exhibited less semitone mismatch compared to PM/MS arrays. No significant relationship was found between semitone mismatch and early post-operative speech perception scores for either PM/MS or LW arrays. However, greater degrees of semitone mismatch were associated with lower CIQOL-35 profile scores for PM/MS arrays. CONCLUSIONS AND RELEVANCE The results of this study indicate that both the degree of frequency-place mismatch, and its impact on CI-specific quality of life, vary by CI array design. LEVEL OF EVIDENCE 4 Laryngoscope, 134:2898-2905, 2024.
Collapse
Affiliation(s)
- Joshua J Sturm
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Cheng Ma
- Department of Otolaryngology-Head and Neck Surgery, Penn State College of Medicine, Hershey, Pennsylvania, U.S.A
| | - Theodore R McRackan
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| |
Collapse
|
3
|
Cychosz M, Winn MB, Goupell MJ. How to vocode: Using channel vocoders for cochlear-implant research. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2407-2437. [PMID: 38568143 PMCID: PMC10994674 DOI: 10.1121/10.0025274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
The channel vocoder has become a useful tool to understand the impact of specific forms of auditory degradation-particularly the spectral and temporal degradation that reflect cochlear-implant processing. Vocoders have many parameters that allow researchers to answer questions about cochlear-implant processing in ways that overcome some logistical complications of controlling for factors in individual cochlear implant users. However, there is such a large variety in the implementation of vocoders that the term "vocoder" is not specific enough to describe the signal processing used in these experiments. Misunderstanding vocoder parameters can result in experimental confounds or unexpected stimulus distortions. This paper highlights the signal processing parameters that should be specified when describing vocoder construction. The paper also provides guidance on how to determine vocoder parameters within perception experiments, given the experimenter's goals and research questions, to avoid common signal processing mistakes. Throughout, we will assume that experimenters are interested in vocoders with the specific goal of better understanding cochlear implants.
Collapse
Affiliation(s)
- Margaret Cychosz
- Department of Linguistics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Matthew B Winn
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, College Park, Maryland 20742, USA
| |
Collapse
|
4
|
Dillon MT, Helpard L, Brown KD, Selleck AM, Richter ME, Rooth MA, Thompson NJ, Dedmon MM, Ladak HM, Agrawal S. Influence of the Frequency-to-Place Function on Recognition with Place-Based Cochlear Implant Maps. Laryngoscope 2023; 133:3540-3547. [PMID: 37078508 DOI: 10.1002/lary.30710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Comparison of acute speech recognition for cochlear implant (CI) alone and electric-acoustic stimulation (EAS) users listening with default maps or place-based maps using either a spiral ganglion (SG) or a new Synchrotron Radiation-Artificial Intelligence (SR-AI) frequency-to-place function. METHODS Thirteen adult CI-alone or EAS users completed a task of speech recognition at initial device activation with maps that differed in the electric filter frequency assignments. The three map conditions were: (1) maps with the default filter settings (default map), (2) place-based maps with filters aligned to cochlear SG tonotopicity using the SG function (SG place-based map), and (3) place-based maps with filters aligned to cochlear Organ of Corti (OC) tonotopicity using the SR-AI function (SR-AI place-based map). Speech recognition was evaluated using a vowel recognition task. Performance was scored as the percent correct for formant 1 recognition due to the rationale that the maps would deviate the most in the estimated cochlear place frequency for low frequencies. RESULTS On average, participants had better performance with the OC SR-AI place-based map as compared to the SG place-based map and the default map. A larger performance benefit was observed for EAS users than for CI-alone users. CONCLUSION These pilot data suggest that EAS and CI-alone users may experience better performance with a patient-centered mapping approach that accounts for the variability in cochlear morphology (OC SR-AI frequency-to-place function) in the individualization of the electric filter frequencies (place-based mapping procedure). LEVEL OF EVIDENCE 3 Laryngoscope, 133:3540-3547, 2023.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luke Helpard
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Kevin D Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A Morgan Selleck
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret E Richter
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith A Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J Thompson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew M Dedmon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hanif M Ladak
- School of Biomedical Engineering, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| | - Sumit Agrawal
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Dillon MT, Buss E, Johnson AD, Canfarotta MW, O’Connell BP. Comparison of Two Place-Based Mapping Procedures on Masked Sentence Recognition as a Function of Electrode Array Angular Insertion Depth and Presence of Acoustic Low-Frequency Information: A Simulation Study. Audiol Neurootol 2023; 28:478-487. [PMID: 37482054 PMCID: PMC10948008 DOI: 10.1159/000531262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/23/2023] [Indexed: 07/25/2023] Open
Abstract
INTRODUCTION Cochlear implant (CI) and electric-acoustic stimulation (EAS) users may experience better performance with maps that align the electric filter frequencies to the cochlear place frequencies, known as place-based maps, than with maps that present spectrally shifted information. Individual place-based mapping procedures differ in the frequency content that is aligned to cochlear tonotopicity versus discarded or spectrally shifted. The performance benefit with different place-based maps may vary due to individual differences in angular insertion depth (AID) of the electrode array and whether functional acoustic low-frequency information is available in the implanted ear. The present study compared masked speech recognition with two types of place-based maps as a function of AID and presence of acoustic low-frequency information. METHODS Sixty adults with normal hearing listened acutely to CI or EAS simulations of two types of place-based maps for one of three cases of electrode arrays at shallow AIDs. The strict place-based (Strict-PB) map aligned the low- and mid-frequency information to cochlear tonotopicity and discarded information below the frequency associated with the most apical electrode contact. The alternative place-based map (LFshift-PB) aligned the mid-frequency information to cochlear tonotopicity and provided more of the speech spectrum by compressing low-frequency information on the apical electrode contacts (i.e., <1 kHz). Three actual cases of a 12-channel, 24-mm electrode array were simulated by assigning the carrier frequency for an individual channel as the cochlear place frequency of the associated electrode contact. The AID and cochlear place frequency for the most apical electrode contact were 460° and 498 Hz for case 1, 389° and 728 Hz for case 2, and 335° and 987 Hz for case 3, respectively. RESULTS Generally, better performance was observed with the Strict-PB maps for cases 1 and 2, where mismatches were 2-4 octaves for the most apical channel with the LFshift-PB map. Similar performance was observed between maps for case 3. For the CI simulations, performance with the Strict-PB map declined with decreases in AID, while performance with the LFshift-PB map remained stable across cases. For the EAS simulations, performance with the Strict-PB map remained stable across cases, while performance with the LFshift-PB map improved with decreases in AID. CONCLUSIONS Listeners demonstrated differences with the Strict-PB versus LFshift-PB maps as a function of AID and whether acoustic low-frequency information was available (CI vs. EAS). These data support the use of the Strict-PB mapping procedure for AIDs ≥335°, though further study including time for acclimatization in CI and EAS users is warranted.
Collapse
Affiliation(s)
- Margaret T. Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alec D. Johnson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael W. Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brendan P. O’Connell
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Charlotte Eye Ear Nose & Throat Associates, P.A., Charlotte, NC, USA
| |
Collapse
|
6
|
Dillon MT, Canfarotta MW, Buss E, Rooth MA, Richter ME, Overton AB, Roth NE, Dillon SM, Raymond JH, Young A, Pearson AC, Davis AG, Dedmon MM, Brown KD, O'Connell BP. Influence of Electric Frequency-to-Place Mismatches on the Early Speech Recognition Outcomes for Electric-Acoustic Stimulation Users. Am J Audiol 2023; 32:251-260. [PMID: 36800505 PMCID: PMC10166189 DOI: 10.1044/2022_aja-21-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/21/2022] [Accepted: 11/28/2022] [Indexed: 02/19/2023] Open
Abstract
PURPOSE Cochlear implant (CI) recipients with hearing preservation experience significant improvements in speech recognition with electric-acoustic stimulation (EAS) as compared to with a CI alone, although outcomes across EAS users vary. The individual differences in performance may be due in part to default mapping procedures, which result in electric frequency-to-place mismatches for the majority of EAS users. This study assessed the influence of electric mismatches on the early speech recognition for EAS users. METHOD Twenty-one participants were randomized at EAS activation to listen exclusively with a default or place-based map. For both groups, the unaided thresholds determined the acoustic cutoff frequency (i.e., > 65 dB HL). For default maps, the electric filter frequencies were assigned to avoid spectral gaps in frequency information but created varying magnitudes of mismatches. For place-based maps, the electric filter frequencies were assigned to avoid frequency-to-place mismatches. Recognition of consonant-nucleus-consonant words and vowels was assessed at activation and 1, 3, and 6 months postactivation. RESULTS For participants with default maps, electric mismatch at 1500 Hz ranged from 2 to -12.0 semitones (Mdn = -5 semitones). Poorer performance was observed for those with larger magnitudes of electric mismatch. This effect was observed through 6 months of EAS listening experience. CONCLUSIONS The present sample of EAS users experienced better initial performance when electric mismatches were small or eliminated. These data suggest the utility of methods that reduce electric mismatches, such as place-based mapping procedures. Investigation is ongoing to determine whether these differences persist with long-term EAS use. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.22096523.
Collapse
Affiliation(s)
- Margaret T. Dillon
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill
| | - Michael W. Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Meredith A. Rooth
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Margaret E. Richter
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill
| | | | | | | | | | - Allison Young
- Department of Audiology, UNC Health, Chapel Hill, NC
| | | | - Amanda G. Davis
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill
| | - Matthew M. Dedmon
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Kevin D. Brown
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Brendan P. O'Connell
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| |
Collapse
|
7
|
Winn MB, Wright RA. Reconsidering commonly used stimuli in speech perception experiments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:1394. [PMID: 36182291 DOI: 10.1121/10.0013415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
This paper examines some commonly used stimuli in speech perception experiments and raises questions about their use, or about the interpretations of previous results. The takeaway messages are: 1) the Hillenbrand vowels represent a particular dialect rather than a gold standard, and English vowels contain spectral dynamics that have been largely underappreciated, 2) the /ɑ/ context is very common but not clearly superior as a context for testing consonant perception, 3) /ɑ/ is particularly problematic when testing voice-onset-time perception because it introduces strong confounds in the formant transitions, 4) /dɑ/ is grossly overrepresented in neurophysiological studies and yet is insufficient as a generalized proxy for "speech perception," and 5) digit tests and matrix sentences including the coordinate response measure are systematically insensitive to important patterns in speech perception. Each of these stimulus sets and concepts is described with careful attention to their unique value and also cases where they might be misunderstood or over-interpreted.
Collapse
Affiliation(s)
- Matthew B Winn
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Richard A Wright
- Department of Linguistics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
8
|
American Cochlear Implant Alliance Task Force Guidelines for Clinical Assessment and Management of Adult Cochlear Implantation for Single-Sided Deafness. Ear Hear 2022; 43:1605-1619. [PMID: 35994570 PMCID: PMC9592177 DOI: 10.1097/aud.0000000000001260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The indications for cochlear implantation have expanded to include individuals with profound sensorineural hearing loss in the impaired ear and normal hearing (NH) in the contralateral ear, known as single-sided deafness (SSD). There are additional considerations for the clinical assessment and management of adult cochlear implant candidates and recipients with SSD as compared to conventional cochlear implant candidates with bilateral moderate to profound sensorineural hearing loss. The present report reviews the current evidence relevant to the assessment and management of adults with SSD. A systematic review was also conducted on published studies that investigated outcomes of cochlear implant use on measures of speech recognition in quiet and noise, sound source localization, tinnitus perception, and quality of life for this patient population. Expert consensus and systematic review of the current literature were combined to provide guidance for the clinical assessment and management of adults with SSD.
Collapse
|
9
|
Dillon MT, O'Connell BP, Canfarotta MW, Buss E, Hopfinger J. Effect of Place-Based Versus Default Mapping Procedures on Masked Speech Recognition: Simulations of Cochlear Implant Alone and Electric-Acoustic Stimulation. Am J Audiol 2022; 31:322-337. [PMID: 35394798 DOI: 10.1044/2022_aja-21-00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Cochlear implant (CI) recipients demonstrate variable speech recognition when listening with a CI-alone or electric-acoustic stimulation (EAS) device, which may be due in part to electric frequency-to-place mismatches created by the default mapping procedures. Performance may be improved if the filter frequencies are aligned with the cochlear place frequencies, known as place-based mapping. Performance with default maps versus an experimental place-based map was compared for participants with normal hearing when listening to CI-alone or EAS simulations to observe potential outcomes prior to initiating an investigation with CI recipients. METHOD A noise vocoder simulated CI-alone and EAS devices, mapped with default or place-based procedures. The simulations were based on an actual 24-mm electrode array recipient, whose insertion angles for each electrode contact were used to estimate the respective cochlear place frequency. The default maps used the filter frequencies assigned by the clinical software. The filter frequencies for the place-based maps aligned with the cochlear place frequencies for individual contacts in the low- to mid-frequency cochlear region. For the EAS simulations, low-frequency acoustic information was filtered to simulate aided low-frequency audibility. Performance was evaluated for the AzBio sentences presented in a 10-talker masker at +5 dB signal-to-noise ratio (SNR), +10 dB SNR, and asymptote. RESULTS Performance was better with the place-based maps as compared with the default maps for both CI-alone and EAS simulations. For instance, median performance at +10 dB SNR for the CI-alone simulation was 57% correct for the place-based map and 20% for the default map. For the EAS simulation, those values were 59% and 37% correct. Adding acoustic low-frequency information resulted in a similar benefit for both maps. CONCLUSIONS Reducing frequency-to-place mismatches, such as with the experimental place-based mapping procedure, produces a greater benefit in speech recognition than maximizing bandwidth for CI-alone and EAS simulations. Ongoing work is evaluating the initial and long-term performance benefits in CI-alone and EAS users. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.19529053.
Collapse
Affiliation(s)
- Margaret T. Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill
| | - Brendan P. O'Connell
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Michael W. Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Joseph Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| |
Collapse
|
10
|
Saadoun A, Schein A, Péan V, Legrand P, Aho Glélé LS, Bozorg Grayeli A. Frequency Fitting Optimization Using Evolutionary Algorithm in Cochlear Implant Users with Bimodal Binaural Hearing. Brain Sci 2022; 12:brainsci12020253. [PMID: 35204015 PMCID: PMC8870060 DOI: 10.3390/brainsci12020253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Optimizing hearing in patients with a unilateral cochlear implant (CI) and contralateral acoustic hearing is a challenge. Evolutionary algorithms (EA) can explore a large set of potential solutions in a stochastic manner to approach the optimum of a minimization problem. The objective of this study was to develop and evaluate an EA-based protocol to modify the default frequency settings of a MAP (fMAP) of the CI in patients with bimodal hearing. Methods: This monocentric prospective study included 27 adult CI users (with post-lingual deafness and contralateral functional hearing). A fitting program based on EA was developed to approach the best fMAP. Generated fMAPs were tested by speech recognition (word recognition score, WRS) in noise and free-field-like conditions. By combining these first fMAPs and adding some random changes, a total of 13 fMAPs over 3 generations were produced. Participants were evaluated before and 45 to 60 days after the fitting by WRS in noise and questionnaires on global sound quality and music perception in bimodal binaural conditions. Results: WRS in noise improved with the EA-based fitting in comparison to the default fMAP (41.67 ± 9.70% versus 64.63 ± 16.34%, respectively, p = 0.0001, signed-rank test). The global sound quality and music perception were also improved, as judged by ratings on questionnaires and scales. Finally, most patients chose to keep the new fitting definitively. Conclusions: By modifying the default fMAPs, the EA improved the speech discrimination in noise and the sound quality in bimodal binaural conditions.
Collapse
Affiliation(s)
- Alexis Saadoun
- Department of Otolaryngology—Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France; (A.S.); (A.S.)
| | - Antoine Schein
- Department of Otolaryngology—Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France; (A.S.); (A.S.)
| | - Vincent Péan
- Clinical Support Department, MED-EL, 75012 Paris, France;
| | - Pierrick Legrand
- Institute of Mathematics of Bordeaux, UMR CNRS 5251, ASTRAL Team, Inria Bordeaux Sud-Ouest, University of Bordeaux, 33405 Talence, France;
| | - Ludwig Serge Aho Glélé
- Department of Hospital Epidemiology and Infection Control, Dijon University Hospital, 21000 Dijon, France;
| | - Alexis Bozorg Grayeli
- Department of Otolaryngology—Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France; (A.S.); (A.S.)
- ImVia Research Laboratory, Bourgogne-Franche Comté University, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
11
|
Canfarotta MW, Dillon MT, Brown KD, Pillsbury HC, Dedmon MM, O'Connell BP. Insertion Depth and Cochlear Implant Speech Recognition Outcomes: A Comparative Study of 28- and 31.5-mm Lateral Wall Arrays. Otol Neurotol 2022; 43:183-189. [PMID: 34772886 PMCID: PMC8752482 DOI: 10.1097/mao.0000000000003416] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES 1) To compare speech recognition outcomes between cochlear implant (CI) recipients of 28- and 31.5-mm lateral wall electrode arrays, and 2) to characterize the relationship between angular insertion depth (AID) and speech recognition. STUDY DESIGN Retrospective review. SETTING Tertiary academic referral center. PATIENTS Seventy-five adult CI recipients of fully inserted 28-mm (n = 28) or 31.5-mm (n = 47) lateral wall arrays listening with a CI-alone device. INTERVENTIONS Cochlear implantation with postoperative computed tomography. MAIN OUTCOME MEASURES Consonant-nucleus-consonant (CNC) word recognition assessed with the CI-alone at 12 months postactivation. RESULTS The mean AID of the most apical electrode contact for the 31.5-mm array recipients was significantly deeper than the 28-mm array recipients (628° vs 571°, p < 0.001). Following 12 months of listening experience, mean CNC word scores were significantly better for recipients of 31.5-mm arrays compared with those implanted with 28-mm arrays (59.5% vs 48.3%, p = 0.004; Cohen's d = 0.70; 95% CI [0.22, 1.18]). There was a significant positive correlation between AID and CNC word scores (r = 0.372, p = 0.001), with a plateau in performance observed around 600°. CONCLUSIONS Cochlear implant recipients implanted with a 31.5-mm array experienced better speech recognition than those with a 28-mm array at 12 months postactivation. Deeper insertion of a lateral wall array appears to confer speech recognition benefit up to ∼600°, with a plateau in performance observed thereafter. These data provide preliminary evidence of the insertion depth necessary to optimize speech recognition outcomes for lateral wall electrode arrays among CI-alone users.
Collapse
Affiliation(s)
- Michael W Canfarotta
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
12
|
Relationship Between Electrocochleography, Angular Insertion Depth, and Cochlear Implant Speech Perception Outcomes. Ear Hear 2021; 42:941-948. [PMID: 33369942 PMCID: PMC8217403 DOI: 10.1097/aud.0000000000000985] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Electrocochleography (ECochG), obtained before the insertion of a cochlear implant (CI) array, provides a measure of residual cochlear function that accounts for a substantial portion of variability in postoperative speech perception outcomes in adults. It is postulated that subsequent surgical factors represent independent sources of variance in outcomes. Prior work has demonstrated a positive correlation between angular insertion depth (AID) of straight arrays and speech perception under the CI-alone condition, with an inverse relationship observed for precurved arrays. The purpose of the present study was to determine the combined effects of ECochG, AID, and array design on speech perception outcomes. DESIGN Participants were 50 postlingually deafened adult CI recipients who received one of three straight arrays (MED-EL Flex24, MED-EL Flex28, and MED-EL Standard) and two precurved arrays (Cochlear Contour Advance and Advanced Bionics HiFocus Mid-Scala). Residual cochlear function was determined by the intraoperative ECochG total response (TR) measured before array insertion, which is the sum of magnitudes of spectral components in response to tones of different stimulus frequencies across the speech spectrum. The AID was then determined with postoperative imaging. Multiple linear regression was used to predict consonant-nucleus-consonant (CNC) word recognition in the CI-alone condition at 6 months postactivation based on AID, TR, and array design. RESULTS Forty-one participants received a straight array and nine received a precurved array. The AID of the most apical electrode contact ranged from 341° to 696°. The TR measured by ECochG accounted for 43% of variance in speech perception outcomes (p < 0.001). A regression model predicting CNC word scores with the TR tended to underestimate the performance for precurved arrays and deeply inserted straight arrays, and to overestimate the performance for straight arrays with shallower insertions. When combined in a multivariate linear regression, the TR, AID, and array design accounted for 72% of variability in speech perception outcomes (p < 0.001). CONCLUSIONS A model of speech perception outcomes that incorporates TR, AID, and array design represents an improvement over a model based on TR alone. The success of this model shows that peripheral factors including cochlear health and electrode placement may play a predominant role in speech perception with CIs.
Collapse
|
13
|
Abstract
Supplemental Digital Content is available in the text. The primary objective of this study is to identify the biographic, audiologic, and electrode position factors that influence speech perception performance in adult cochlear implant (CI) recipients implanted with a device from a single manufacturer. The secondary objective is to investigate the independent association of the type of electrode (precurved or straight) with speech perception.
Collapse
|
14
|
Xu K, Willis S, Gopen Q, Fu QJ. Effects of Spectral Resolution and Frequency Mismatch on Speech Understanding and Spatial Release From Masking in Simulated Bilateral Cochlear Implants. Ear Hear 2021; 41:1362-1371. [PMID: 32132377 DOI: 10.1097/aud.0000000000000865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Due to interaural frequency mismatch, bilateral cochlear-implant (CI) users may be less able to take advantage of binaural cues that normal-hearing (NH) listeners use for spatial hearing, such as interaural time differences and interaural level differences. As such, bilateral CI users have difficulty segregating competing speech even when the target and competing talkers are spatially separated. The goal of this study was to evaluate the effects of spectral resolution, tonotopic mismatch (the frequency mismatch between the acoustic center frequency assigned to CI electrode within an implanted ear relative to the expected spiral ganglion characteristic frequency), and interaural mismatch (differences in the degree of tonotopic mismatch in each ear) on speech understanding and spatial release from masking (SRM) in the presence of competing talkers in NH subjects listening to bilateral vocoder simulations. DESIGN During testing, both target and masker speech were presented in five-word sentences that had the same syntax but were not necessarily meaningful. The sentences were composed of five categories in fixed order (Name, Verb, Number, Color, and Clothes), each of which had 10 items, such that multiple sentences could be generated by randomly selecting a word from each category. Speech reception thresholds (SRTs) for the target sentence presented in competing speech maskers were measured. The target speech was delivered to both ears and the two speech maskers were delivered to (1) both ears (diotic masker), or (2) different ears (dichotic masker: one delivered to the left ear and the other delivered to the right ear). Stimuli included the unprocessed speech and four 16-channel sine-vocoder simulations with different interaural mismatch (0, 1, and 2 mm). SRM was calculated as the difference between the diotic and dichotic listening conditions. RESULTS With unprocessed speech, SRTs were 0.3 and -18.0 dB for the diotic and dichotic maskers, respectively. For the spectrally degraded speech with mild tonotopic mismatch and no interaural mismatch, SRTs were 5.6 and -2.0 dB for the diotic and dichotic maskers, respectively. When the tonotopic mismatch increased in both ears, SRTs worsened to 8.9 and 2.4 dB for the diotic and dichotic maskers, respectively. When the two ears had different tonotopic mismatch (e.g., there was interaural mismatch), the performance drop in SRTs was much larger for the dichotic than for the diotic masker. The largest SRM was observed with unprocessed speech (18.3 dB). With the CI simulations, SRM was significantly reduced to 7.6 dB even with mild tonotopic mismatch but no interaural mismatch; SRM was further reduced with increasing interaural mismatch. CONCLUSIONS The results demonstrate that frequency resolution, tonotopic mismatch, and interaural mismatch have differential effects on speech understanding and SRM in simulation of bilateral CIs. Minimizing interaural mismatch may be critical to optimize binaural benefits and improve CI performance for competing speech, a typical listening environment. SRM (the difference in SRTs between diotic and dichotic maskers) may be a useful clinical tool to assess interaural frequency mismatch in bilateral CI users and to evaluate the benefits of optimization methods that minimize interaural mismatch.
Collapse
Affiliation(s)
- Kevin Xu
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | |
Collapse
|
15
|
The smaller the frequency-to-place mismatch the better the hearing outcomes in cochlear implant recipients? Eur Arch Otorhinolaryngol 2021; 279:1875-1883. [PMID: 34131770 DOI: 10.1007/s00405-021-06899-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the effect of frequency-to-place mismatch, i.e. the mismatch between the tonotopic frequency map in the cochlea and the frequency band that is assigned to an electrode contact of a cochlear implant (CI) at the same cochlear location on speech perception outcomes, using postoperative CT images. STUDY DESIGN Retrospective observational single-centre study. METHODS Retrospective pre- and postoperative clinical CT data of 39 CI recipients with normal cochlear anatomy were analysed in an otological surgical planning software. The tonotopic frequency at each electrode position was estimated using the Greenwood function. For each patient, frequency-to-place mismatch between the tonotopic frequency and the fitted centre frequency for each electrode contact was calculated. The influence of frequency-to-place mismatch on speech perception in noise at 6 and 12 months after CI activation was studied. RESULTS A significant linear correlation was found between the frequency-to-place mismatch and speech perception in noise 6 months after cochlear implantation (p < 0.05). The smaller the frequency-to-place mismatch, the better the initial speech perception in noise results of the CI recipients. The significant effect disappeared after 12 months CI experience. CONCLUSION The study findings support the idea of minimizing the frequency-to-place mismatch in CI recipients in order to pursue better initial speech perception in noise. Further research is needed to investigate the prospect of tonotopic fitting strategies based upon postoperative CT images of the exact locations of the electrode contacts.
Collapse
|
16
|
Listening to speech with a guinea pig-to-human brain-to-brain interface. Sci Rep 2021; 11:12231. [PMID: 34112826 PMCID: PMC8192924 DOI: 10.1038/s41598-021-90823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
Nicolelis wrote in his 2003 review on brain-machine interfaces (BMIs) that the design of a successful BMI relies on general physiological principles describing how neuronal signals are encoded. Our study explored whether neural information exchanged between brains of different species is possible, similar to the information exchange between computers. We show for the first time that single words processed by the guinea pig auditory system are intelligible to humans who receive the processed information via a cochlear implant. We recorded the neural response patterns to single-spoken words with multi-channel electrodes from the guinea inferior colliculus. The recordings served as a blueprint for trains of biphasic, charge-balanced electrical pulses, which a cochlear implant delivered to the cochlear implant user’s ear. Study participants completed a four-word forced-choice test and identified the correct word in 34.8% of trials. The participants' recognition, defined by the ability to choose the same word twice, whether right or wrong, was 53.6%. For all sessions, the participants received no training and no feedback. The results show that lexical information can be transmitted from an animal to a human auditory system. In the discussion, we will contemplate how learning from the animals might help developing novel coding strategies.
Collapse
|
17
|
Dillon MT, Canfarotta MW, Buss E, O'Connell BP. Comparison of Speech Recognition With an Organ of Corti Versus Spiral Ganglion Frequency-to-Place Function in Place-Based Mapping of Cochlear Implant and Electric-Acoustic Stimulation Devices. Otol Neurotol 2021; 42:721-725. [PMID: 33625196 PMCID: PMC8935664 DOI: 10.1097/mao.0000000000003070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To compare acute speech recognition with a cochlear implant (CI) alone or electric-acoustic stimulation (EAS) device for place-based maps calculated with an organ of Corti (OC) versus a spiral ganglion (SG) frequency-to-place function. PATIENTS Eleven adult CI recipients of a lateral wall electrode array. INTERVENTION Postoperative imaging was used to derive place-based maps calculated with an OC versus SG function. MAIN OUTCOME MEASURE Phoneme recognition was evaluated at initial activation with consonant-nucleus-consonant (CNC) words presented using an OC versus a SG place-based map. RESULTS For the 9 CI-alone users, there was a nonsignificant trend for better acute phoneme recognition with the SG map (mean 18 RAUs) than the OC map (mean 9 RAUs; p = 0.071, 95% CI [≤-1.2]). When including the 2 EAS users in the analysis, performance was significantly better with the SG map (mean 21 RAUs) than the OC map (mean 7 RAUs; p = 0.019, 95% CI [≤-6.2]). CONCLUSIONS Better phoneme recognition with the SG frequency-to-place function could indicate more natural tonotopic alignment of information compared with the OC place-based map.A prospective, randomized investigation is currently underway to assess longitudinal outcomes with place-based mapping in CI-alone and EAS devices using the SG frequency-to-place function.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
- Division of Speech & Hearing, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, North Carolina
| | | | - Emily Buss
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
| | | |
Collapse
|
18
|
Canfarotta MW, Dillon MT, Brown KD, Pillsbury HC, Dedmon MM, O'Connell BP. Incidence of Complete Insertion in Cochlear Implant Recipients of Long Lateral Wall Arrays. Otolaryngol Head Neck Surg 2021; 165:571-577. [PMID: 33588627 DOI: 10.1177/0194599820987456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High rates of partial insertion have been reported for cochlear implant (CI) recipients of long lateral wall electrode arrays, presumably caused by resistance encountered during insertion due to cochlear morphology. With recent advances in long-electrode array design, we sought to investigate (1) the incidence of complete insertions among patients implanted with 31.5-mm flexible arrays and (2) whether complete insertion is limited by cochlear duct length (CDL). STUDY DESIGN Retrospective review. SETTING Tertiary referral center. METHODS Fifty-one adult CI recipients implanted with 31.5-mm flexible lateral wall arrays underwent postoperative computed tomography to determine the rate of complete insertion, defined as all contacts being intracochlear. CDL and angular insertion depth (AID) were compared between complete and partial insertion cohorts. RESULTS Most cases had a complete insertion (96.1%, n = 49). Among the complete insertion cohort, the median CDL was 33.6 mm (range, 30.3-37.9 mm), and median AID was 641° (range, 533-751°). Two cases of partial insertion had relatively short CDL (31.8 mm and 32.3 mm) and shallow AID (542° and 575°). Relatively shallow AID for the 2 cases of partial insertion fails to support the idea that CDL alone prevents a complete insertion. CONCLUSION Complete insertion of a 31.5-mm flexible array is feasible in most cases and does not appear to be limited by the range of CDL observed in this cohort. Future studies are needed to estimate other variations in cochlear morphology that could predict resistance and failure to achieve complete insertion with long arrays.
Collapse
Affiliation(s)
- Michael W Canfarotta
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Kevin D Brown
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Harold C Pillsbury
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Matthew M Dedmon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Brendan P O'Connell
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Dillon MT, Canfarotta MW, Buss E, Hopfinger J, O'Connell BP. Effectiveness of Place-based Mapping in Electric-Acoustic Stimulation Devices. Otol Neurotol 2021; 42:197-202. [PMID: 33885267 PMCID: PMC8787166 DOI: 10.1097/mao.0000000000002965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The default mapping procedure for electric-acoustic stimulation (EAS) devices uses the cochlear implant recipient's unaided detection thresholds in the implanted ear to derive the acoustic settings and assign the lowest frequency filter of electric stimulation. Individual differences for speech recognition with EAS may be due to discrepancies between the electric frequency filters of individual electrode contacts and the cochlear place of stimulation, known as a frequency-to-place mismatch. Frequency-to-place mismatch of greater than 1/2 octave has been demonstrated in up to 60% of EAS users. Aligning the electric frequency filters via a place-based mapping procedure using postoperative imaging may improve speech recognition with EAS. METHODS Masked sentence recognition was evaluated for normal-hearing subjects (n = 17) listening with vocoder simulations of EAS, using a place-based map and a default map. Simulation parameters were based on audiometric and imaging data from a representative 24-mm electrode array recipient and EAS user. The place-based map aligned electric frequency filters with the cochlear place frequency, which introduced a gap between the simulated acoustic and electric output. The default map settings were derived from the clinical programming software and provided the full speech frequency range. RESULTS Masked sentence recognition was significantly better for simulated EAS with the place-based map as compared with the default map. CONCLUSION The simulated EAS place-based map supported better performance than the simulated EAS default map. This indicates that individualizing maps may improve performance in EAS users by helping them achieve better asymptotic performance earlier and mitigate the need for acclimatization.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
- Division of Speech & Hearing, Department of Allied Health Sciences
| | | | - Emily Buss
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
| | - Joseph Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, North Carolina
| | | |
Collapse
|
20
|
Newman RS, Morini G, Shroads E, Chatterjee M. Toddlers' fast-mapping from noise-vocoded speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2432. [PMID: 32359241 PMCID: PMC7176458 DOI: 10.1121/10.0001129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The ability to recognize speech that is degraded spectrally is a critical skill for successfully using a cochlear implant (CI). Previous research has shown that toddlers with normal hearing can successfully recognize noise-vocoded words as long as the signal contains at least eight spectral channels [Newman and Chatterjee. (2013). J. Acoust. Soc. Am. 133(1), 483-494; Newman, Chatterjee, Morini, and Remez. (2015). J. Acoust. Soc. Am. 138(3), EL311-EL317], although they have difficulty with signals that only contain four channels of information. Young children with CIs not only need to match a degraded speech signal to a stored representation (word recognition), but they also need to create new representations (word learning), a task that is likely to be more cognitively demanding. Normal-hearing toddlers aged 34 months were tested on their ability to initially learn (fast-map) new words in noise-vocoded stimuli. While children were successful at fast-mapping new words from 16-channel noise-vocoded stimuli, they failed to do so from 8-channel noise-vocoded speech. The level of degradation imposed by 8-channel vocoding appears sufficient to disrupt fast-mapping in young children. Recent results indicate that only CI patients with high spectral resolution can benefit from more than eight active electrodes. This suggests that for many children with CIs, reduced spectral resolution may limit their acquisition of novel words.
Collapse
Affiliation(s)
- Rochelle S Newman
- Department of Hearing and Speech Sciences, University of Maryland, 0100 Lefrak Hall, College Park, Maryland 20742, USA
| | - Giovanna Morini
- Department of Communication Sciences and Disorders, University of Delaware, 100 Discovery Boulevard, Newark, Delaware 19713, USA
| | - Emily Shroads
- Department of Hearing and Speech Sciences, University of Maryland, 0100 Lefrak Hall, College Park, Maryland 20742, USA
| | - Monita Chatterjee
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
21
|
Grasmeder ML, Verschuur CA, van Besouw RM, Wheatley AMH, Newman TA. Measurement of pitch perception as a function of cochlear implant electrode and its effect on speech perception with different frequency allocations. Int J Audiol 2018; 58:158-166. [PMID: 30370800 DOI: 10.1080/14992027.2018.1516048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE An experiment was conducted to investigate the possibility that speech perception could be improved for some cochlear implant (CI) users by adjustment of the frequency allocation to the electrodes, following assessment of pitch perception along the electrode array. STUDY SAMPLE Thirteen adult CI users with MED-EL devices participated in the study. DESIGN Pitch perception was assessed for individual CI electrode pairs using the Pitch Contour Test (PCT), giving information on pitch discrimination and pitch ranking for adjacent electrodes. Sentence perception in noise was also assessed with ten different frequency allocations, including the default. RESULTS Pitch perception was found to be poorer for both discrimination and ranking scores at either end of the electrode array. A significant effect of frequency allocation was found for sentence scores [F(4.24,38.2) = 7.14, p < 0.001] and a significant interaction between sentence score and PCT ranking score for basal electrodes was found [F(4.24,38.2) = 2.95, p = 0.03]. Participants with poorer pitch perception at the basal end had poorer scores for some allocations with greater basal shift. CONCLUSIONS The results suggest that speech perception could be improved for CI users by assessment of pitch perception using the PCT and subsequent adjustment of pitch-related stimulation parameters.
Collapse
Affiliation(s)
- M L Grasmeder
- a Auditory Implant Service University of Southampton , Southampton , UK
| | - C A Verschuur
- a Auditory Implant Service University of Southampton , Southampton , UK
| | - R M van Besouw
- b Institute of Sound and Vibration Research, University of Southampton , UK
| | - A M H Wheatley
- b Institute of Sound and Vibration Research, University of Southampton , UK
| | - T A Newman
- c Southampton Neuroscience Group , University of Southampton , UK
| |
Collapse
|
22
|
Zahara D, Dewi RD, Aboet A, Putranto FM, Lubis ND, Ashar T. Variations in Cochlear Size of Cochlear Implant Candidates. Int Arch Otorhinolaryngol 2018; 23:184-190. [PMID: 30956703 PMCID: PMC6449142 DOI: 10.1055/s-0038-1661360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction
The cochlear anatomy varies in each individual, and that has an impact on decisions regarding the insertion of electrodes. The measurement of the cochlear size is the routine examination required to choose the proper cochlear implant (CI) electrodes.
Objective
To acquire normative data on the size of the cochlea (length, width, height, scala timpani [ST] height, cochlear duct length [CDL]) of CI candidates in Medan, Indonesia.
Methods
This descriptive study was conducted based on high-resolution computed tomography (HRCT) temporal bone data and on HRCT temporal data manipulated to reconstruct three-dimensional (3D) multiplanar images with OsiriX MD DICOM Viewer version 9.5.1 (Pixmeo SARL, Bernex, Geneva, Switzerland) viewer of 18 patients (36 ears) who were CI candidates in Medan, Indonesia, in order to determine cochlear length (A), cochlear width, cochlear height, ST height and CDL, calculated through a simple mathematical function.
Results
The average cochlear length (A) was 8.75 mm (standard deviation [SD] = 0.31 mm); the average cochlear width was 6.53 mm (SD = 0.35 mm); the average cochlear height was 3.26 mm (SD = 0.24 mm) and the average ST height at the basal cochlea was 1.00 mm (SD = 0.1 mm); and 0.71 mm (SD = 0.1 mm) at the half turn of cochlea. The average total CDL was 32.45 mm (SD = 1.31 mm; range: 30.01–34.83 mm).
Conclusion
The cochlear size varies in each individual; therefore, the temporal bone measurement of CI candidates using HRCT is essential: for the selection of suitable implant electrodes; to minimize cochlear damages at the insertion of the electrode arrays; and to maximize the hearing improvements.
Collapse
Affiliation(s)
- Devira Zahara
- Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Rima Diana Dewi
- Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Askaroellah Aboet
- Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Fikri Mirza Putranto
- Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine, and Health Sciences, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jakarta, Indonesia
| | - Netty Delvrita Lubis
- Department of Radiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Taufik Ashar
- Department of Environmental Health, Faculty of Public Health, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| |
Collapse
|
23
|
Mistrík P, Jolly C, Sieber D, Hochmair I. Challenging aspects of contemporary cochlear implant electrode array design. World J Otorhinolaryngol Head Neck Surg 2018; 3:192-199. [PMID: 29780962 PMCID: PMC5956130 DOI: 10.1016/j.wjorl.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/12/2017] [Indexed: 01/25/2023] Open
Abstract
Objective A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Methods Review of up-to-date literature. Results Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Conclusions Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the advantages of both types: perimodiolar location in the basal turn extended to lateral wall location for higher turn locations.
Collapse
|
24
|
Chang SA, Won JH, Kim H, Oh SH, Tyler RS, Cho CH. Frequency-Limiting Effects on Speech and Environmental Sound Identification for Cochlear Implant and Normal Hearing Listeners. J Audiol Otol 2018; 22:28-38. [PMID: 29325391 PMCID: PMC5784366 DOI: 10.7874/jao.2017.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES It is important to understand the frequency region of cues used, and not used, by cochlear implant (CI) recipients. Speech and environmental sound recognition by individuals with CI and normal-hearing (NH) was measured. Gradients were also computed to evaluate the pattern of change in identification performance with respect to the low-pass filtering or high-pass filtering cutoff frequencies. SUBJECTS AND METHODS Frequency-limiting effects were implemented in the acoustic waveforms by passing the signals through low-pass filters (LPFs) or high-pass filters (HPFs) with seven different cutoff frequencies. Identification of Korean vowels and consonants produced by a male and female speaker and environmental sounds was measured. Crossover frequencies were determined for each identification test, where the LPF and HPF conditions show the identical identification scores. RESULTS CI and NH subjects showed changes in identification performance in a similar manner as a function of cutoff frequency for the LPF and HPF conditions, suggesting that the degraded spectral information in the acoustic signals may similarly constraint the identification performance for both subject groups. However, CI subjects were generally less efficient than NH subjects in using the limited spectral information for speech and environmental sound identification due to the inefficient coding of acoustic cues through the CI sound processors. CONCLUSIONS This finding will provide vital information in Korean for understanding how different the frequency information is in receiving speech and environmental sounds by CI processor from normal hearing.
Collapse
Affiliation(s)
- Son-A Chang
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Jong Ho Won
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, TN, USA
| | - HyangHee Kim
- Graduate Program of Speech and Language Pathology, Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Ha Oh
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Richard S Tyler
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Chang Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
25
|
Landsberger DM, Svrakic M, Roland JT, Svirsky M. The Relationship Between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear Implants. Ear Hear 2016; 36:e207-13. [PMID: 25860624 DOI: 10.1097/aud.0000000000000163] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Commercially available cochlear implant systems attempt to deliver frequency information going down to a few hundred Hertz, but the electrode arrays are not designed to reach the most apical regions of the cochlea, which correspond to these low frequencies. This may cause a mismatch between the frequencies presented by a cochlear implant electrode array and the frequencies represented at the corresponding location in a normal-hearing cochlea. In the following study, the mismatch between the frequency presented at a given cochlear angle and the frequency expected by an acoustic hearing ear at the corresponding angle is examined for the cochlear implant systems that are most commonly used in the United States. DESIGN The angular insertion of each of the electrodes on four different electrode arrays (MED-EL Standard, MED-EL Flex28, Advanced Bionics HiFocus 1J, and Cochlear Contour Advance) was estimated from X-ray. For the angular location of each electrode on each electrode array, the predicted spiral ganglion frequency was estimated. The predicted spiral ganglion frequency was compared with the center frequency provided by the corresponding electrode using the manufacturer's default frequency-to-electrode allocation. RESULTS Differences across devices were observed for the place of stimulation for frequencies below 650 Hz. Longer electrode arrays (i.e., the MED-EL Standard and Flex28) demonstrated smaller deviations from the spiral ganglion map than the other electrode arrays. For insertion angles up to approximately 270°, the frequencies presented at a given location were typically approximately an octave below what would be expected by a spiral ganglion frequency map, while the deviations were larger for angles deeper than 270°. For frequencies above 650 Hz, the frequency to angle relationship was consistent across all four electrode models. CONCLUSIONS A mismatch was observed between the predicted frequency and the default frequency provided by every electrode on all electrode arrays. The mismatch can be reduced by changing the default frequency allocations, inserting electrodes deeper into the cochlea, or allowing cochlear implant users to adapt to the mismatch. Further studies are required to fully assess the clinical significance of the frequency mismatch.
Collapse
Affiliation(s)
- David M Landsberger
- Department of Otolaryngology, New York University School of Medicine, New York, USA
| | | | | | | |
Collapse
|
26
|
Mistrík P, Jolly C. Optimal electrode length to match patient specific cochlear anatomy. Eur Ann Otorhinolaryngol Head Neck Dis 2016; 133 Suppl 1:S68-71. [DOI: 10.1016/j.anorl.2016.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/15/2022]
|
27
|
Aguiar DE, Taylor NE, Li J, Gazanfari DK, Talavage TM, Laflen JB, Neuberger H, Svirsky MA. Information theoretic evaluation of a noiseband-based cochlear implant simulator. Hear Res 2015; 333:185-193. [PMID: 26409068 DOI: 10.1016/j.heares.2015.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 08/25/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022]
Abstract
Noise-band vocoders are often used to simulate the signal processing algorithms used in cochlear implants (CIs), producing acoustic stimuli that may be presented to normal hearing (NH) subjects. Such evaluations may obviate the heterogeneity of CI user populations, achieving greater experimental control than when testing on CI subjects. However, it remains an open question whether advancements in algorithms developed on NH subjects using a simulator will necessarily improve performance in CI users. This study assessed the similarity in vowel identification of CI subjects and NH subjects using an 8-channel noise-band vocoder simulator configured to match input and output frequencies or to mimic output after a basalward shift of input frequencies. Under each stimulus condition, NH subjects performed the task both with and without feedback/training. Similarity of NH subjects to CI users was evaluated using correct identification rates and information theoretic approaches. Feedback/training produced higher rates of correct identification, as expected, but also resulted in error patterns that were closer to those of the CI users. Further evaluation remains necessary to determine how patterns of confusion at the token level are affected by the various parameters in CI simulators, providing insight into how a true CI simulation may be developed to facilitate more rapid prototyping and testing of novel CI signal processing and electrical stimulation strategies.
Collapse
Affiliation(s)
- Daniel E Aguiar
- School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - N Ellen Taylor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jing Li
- School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Daniel K Gazanfari
- School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Thomas M Talavage
- School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - J Brandon Laflen
- School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Heidi Neuberger
- DeVault Otologic Research Laboratory, Department of Otolaryngology/Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario A Svirsky
- DeVault Otologic Research Laboratory, Department of Otolaryngology/Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head & Neck Surgery, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
28
|
Casserly ED, Pisoni DB. Auditory Learning Using a Portable Real-Time Vocoder: Preliminary Findings. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2015; 58:1001-16. [PMID: 25674884 PMCID: PMC4490076 DOI: 10.1044/2015_jslhr-h-13-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/15/2015] [Indexed: 05/04/2023]
Abstract
PURPOSE Although traditional study of auditory training has been in controlled laboratory settings, interest has been increasing in more interactive options. The authors examine whether such interactive training can result in short-term perceptual learning, and the range of perceptual skills it impacts. METHOD Experiments 1 (N = 37) and 2 (N = 21) used pre- and posttest measures of speech and nonspeech recognition to find evidence of learning (within subject) and to compare the effects of 3 kinds of training (between subject) on the perceptual abilities of adults with normal hearing listening to simulations of cochlear implant processing. Subjects were given interactive, standard lab-based, or control training experience for 1 hr between the pre- and posttest tasks (unique sets across Experiments 1 & 2). RESULTS Subjects receiving interactive training showed significant learning on sentence recognition in quiet task (Experiment 1), outperforming controls but not lab-trained subjects following training. Training groups did not differ significantly on any other task, even those directly involved in the interactive training experience. CONCLUSIONS Interactive training has the potential to produce learning in 1 domain (sentence recognition in quiet), but the particulars of the present training method (short duration, high complexity) may have limited benefits to this single criterion task.
Collapse
|
29
|
Shannon RV. Auditory implant research at the House Ear Institute 1989-2013. Hear Res 2015; 322:57-66. [PMID: 25449009 PMCID: PMC4380593 DOI: 10.1016/j.heares.2014.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/29/2022]
Abstract
The House Ear Institute (HEI) had a long and distinguished history of auditory implant innovation and development. Early clinical innovations include being one of the first cochlear implant (CI) centers, being the first center to implant a child with a cochlear implant in the US, developing the auditory brainstem implant, and developing multiple surgical approaches and tools for Otology. This paper reviews the second stage of auditory implant research at House - in-depth basic research on perceptual capabilities and signal processing for both cochlear implants and auditory brainstem implants. Psychophysical studies characterized the loudness and temporal perceptual properties of electrical stimulation as a function of electrical parameters. Speech studies with the noise-band vocoder showed that only four bands of tonotopically arrayed information were sufficient for speech recognition, and that most implant users were receiving the equivalent of 8-10 bands of information. The noise-band vocoder allowed us to evaluate the effects of the manipulation of the number of bands, the alignment of the bands with the original tonotopic map, and distortions in the tonotopic mapping, including holes in the neural representation. Stimulation pulse rate was shown to have only a small effect on speech recognition. Electric fields were manipulated in position and sharpness, showing the potential benefit of improved tonotopic selectivity. Auditory training shows great promise for improving speech recognition for all patients. And the Auditory Brainstem Implant was developed and improved and its application expanded to new populations. Overall, the last 25 years of research at HEI helped increase the basic scientific understanding of electrical stimulation of hearing and contributed to the improved outcomes for patients with the CI and ABI devices. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
- Robert V Shannon
- Department of Otolaryngology, University of Southern California, Keck School of Medicine of USC, 806 W. Adams Blvd, Los Angeles, CA 90007-2505, USA.
| |
Collapse
|
30
|
Won JH, Jones GL, Moon IJ, Rubinstein JT. Spectral and temporal analysis of simulated dead regions in cochlear implants. J Assoc Res Otolaryngol 2015; 16:285-307. [PMID: 25740402 DOI: 10.1007/s10162-014-0502-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/23/2014] [Indexed: 11/29/2022] Open
Abstract
A cochlear implant (CI) electrode in a "cochlear dead region" will excite neighboring neural populations. In previous research that simulated such dead regions, stimulus information in the simulated dead region was either added to the immediately adjacent frequency regions or dropped entirely. There was little difference in speech perception ability between the two conditions. This may imply that there may be little benefit of ensuring that stimulus information on an electrode in a suspected cochlear dead region is transmitted. Alternatively, performance may be enhanced by a broader frequency redistribution, rather than adding stimuli from the dead region to the edges. In the current experiments, cochlear dead regions were introduced by excluding selected CI electrodes or vocoder noise-bands. Participants were assessed for speech understanding as well as spectral and temporal sensitivities as a function of the size of simulated dead regions. In one set of tests, the normal input frequency range of the sound processor was distributed among the active electrodes in bands with approximately logarithmic spacing ("redistributed" maps); in the remaining tests, information in simulated dead regions was dropped ("dropped" maps). Word recognition and Schroeder-phase discrimination performance, which require both spectral and temporal sensitivities, decreased as the size of simulated dead regions increased, but the redistributed and dropped remappings showed similar performance in these two tasks. Psychoacoustic experiments showed that the near match in word scores may reflect a tradeoff between spectral and temporal sensitivity: spectral-ripple discrimination was substantially degraded in the redistributed condition relative to the dropped condition while performance in a temporal modulation detection task degraded in the dropped condition but remained constant in the redistributed condition.
Collapse
Affiliation(s)
- Jong Ho Won
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, 98195, USA
| | | | | | | |
Collapse
|
31
|
Fu QJ, Galvin JJ, Wang X, Wu JL. Benefits of music training in mandarin-speaking pediatric cochlear implant users. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2015; 58:163-169. [PMID: 25321148 PMCID: PMC4712852 DOI: 10.1044/2014_jslhr-h-14-0127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/22/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
PURPOSE The aims of this study were to assess young (5- to 10-year-old) Mandarin-speaking cochlear implant (CI) users' musical pitch perception and to assess the benefits of computer-based home training on performance. METHOD Melodic contour identification (MCI) was used to assess musical pitch perception in 14 Mandarin-speaking pediatric CI users; the instrument timbre and the contour length were varied as experimental parameters. Six subjects received subsequent MCI training on their home computer in which auditory and visual feedback were provided. RESULTS MCI performance was generally poor (grand mean=33.3% correct) and highly variable, with scores ranging from 9.3% to 98.1% correct; there was no significant effect of instrument timbre or contour length on performance (p>.05). After 4 weeks of training, performance sharply improved. Follow-up measures that were conducted 8 weeks after training was stopped showed no significant decline in MCI performance. For the 6 trained subjects, there was a significant effect of contour length for the training and follow-up measures. CONCLUSION These preliminary data suggest that although baseline MCI performance initially may be poor, training may greatly improve Mandarin-speaking pediatric CI users' melodic pitch perception.
Collapse
Affiliation(s)
- Qian-Jie Fu
- Signal Processing and Auditory Research Laboratory, David Geffen School of Medicine, University of California Los Angeles
| | - John J. Galvin
- Signal Processing and Auditory Research Laboratory, David Geffen School of Medicine, University of California Los Angeles
| | - Xiaosong Wang
- Signal Processing and Auditory Research Laboratory, David Geffen School of Medicine, University of California Los Angeles
| | | |
Collapse
|
32
|
Grasmeder ML, Verschuur CA, Batty VB. Optimizing frequency-to-electrode allocation for individual cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:3313. [PMID: 25480076 DOI: 10.1121/1.4900831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Individual adjustment of frequency-to-electrode assignment in cochlear implants (CIs) may potentially improve speech perception outcomes. Twelve adult CI users were recruited for an experiment, in which frequency maps were adjusted using insertion angles estimated from post-operative x rays; results were analyzed for ten participants with good quality x rays. The allocations were a mapping to the Greenwood function, a compressed map limited to the area containing spiral ganglion (SG) cells, a reduced frequency range map (RFR), and participants' clinical maps. A trial period of at least six weeks was given for the clinical, Greenwood, and SG maps although participants could return to their clinical map if they wished. Performance with the Greenwood map was poor for both sentence and vowel perception and correlated with insertion angle; performance with the SG map was poorer than for the clinical map. The RFR map was significantly better than the clinical map for three participants, for sentence perception, but worse for three others. Those with improved performance had relatively deep insertions and poor electrode discrimination ability for apical electrodes. The results suggest that CI performance could be improved by adjustment of the frequency allocation, based on a measure of insertion angle and/or electrode discrimination ability.
Collapse
Affiliation(s)
- Mary L Grasmeder
- Auditory Implant Service, Faculty of Engineering and the Environment, Building 19, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Carl A Verschuur
- Auditory Implant Service, Faculty of Engineering and the Environment, Building 19, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Vincent B Batty
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
33
|
Mesnildrey Q, Macherey O. Simulating the dual-peak excitation pattern produced by bipolar stimulation of a cochlear implant: effects on speech intelligibility. Hear Res 2014; 319:32-47. [PMID: 25449010 DOI: 10.1016/j.heares.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Several electrophysiological and psychophysical studies have shown that the spatial excitation pattern produced by bipolar stimulation of a cochlear implant (CI) can have a dual-peak shape. The perceptual effects of this dual-peak shape were investigated using noise-vocoded CI simulations in which synthesis filters were designed to simulate the spread of neural activity produced by various electrode configurations, as predicted by a simple cochlear model. Experiments 1 and 2 tested speech recognition in the presence of a concurrent speech masker for various sets of single-peak and dual-peak synthesis filters and different numbers of channels. Similarly as results obtained in real CIs, both monopolar (MP, single-peak) and bipolar (BP + 1, dual-peak) simulations showed a plateau of performance above 8 channels. The benefit of increasing the number of channels was also lower for BP + 1 than for MP. This shows that channel interactions in BP + 1 become especially deleterious for speech intelligibility when a simulated electrode acts both as an active and as a return electrode for different channels because envelope information from two different analysis bands are being conveyed to the same spectral location. Experiment 3 shows that these channel interactions are even stronger in wide BP configuration (BP + 5), likely because the interfering speech envelopes are less correlated than in narrow BP + 1. Although the exact effects of dual- or multi-peak excitation in real CIs remain to be determined, this series of experiments suggest that multipolar stimulation strategies, such as bipolar or tripolar, should be controlled to avoid neural excitation in the vicinity of the return electrodes.
Collapse
Affiliation(s)
- Quentin Mesnildrey
- LMA-CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | - Olivier Macherey
- LMA-CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
34
|
Svirsky MA, Talavage TM, Sinha S, Neuburger H, Azadpour M. Gradual adaptation to auditory frequency mismatch. Hear Res 2014; 322:163-70. [PMID: 25445816 DOI: 10.1016/j.heares.2014.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/01/2022]
Abstract
What is the best way to help humans adapt to a distorted sensory input? Interest in this question is more than academic. The answer may help facilitate auditory learning by people who became deaf after learning language and later received a cochlear implant (a neural prosthesis that restores hearing through direct electrical stimulation of the auditory nerve). There is evidence that some cochlear implants (which provide information that is spectrally degraded to begin with) stimulate neurons with higher characteristic frequency than the acoustic frequency of the original stimulus. In other words, the stimulus is shifted in frequency with respect to what the listener expects to hear. This frequency misalignment may have a negative influence on speech perception by CI users. However, a perfect frequency-place alignment may result in the loss of important low frequency speech information. A trade-off may involve a gradual approach: start with correct frequency-place alignment to allow listeners to adapt to the spectrally degraded signal first, and then gradually increase the frequency shift to allow them to adapt to it over time. We used an acoustic model of a cochlear implant to measure adaptation to a frequency-shifted signal, using either the gradual approach or the "standard" approach (sudden imposition of the frequency shift). Listeners in both groups showed substantial auditory learning, as measured by increases in speech perception scores over the course of fifteen one-hour training sessions. However, the learning process was faster for listeners who were exposed to the gradual approach. These results suggest that gradual rather than sudden exposure may facilitate perceptual learning in the face of a spectrally degraded, frequency-shifted input. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Mario A Svirsky
- Dept. of Otolaryngology-HNS, New York University School of Medicine, New York, NY, USA; Center of Neural Science, New York University, New York, NY, USA.
| | - Thomas M Talavage
- ECE, Purdue University, West Lafayette, IN, USA; BME Depts., Purdue University, West Lafayette, IN, USA
| | | | - Heidi Neuburger
- Dept. of Otolaryngology-HNS, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahan Azadpour
- Dept. of Otolaryngology-HNS, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Yoon YS, Shin YR, Fu QJ. Binaural benefit with and without a bilateral spectral mismatch in acoustic simulations of cochlear implant processing. Ear Hear 2013; 34:273-9. [PMID: 22968427 DOI: 10.1097/aud.0b013e31826709e8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study investigated whether a spectral mismatch across ears influences the benefit of redundancy, squelch, and head shadow differently in speech perception using acoustic simulation of bilateral cochlear implant (CI) processing. DESIGN Ten normal-hearing subjects participated in the study, and acoustic simulations of CIs were used to test these subjects. Sentence recognition, presented unilaterally and bilaterally, was measured at +5 dB and +10 dB signal-to-noise ratios (SNRs) with bilaterally matched and mismatched conditions. Unilateral and bilateral CIs were simulated using 8-channel sine wave vocoders. Binaural spectral mismatch was introduced by changing the relative simulated insertion depths across ears. Subjects were tested while listening with headphones; head-related transfer functions were applied before the vocoder processing to preserve natural interaural level and time differences. RESULTS For both SNRs, greater and more consistent binaural benefit of squelch and redundancy occurred for the matched condition whereas binaural interference of squelch and redundancy occurred for the mismatched condition. However, significant binaural benefit of head shadow existed irrespective of spectral mismatches and SNRs. CONCLUSIONS The results suggest that bilateral spectral mismatch may have a negative impact on the binaural benefit of squelch and redundancy for bilateral CI users. The results also suggest that clinical mapping should be carefully administrated for bilateral CI users to minimize the difference in spectral patterns between the two CIs.
Collapse
Affiliation(s)
- Yang-Soo Yoon
- Division of Communication and Auditory Neuroscience, House Research Institute, Los Angeles, CA, USA
| | | | | |
Collapse
|
36
|
Newman R, Chatterjee M. Toddlers' recognition of noise-vocoded speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:483-94. [PMID: 23297920 PMCID: PMC3548833 DOI: 10.1121/1.4770241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 11/10/2012] [Accepted: 11/14/2012] [Indexed: 05/15/2023]
Abstract
Despite their remarkable clinical success, cochlear-implant listeners today still receive spectrally degraded information. Much research has examined normally hearing adult listeners' ability to interpret spectrally degraded signals, primarily using noise-vocoded speech to simulate cochlear implant processing. Far less research has explored infants' and toddlers' ability to interpret spectrally degraded signals, despite the fact that children in this age range are frequently implanted. This study examines 27-month-old typically developing toddlers' recognition of noise-vocoded speech in a language-guided looking study. Children saw two images on each trial and heard a voice instructing them to look at one item ("Find the cat!"). Full-spectrum sentences or their noise-vocoded versions were presented with varying numbers of spectral channels. Toddlers showed equivalent proportions of looking to the target object with full-speech and 24- or 8-channel noise-vocoded speech; they failed to look appropriately with 2-channel noise-vocoded speech and showed variable performance with 4-channel noise-vocoded speech. Despite accurate looking performance for speech with at least eight channels, children were slower to respond appropriately as the number of channels decreased. These results indicate that 2-yr-olds have developed the ability to interpret vocoded speech, even without practice, but that doing so requires additional processing. These findings have important implications for pediatric cochlear implantation.
Collapse
Affiliation(s)
- Rochelle Newman
- Department of Hearing and Speech Sciences, 0100 Lefrak Hall, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
37
|
Eshraghi AA, Gupta C, Ozdamar O, Balkany TJ, Truy E, Nazarian R. Biomedical Engineering Principles of Modern Cochlear Implants and Recent Surgical Innovations. Anat Rec (Hoboken) 2012; 295:1957-66. [DOI: 10.1002/ar.22584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023]
|
38
|
Abstract
OBJECTIVES This review examines evidence for potential benefits of using cochlear implant electrodes that extend into the apical regions of the cochlea. Most cochlear implant systems use electrode arrays that extend 1 to 1.5 turns from the basal cochleostomy, but one manufacturer (MED-EL GmbH) uses an electrode array that is considerably longer. The fundamental rationale for using electrodes extending toward the apex of the cochlea is to provide additional low-pitched auditory percepts and thereby increase the spectral information available to the user. Several experimental long arrays have also been produced by other manufacturers to assess potential benefits of this approach. DESIGN In addition to assessing the effects of deeply inserted electrodes on performance, this review examines several underlying and associated issues, including cochlear anatomy, electrode design, surgical considerations (including insertion trauma), and pitch scaling trials. Where possible, the aim is to draw conclusions regarding the potential from apical electrodes in general, rather than relating to the performance of specific and current devices. RESULTS Imaging studies indicate that currently available electrode arrays rarely extend more than two turns into the cochlea, the mean insertion angle for full insertions of the MED-EL electrodes being about 630°. This is considerably shorter than the total length of the cochlea and more closely approximates the length of the spiral ganglion. Anatomical considerations, and some modelling studies, suggest that fabrication of even longer electrodes is unlikely to provide additional spectral information. The issue of potential benefit from the most apical electrodes, therefore, is whether they are able to selectively stimulate discrete and tonotopically ordered neural populations near the apex of the spiral ganglion, where the ganglion cells are closely grouped. Pitch scaling studies, using the MED-EL and experimental long arrays, suggest that this is achieved in many cases, but that a significant number of individuals show evidence of pitch confusions or reversals among the most apical electrodes, presumably reducing potential performance benefit and presenting challenges for processor programming. CONCLUSIONS Benefits in terms of speech recognition and other performance measures are less clear. Several studies have indicated that deactivation of apical electrodes results in poorer speech recognition performance, but these have been mostly acute studies where the subjects have been accustomed to the full complement of electrodes, thus making interpretation difficult. Some chronic studies have suggested that apical electrodes do provide additional performance benefit, but others have shown performance improvement after deactivating some of the apical electrodes. Whether or not deeply inserted electrodes can offer performance benefits, there is evidence that currently available designs tend to produce more intracochlear trauma than shorter arrays, in terms of loss of residual acoustic hearing and reduction of the neural substrate. This may have important long-term consequences for the user. Furthermore, as it is possible that subjects with better low-frequency residual hearing are more likely to benefit from the inclusion of apical electrodes, there may be a potential clinical dilemma as the same subjects are those most likely to benefit from bimodal electroacoustic stimulation, requiring a relatively shallow insertion.
Collapse
|
39
|
Yoon YS, Liu A, Fu QJ. Binaural benefit for speech recognition with spectral mismatch across ears in simulated electric hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:EL94-100. [PMID: 21877777 PMCID: PMC3155583 DOI: 10.1121/1.3606460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The present study investigated the effects of binaural spectral mismatch on binaural benefits in the context of bilateral cochlear implants using acoustic simulations. Binaural spectral mismatch was systematically manipulated by simulating changes in the relative insertion depths across ears. Sentence recognition, presented unilaterally and bilaterally, were measured in normal-hearing listeners in quiet and noise at +5 dB signal-to-noise ratio. Significant binaural benefits were observed when the interaural difference in insertion depth was 1 mm or less. This result suggests a dependence of the binaural benefit on redundant speech information, rather than on similarity in performance across ears.
Collapse
Affiliation(s)
- Yang-soo Yoon
- Communication and Neuroscience Division, House Ear Institute, Los Angeles, CA 90057, USA.
| | | | | |
Collapse
|
40
|
Strydom T, Hanekom JJ. An analysis of the effects of electrical field interaction with an acoustic model of cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:2213-2226. [PMID: 21476676 DOI: 10.1121/1.3518761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Electrical field interaction caused by current spread in a cochlear implant was modeled in an explicit way in an acoustic model (the SPREAD model) presented to six listeners with normal hearing. The typical processing of cochlear implants was modeled more closely than in traditional acoustic models by careful selection of parameters related to current spread or parameters that could amplify the electrical field interactions caused by current spread. These parameters were the insertion depth, electrode spacing, electrical dynamic range, and dynamic range compression function. The hypothesis was that current spread could account for the asymptote in performance in speech intelligibility experiments observed at around seven stimulation channels in a number of cochlear implant studies. Speech intelligibility for sentences, vowels, and consonants at three noise levels (SNR of +15 dB, +10 dB, and +5 dB) was measured as a function of the number of spectral channels (4, 7, and 16). The SPREAD model appears to explain the asymptote in speech intelligibility at seven channels for all noise levels for all speech material used in this study. It is shown that the compressive amplitude mapping used in cochlear implants can have a detrimental effect on the number of effective channels.
Collapse
Affiliation(s)
- Trudie Strydom
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, Gauteng 0002, South Africa
| | | |
Collapse
|
41
|
Strydom T, Hanekom JJ. The performance of different synthesis signals in acoustic models of cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:920-933. [PMID: 21361449 DOI: 10.1121/1.3518760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Synthesis (carrier) signals in acoustic models embody assumptions about perception of auditory electric stimulation. This study compared speech intelligibility of consonants and vowels processed through a set of nine acoustic models that used Spectral Peak (SPEAK) and Advanced Combination Encoder (ACE)-like speech processing, using synthesis signals which were representative of signals used previously in acoustic models as well as two new ones. Performance of the synthesis signals was determined in terms of correspondence with cochlear implant (CI) listener results for 12 attributes of phoneme perception (consonant and vowel recognition; F1, F2, and duration information transmission for vowels; voicing, manner, place of articulation, affrication, burst, nasality, and amplitude envelope information transmission for consonants) using four measures of performance. Modulated synthesis signals produced the best correspondence with CI consonant intelligibility, while sinusoids, narrow noise bands, and varying noise bands produced the best correspondence with CI vowel intelligibility. The signals that performed best overall (in terms of correspondence with both vowel and consonant attributes) were modulated and unmodulated noise bands of varying bandwidth that corresponded to a linearly varying excitation width of 0.4 mm at the apical to 8 mm at the basal channels.
Collapse
Affiliation(s)
- Trudie Strydom
- Department of Electrical, Electronic, and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa
| | | |
Collapse
|
42
|
Välimaa TT, Sorri MJ, Laitakari J, Sivonen V, Muhli A. Vowel confusion patterns in adults during initial 4 years of implant use. CLINICAL LINGUISTICS & PHONETICS 2011; 25:121-144. [PMID: 21070135 DOI: 10.3109/02699206.2010.514692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study investigated adult cochlear implant users' (n = 39) vowel recognition and confusions by an open-set syllable test during 4 years of implant use, in a prospective repeated-measures design. Subjects' responses were coded for phoneme errors and estimated by the generalized mixed model. Improvement in overall vowel recognition was highest during the first 6 months, showing statistically significant change until 4 years, especially for the mediocre performers. The best performers improved statistically significantly until 18 months. The poorest performers improved until 12 months and exhibited more vowel confusions. No differences were found in overall vowel recognition between Nucleus24M/24R and Med-ElC40+ device users (matched comparison), but certain vowels showed statistically significant differences. Vowel confusions between adjacent vowels were evident, probably due to the implant users' inability to discriminate formant frequencies. Vowel confusions were also dominated by vowels whose average F1 and/or F2 frequencies were higher than the target vowel, indicating a basalward shift in the confusions.
Collapse
Affiliation(s)
- Taina T Välimaa
- Faculty of Humanities, Logopedics, and Department of Otorhinolaryngology. Oulu University Hospital, University of Oulu, Finland.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Qi B, Liu B, Krenmayr A, Liu S, Gong S, Liu H, Zhang N, Han D. The contribution of apical stimulation to Mandarin speech perception in users of the MED-EL COMBI 40+ cochlear implant. Acta Otolaryngol 2011; 131:52-8. [PMID: 20863152 DOI: 10.3109/00016489.2010.506652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Not stimulating the apical cochlear region in tonal language speaking cochlear implantees significantly reduces discrimination of Mandarin vowels. The data presented here suggest that electrode arrays that allow complete cochlear coverage with stimulation pulses seem to be preferable over shorter arrays for use in cochlear implant (CI) indications. OBJECTIVE To assess the contribution of electrical stimulation beyond the first cochlear turn on tonal language speech perception. METHODS Twelve Mandarin-speaking users of the MED-EL COMBI 40+ cochlear implant with complete insertion of the standard COMBI 40+ electrode array participated in the study. Acute speech tests were performed in seven electrode configurations with stimulation either distributed over the whole length of the cochlea or restricted to the apical, middle or basal regions. The test battery comprised tone, consonant, and vowel identification in quiet as well as a sentence recognition task in quiet and noise. RESULTS While neither tone nor consonant identification depended crucially on the placement of the active electrodes, vowel identification and sentence recognition decreased significantly when the four apical electrodes were not stimulated.
Collapse
Affiliation(s)
- Beier Qi
- Beijing Tong Ren Hospital, Capital Medical University, Beijing Institute of Otolaryngology, Ministry of Education, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech. Ear Hear 2010; 30:238-49. [PMID: 19194293 DOI: 10.1097/aud.0b013e31819769ac] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cochlear implant listeners are able to at least partially adapt to the spectral mismatch associated with the implant device and speech processor via daily exposure and/or explicit training. The overall goal of this study was to investigate interactions between short-term unsupervised learning (i.e., passive adaptation) and the degree of spectral mismatch in normal-hearing listeners' adaptation to spectrally shifted vowels. DESIGN Normal-hearing subjects were tested while listening to acoustic cochlear implant simulations. Unsupervised learning was measured by testing vowel recognition repeatedly over a 5 day period; no feedback or explicit training was provided. In experiment 1, subjects listened to 8-channel, sine-wave vocoded speech. The spectral envelope was compressed to simulate a 16 mm cochlear implant electrode array. The analysis bands were fixed and the compressed spectral envelope was linearly shifted toward the base by 3.6, 6, or 8.3 mm to simulate different insertion depths of the electrode array, resulting in a slight, moderate, or severe spectral shift. In experiment 2, half the subjects were exclusively exposed to a severe shift with 8 or 16 channels (exclusive groups), and half the subjects were exposed to 8-channel severely shifted speech, 16-channel severely shifted speech, and 8-channel moderately shifted speech, alternately presented within each test session (mixed group). The region of stimulation in the cochlea was fixed (16 mm in extent and 15 mm from the apex) and the analysis bands were manipulated to create the spectral shift conditions. To determine whether increased spectral resolution would improve adaptation, subjects were exposed to 8- or 16-channel severely shifted speech. RESULTS In experiment 1, at the end of the adaptation period, there was no significant difference between 8-channel speech that was spectrally matched and that shifted by 3.6 mm. There was a significant, but less-complete, adaptation to the 6 mm shift and no adaptation to the 8.3 mm shift. In experiment 2, for the mixed exposure group, there was significant adaptation to severely shifted speech with 8 channels and even greater adaptation with 16 channels. For the exclusive exposure group, there was no significant adaptation to severely shifted speech with either 8 or 16 channels. CONCLUSIONS These findings suggest that listeners are able to passively adapt to spectral shifts up to 6 mm. For spectral shifts beyond 6 mm, some passive adaptation was observed with mixed exposure to a smaller spectral shift, even at the expense of some low frequency information. Mixed exposure to the smaller shift may have enhanced listeners' access to spectral envelope details that were not accessible when listening exclusively to severely shifted speech. The results suggest that the range of spectral mismatch that can support passive adaptation may be larger than previously reported. Some amount of passive adaptation may be possible with severely shifted speech by exposing listeners to a relatively small mismatch in conjunction with the severe mismatch.
Collapse
|
46
|
Li T, Fu QJ. Effects of spectral shifting on speech perception in noise. Hear Res 2010; 270:81-8. [PMID: 20868733 DOI: 10.1016/j.heares.2010.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/16/2022]
Abstract
The present study used eight normal-hearing (NH) subjects, listening to acoustic cochlear implant (CI) simulations, to examine the effects of spectral shifting on speech recognition in noise. Speech recognition was measured using spectrally matched and shifted speech (vowels, consonants, and IEEE sentences), generated by 8-channel, sine-wave vocoder. Measurements were made in quiet and in noise (speech-shaped static noise and speech-babble at 5 dB signal-to-noise ratio). One spectral match condition and four spectral shift conditions were investigated: 2 mm, 3 mm, and 4 mm linear shift, and 3 mm shift with compression, in terms of cochlear distance. Results showed that speech recognition scores dropped because of noise and spectral shifting, and that the interactive effects of spectral shifting and background conditions depended on the degree/type of spectral shift, background conditions, and the speech test materials. There was no significant interaction between spectral shifting and two noise conditions for all speech test materials. However, significant interactions between linear spectral shifts and all background conditions were found in sentence recognition; significant interactions between spectral shift types and all background conditions were found in vowel recognition. Overall, the results suggest that tonotopic mismatch may affect performance of CI users in complex listening environments.
Collapse
Affiliation(s)
- Tianhao Li
- Division of Communication and Auditory Neuroscience, House Ear Institute, Los Angeles, CA 90057, USA.
| | | |
Collapse
|
47
|
Improving melody recognition in cochlear implant recipients through individualized frequency map fitting. Eur Arch Otorhinolaryngol 2010; 268:27-39. [DOI: 10.1007/s00405-010-1335-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
|
48
|
Zhou N, Xu L, Lee CY. The effects of frequency-place shift on consonant confusion in cochlear implant simulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:401-9. [PMID: 20649234 PMCID: PMC2921437 DOI: 10.1121/1.3436558] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/26/2010] [Accepted: 05/04/2010] [Indexed: 05/26/2023]
Abstract
The effects of frequency-place shift on consonant recognition and confusion matrices were examined. Frequency-place shift was manipulated using a noise-excited vocoder with 4 to 16 channels. In the vocoder processing, the location of the most apical carrier band varied from the matched condition (i.e., 28 mm from the base of the cochlear) to a basal shift (i.e., 22 mm from the base) in a step size of 1 mm. Ten normal-hearing subjects participated in the 20-alternative forced-choice test, where the consonants were presented in a /Ca/ context. Shift of 3 mm or more caused the consonant recognition scores to decrease significantly. The effects of spectral resolution disappeared when the amount of shift reached >or=3 mm. Information transmitted for voicing and place of articulation varied with spectral shift and spectral resolution, while information transmitted for manner was affected only by spectral shift but not spectral resolution. Spectral shift has shown specific effects on the confusion patterns of the consonants. The direction of errors reversed as spectral shift increased and the patterns of reversal were consistent across channel conditions. Overall, transmission of the consonant features can be accounted for by the acoustic features of the speech signal.
Collapse
Affiliation(s)
- Ning Zhou
- School of Hearing, Speech and Language Sciences, Ohio University, Athens, Ohio 45701, USA
| | | | | |
Collapse
|
49
|
Vickers D, Robinson JD, Füllgrabe C, Baer T, Moore BCJ. Relative importance of different spectral bands to consonant identification: relevance for frequency transposition in hearing aids. Int J Audiol 2010; 48:334-45. [PMID: 19925341 DOI: 10.1080/14992020802644889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Listeners with high-frequency dead regions (DRs) benefit from amplification of frequencies up to 1.7 times the edge frequency, f(e), of the DR. Better consonant identification might be achieved by replacing the band from f(e) to 1.7f(e) with a higher spectral band. We aimed to identify the optimal band, using simulations with normal-hearing listeners. In experiment 1, nonsense syllables were lowpass filtered to simulate DRs with f(e) of 0.5, 0.75, and 1.0 kHz. Identification was measured for each of these base bands alone and with a bandpass-filtered band added (but not transposed). The added band either extended from f(e) to 1.7f(e) or its center frequency was increased, keeping bandwidth fixed in ERB(N)-number. Performance improved with increasing center frequency and then reached an asymptote or declined. Experiment 2 used a mid-frequency base band, and a lower-frequency added band. The results also showed a beneficial effect of frequency separation of the added and base bands. Experiment 3 resembled experiment 1, but with bandwidth fixed in Hertz. For higher-frequency added bands, the benefit was lower than for experiment 1.
Collapse
|
50
|
Simpson A, McDermott HJ, Dowell RC, Sucher C, Briggs RJ. Comparison of two frequency-to-electrode maps for acoustic-electric stimulation. Int J Audiol 2009; 48:63-73. [DOI: 10.1080/14992020802452184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|