1
|
Huang W, Jiao Y, Li J, He Y, Shao W, Cui Y. Evaluation of Dual-Frequency Switching HIFU for Optimizing Superficial Ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:908-919. [PMID: 38548527 DOI: 10.1016/j.ultrasmedbio.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Dual-frequency high-intensity focused ultrasound (HIFU) thermal ablation is an exceptionally promising technique for treating tumors due to its precision and effectiveness. However, there are still a few studies on improving the accuracy and efficiency of HIFU in superficial ablation applications. This study proposes a method utilizing dual frequency switching ultrasound (DFSU) to enhance the efficiency and precision of superficial treatments. METHODS A dual-frequency HIFU transducer operating at 4.5 MHz and 13.7 MHz was designed, and a dual-frequency impedance matching network was designed to optimize electro-acoustic conversion efficiency. Phantom and ex vivo tests were conducted to measure and compare thermal lesion areas and temperature rises caused by single-frequency ultrasound (SFU) and DFSU. RESULTS In both phantom and ex vivo tests, the utilization of DFSU resulted in larger lesion areas compared to SFU. Moreover, DFSU provided improved control and versatility, enabling precise and efficient ablation. CONCLUSION DFSU exhibits the ability to generate larger ablation areas in superficial tissue compared to SFU, and DFSU allows flexible control over the ablation area and temperature rise rate. The acoustic power deposition of HIFU can be optimized to achieve precise ablation.
Collapse
Affiliation(s)
- Wenchang Huang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yang Jiao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jiaqi Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yan He
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Weiwei Shao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yaoyao Cui
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Clark A, Bonilla S, Suo D, Shapira Y, Averkiou M. Microbubble-Enhanced Heating: Exploring the Effect of Microbubble Concentration and Pressure Amplitude on High-Intensity Focused Ultrasound Treatments. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2296-2309. [PMID: 33985825 PMCID: PMC8243806 DOI: 10.1016/j.ultrasmedbio.2021.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 05/11/2023]
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive tool that can be used for targeted thermal ablation treatments. Currently, HIFU is clinically approved for treatment of uterine fibroids, various cancers, and certain brain applications. However, for brain applications such as essential tremors, HIFU can only be used to treat limited areas confined to the center of the brain because of geometrical limitations (shape of the transducer and skull). A major obstacle to advancing this technology is the inability to treat non-central brain locations without causing damage to the skin and/or skull. Previous research has indicated that cavitation-induced bubbles or microbubble contrast agents can be used to enhance HIFU treatments by increasing ablation regions and shortening acoustic exposures at lower acoustic pressures. However, little research has been done to explore the interplay between microbubble concentration and pressure amplitude on HIFU treatments. We developed an in vitro experimental setup to study lesion formation at three different acoustic pressures and three microbubble concentrations. Real-time ultrasound imaging was integrated to monitor initial microbubble concentration and subsequent behavior during the HIFU treatments. Depending on the pressure used for the HIFU treatment, there was an optimal concentration of microbubbles that led to enhanced heating in the focal area. If the concentration of microbubbles was too high, the treatment was detrimentally affected because of non-linear attenuation by the pre-focal microbubbles. Additionally, the real-time ultrasound imaging provided a reliable method to monitor microbubble activity during the HIFU treatments, which is important for translation to in vivo HIFU applications with microbubbles.
Collapse
Affiliation(s)
- Alicia Clark
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Sierra Bonilla
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Dingjie Suo
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | | | - Michalakis Averkiou
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
3
|
Karunakaran CP, Burgess MT, Rao MB, Holland CK, Mast TD. Effect of Overpressure on Acoustic Emissions and Treated Tissue Histology in ex Vivo Bulk Ultrasound Ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2360-2376. [PMID: 34023187 PMCID: PMC8243850 DOI: 10.1016/j.ultrasmedbio.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Bulk ultrasound ablation is a thermal therapy approach in which tissue is heated by unfocused or weakly focused sonication (average intensities on the order of 100 W/cm2) to achieve coagulative necrosis within a few minutes exposure time. Assessing the role of bubble activity, including acoustic cavitation and tissue vaporization, in bulk ultrasound ablation may help in making bulk ultrasound ablation safer and more effective for clinical applications. Here, two series of ex vivo ablation trials were conducted to investigate the role of bubble activity and tissue vaporization in bulk ultrasound ablation. Fresh bovine liver tissue was ablated with unfocused, continuous-wave ultrasound using ultrasound image-ablate arrays sonicating at 31 W/cm2 (0.9 MPa amplitude) for either 20 min at a frequency of 3.1 MHz or 10 min at 4.8 MHz. Tissue specimens were maintained at a static overpressure of either 0.52 or 1.2 MPa to suppress bubble activity and tissue vaporization or at atmospheric pressure for control groups. A passive cavitation detector was used to record subharmonic (1.55 or 2.4 MHz), broadband (1.2-1.5 MHz) and low-frequency (5-20 kHz) acoustic emissions. Treated tissue was stained with 2% triphenyl tetrazolium chloride to evaluate thermal lesion dimensions. Subharmonic emissions were significantly reduced in overpressure groups compared with control groups. Correlations observed between acoustic emissions and lesion dimensions were significant and positive for the 3.1-MHz series, but significant and negative for the 4.8-MHz series. The results indicate that for bulk ultrasound ablation, where both acoustic cavitation and tissue vaporization are possible, bubble activity can enhance ablation in the absence of tissue vaporization, but can reduce thermal lesion dimensions in the presence of vaporization.
Collapse
Affiliation(s)
| | - Mark T Burgess
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Marepalli B Rao
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
4
|
Abbass MA, Ahmad SA, Mahalingam N, Krothapalli KS, Masterson JA, Rao MB, Barthe PG, Mast TD. In vivo ultrasound thermal ablation control using echo decorrelation imaging in rabbit liver and VX2 tumor. PLoS One 2019; 14:e0226001. [PMID: 31805129 PMCID: PMC6894854 DOI: 10.1371/journal.pone.0226001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The utility of echo decorrelation imaging feedback for real-time control of in vivo ultrasound thermal ablation was assessed in rabbit liver with VX2 tumor. High-intensity focused ultrasound (HIFU) and unfocused (bulk) ablation were performed using 5 MHz linear image-ablate arrays. Treatments comprised up to nine lower-power sonications, followed by up to nine higher-power sonications, ceasing when the average cumulative echo decorrelation within a control region of interest exceeded a predefined threshold (- 2.3, log10-scaled echo decorrelation per millisecond, corresponding to 90% specificity for tumor ablation prediction in previous in vivo experiments). This threshold was exceeded in all cases for both HIFU (N = 12) and bulk (N = 8) ablation. Controlled HIFU trials achieved a significantly higher average ablation rate compared to comparable ablation trials without image-based control, reported previously. Both controlled HIFU and bulk ablation trials required significantly less treatment time than these previous uncontrolled trials. Prediction of local liver and VX2 tumor ablation using echo decorrelation was tested using receiver operator characteristic curve analysis, showing prediction capability statistically equivalent to uncontrolled trials. Compared to uncontrolled trials, controlled trials resulted in smaller thermal ablation regions and higher contrast between echo decorrelation in treated vs. untreated regions. These results indicate that control using echo decorrelation imaging may reduce treatment duration and increase treatment reliability for in vivo thermal ablation.
Collapse
Affiliation(s)
- Mohamed A. Abbass
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Syed A. Ahmad
- Dept of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Neeraja Mahalingam
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - K. Sameer Krothapalli
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jack A. Masterson
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Marepalli B. Rao
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
- Dept of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Peter G. Barthe
- Guided Therapy Systems/Ardent Sound, Mesa, Arizona, United States of America
| | - T. Douglas Mast
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
5
|
Desgranges S, Lorton O, Gui-Levy L, Guillemin P, Celicanin Z, Hyacinthe JN, Breguet R, Crowe LA, Becker CD, Soulié M, Taulier N, Contino-Pépin C, Salomir R. Micron-sized PFOB liquid core droplets stabilized with tailored-made perfluorinated surfactants as a new class of endovascular sono-sensitizers for focused ultrasound thermotherapy. J Mater Chem B 2019; 7:927-939. [DOI: 10.1039/c8tb01491d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effect of micro-droplet concentration on HIFU beam absorption.
Collapse
|
6
|
Fan W, Yung BC, Chen X. Stimuliresponsive NO‐Freisetzung für die abrufbereite Gas‐sensibilisierte synergistische Krebstherapie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| |
Collapse
|
7
|
Fan W, Yung BC, Chen X. Stimuli‐Responsive NO Release for On‐Demand Gas‐Sensitized Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201800594] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| |
Collapse
|
8
|
Xin Y, Zhang A, Xu LX, Brian Fowlkes J. Numerical Study of Bubble Area Evolution During Acoustic Droplet Vaporization-Enhanced HIFU Treatment. J Biomech Eng 2018; 139:2635775. [PMID: 28654938 DOI: 10.1115/1.4037150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 01/05/2023]
Abstract
Acoustic droplet vaporization has the potential to shorten treatment time of high-intensity focused ultrasound (HIFU) while minimizing the possible effects of microbubbles along the propagation path. Distribution of the bubbles formed from the droplets during the treatment is the major factor shaping the therapeutic region. A numerical model was proposed to simulate the bubble area evolution during this treatment. Using a linear acoustic equation to describe the ultrasound field, a threshold range was defined that determines the amount of bubbles vaporized in the treated area. Acoustic parameters, such as sound speed, acoustic attenuation coefficient, and density, were treated as a function of the bubble size distribution and the gas void fraction, which were related to the vaporized bubbles in the medium. An effective pressure factor was proposed to account for the influence of the existing bubbles on the vaporization of the nearby droplets. The factor was obtained by fitting one experimental result and was then used to calculate bubble clouds in other experimental cases. Comparing the simulation results to these other experiments validated the model. The dynamic change of the pressure and the bubble distribution after exposure to over 20 pulses of HIFU are obtained. It is found that the bubble area grows from a grainlike shape to a "tadpole," with comparable dimensions and shape to those observed in experiments. The process was highly dynamic with the shape of the bubble area changing with successive HIFU pulses and the focal pressure. The model was further used to predict the shape of the bubble region triggered by HIFU when a bubble wall pre-exists. The results showed that the bubble wall helps prevent droplet vaporization on the distal side of the wall and forms a particularly shaped region with bubbles. This simulation model has predictive potential that could be beneficial in applications, such as cancer treatment, by parametrically studying conditions associated with these treatments and designing treatment protocols.
Collapse
Affiliation(s)
- Ying Xin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China e-mail:
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China e-mail:
| | - Lisa X Xu
- Fellow ASME School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China e-mail:
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, 3226C Medical Sciences Building I, 1301 Catherine Street, Ann Arbor, MI 48109-5667 e-mail:
| |
Collapse
|
9
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 132.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
10
|
Yoon HS, Chang C, Jang JH, Bhuyan A, Choe JW, Nikoozadeh A, Watkins RD, Stephens DN, Butts Pauly K, Khuri-Yakub BT. Ex Vivo HIFU Experiments Using a $32 \times 32$ -Element CMUT Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:2150-2158. [PMID: 27913330 PMCID: PMC5241055 DOI: 10.1109/tuffc.2016.2606126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
High-intensity focused ultrasound (HIFU) has been used as noninvasive treatment for various diseases. For these therapeutic applications, capacitive micromachined ultrasonic transducers (CMUTs) have advantages that make them potentially preferred transducers over traditional piezoelectric transducers. In this paper, we present the design and the fabrication process of an 8 ×8 -mm 2 32 ×32 -element 2-D CMUT array for HIFU applications. To reduce the system complexity for addressing the 1024 transducer elements, we propose to group the CMUT array elements into eight HIFU channels based on the phase delay from the CMUT element to the targeted focal point. Designed to focus at an 8-mm depth with a 5-MHz exciting frequency, this grouping scheme was realized using a custom application-specific integrated circuit. With a 40-V dc bias and a 60-V peak-to-peak ac excitation, the surface pressure was measured 1.2 MPa peak-to-peak and stayed stable for a long enough time to create a lesion. With this dc and ac voltage combination, the measured peak-to-peak output pressure at the focus was 8.5 MPa, which is expected to generate a lesion in a minute according to the temperature simulation. The following ex vivo tissue experiments successfully demonstrated its capability to make lesions in both bovine muscle and liver tissue.
Collapse
|
11
|
Irreversible electroporation ablation of malignant hepatic tumors: subacute and follow-up CT appearance of ablation zones. J Vasc Interv Radiol 2014; 25:1589-94. [PMID: 25156648 DOI: 10.1016/j.jvir.2014.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To describe findings on contrast-enhanced computed tomography (CT) images of malignant hepatic tumors 24-72 hours after percutaneous ablation by irreversible electroporation (IRE) and at midterm follow-up. MATERIALS AND METHODS Retrospective analysis of 52 malignant liver tumors-30 primary hepatic tumors and 22 hepatic metastases-in 34 patients (28 men and 6 women, mean age 64 y) treated by IRE ablation was performed. Ablation zones were evaluated by two examiners in a consensus reading by means of a dual-phase CT scan (consisting of a hepatic arterial and portal venous phase) performed 24-72 hours after IRE ablation and at follow-up. RESULTS During the portal venous phase, ablation zones either were homogeneously hypoattenuating (n = 36) or contained heterogeneously isoattenuating or hyperattenuating (n = 16) foci, or both, in a hypoattenuating area. Of 52 lesions, 38 included gas pockets. Peripheral contrast enhancement of the ablation defect was evident in 23 tumors during the arterial phase and in 36 tumors during the portal venous phase. Four tumors showed intralesional abscesses after the intervention. At follow-up (mean, 4.7 mo), the mean volume of the ablation defects was reduced to 29% of their initial value. CONCLUSIONS Because normal findings on contrast-enhanced CT images after IRE ablation may be very similar to the typical characteristics of potential complications following ablation, such as liver abscesses, CT scans must be carefully analyzed to distinguish normal results after intervention from complications requiring further treatment.
Collapse
|
12
|
A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials 2014; 35:5875-85. [DOI: 10.1016/j.biomaterials.2014.03.043] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
|
13
|
Solovchuk MA, Hwang SC, Chang H, Thiriet M, Sheu TWH. Temperature elevation by HIFU inex vivoporcine muscle: MRI measurement and simulation study. Med Phys 2014; 41:052903. [DOI: 10.1118/1.4870965] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
14
|
Solovchuk M, Sheu TWH, Thiriet M. Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:3931-3942. [PMID: 24180802 DOI: 10.1121/1.4821201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown.
Collapse
Affiliation(s)
- Maxim Solovchuk
- Center of Advanced Study in Theoretical Sciences (CASTS), National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | |
Collapse
|
15
|
Zhou Y, Gao XW. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1683-1694. [PMID: 23927209 DOI: 10.1121/1.4812895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1 Hz. Altogether, bubble cavitation and thermal field vary with the progress of HIFU treatment with different sonication parameters, which provide insights into the interaction of ultrasound burst with the induced bubbles for both soft tissue fractionation and enhancement in thermal accumulation. Appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798.
| | | |
Collapse
|
16
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-45. [PMID: 23504911 DOI: 10.1002/wnan.1219] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
17
|
Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 2012; 34:2057-68. [PMID: 23246067 DOI: 10.1016/j.biomaterials.2012.11.044] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/23/2012] [Indexed: 02/07/2023]
Abstract
Au nanoparticles-coated, perfluorohexane-encapsulated and PEGylated mesoporous silica nanocapsule-based enhancement agents (MSNC@Au-PFH-PEG, abb. as MAPP) have been synthesized, for the ultrasound-induced cytoclasis, contrast-intensified ultrasound (US) imaging and US-guided high intensity focused ultrasound (HIFU) surgical therapy. Both the US-induced thermal effect and US triggered release of loaded model drug with MAPP under US exposure indicated the excellent US sensitivity of MAPP and its applicability for the combined chemo-/thermal therapy and future potential for HIFU ablation; US imaging under different modes verify the attractive US contrast intensification by using MAPP; US-guided HIFU therapy ex vivo and in vivo with MAPP is found to be highly efficient on rabbit VX2 xenograft tumor ablation due to the high thermal energy accumulation and increased mechanical/thermal effects from US-induced PFH bubble cavitations. MAPP can be promisingly used as an inorganic theranostic platform for contrast-intensified US imaging, combined chemotherapy and efficient HIFU tumor ablation under the guidance by the intensified US.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Science, Shanghai 200050, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kumon RE, Gudur MSR, Zhou Y, Deng CX. High-frequency ultrasound m-mode imaging for identifying lesion and bubble activity during high-intensity focused ultrasound ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:626-41. [PMID: 22341055 PMCID: PMC3295907 DOI: 10.1016/j.ultrasmedbio.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 12/25/2011] [Accepted: 01/05/2012] [Indexed: 05/10/2023]
Abstract
Effective real-time monitoring of high-intensity focused ultrasound (HIFU) ablation is important for application of HIFU technology in interventional electrophysiology. This study investigated rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes during HIFU application. HIFU (4.33 MHz, 1 kHz PRF, 50% duty cycle, 1 s, 2600‒6100 W/cm²) was applied to ex vivo porcine cardiac tissue specimens with a confocally and perpendicularly aligned high-frequency imaging system (Visualsonics Vevo 770, 55 MHz center frequency). Radio-frequency (RF) data from M-mode imaging (1 kHz PRF, 2 s × 7 mm) was acquired before, during and after HIFU treatment (n = 12). Among several strategies, the temporal maximum integrated backscatter with a threshold of +12 dB change showed the best results for identifying final lesion width (receiver-operating characteristic curve area 0.91 ± 0.04, accuracy 85 ± 8%, compared with macroscopic images of lesions). A criterion based on a line-to-line decorrelation coefficient is proposed for identification of transient gas bodies.
Collapse
Affiliation(s)
- Ronald E Kumon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
19
|
Wang X, Chen H, Chen Y, Ma M, Zhang K, Li F, Zheng Y, Zeng D, Wang Q, Shi J. Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:785-91. [PMID: 22223403 DOI: 10.1002/adma.201104033] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Indexed: 05/14/2023]
Affiliation(s)
- Xia Wang
- State Key Laboratory of High Performance Ceramic and Superfine, Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu T, Farny CH, Roy RA, Holt RG. Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:3252-3263. [PMID: 22087997 DOI: 10.1121/1.3626133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In an earlier work by Farny et al. [ARLO 6, 138-143 (2005).] it was demonstrated that the acoustic cavitation threshold in a tissue mimicking gel phantom can be lowered from 4.5 to ∼1 MPa by "seeding" the optically transparent phantom with light absorptive gold nanoparticles and irradiating these absorbers with nanosecond pulses of laser light at intensities less than 10 mJ/cm(2). As a follow-up study, a three-stage numerical model was developed to account for prenucleation heating, the nucleation and formation of the vapor cavity, and the resulting vapor bubble dynamics. Through examination of the radius-time evolution of the cavity, the combined thresholds for laser radiant exposure and acoustic peak pressure required to induce inertial cavitation are deduced. It is found that the threshold pressure decreases when laser exposure increases; but the rate depends on exposure levels and the size of the particle. Investigations of the roles of particle size and laser pulse length are performed and optimum choices for these parameters determined in order to obtain inertial cavitation at the lowest possible acoustic pressure and laser intensity.
Collapse
Affiliation(s)
- Tianming Wu
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, 5758 S. Maryland Ave, Chicago, Illinois 60616, USA
| | | | | | | |
Collapse
|
21
|
Chen WS, Liu HL, Tung YS, Wang JC, Ding YH, Jan CK. Reducing lesion aberration by dual-frequency focused ultrasound ablations. Int J Hyperthermia 2011; 27:637-47. [DOI: 10.3109/02656736.2011.594850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
22
|
Hsieh CY, Probert Smith P, Mayia F, Ye G. An adaptive spectral estimation technique to detect cavitation in HIFU with high spatial resolution. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1134-1150. [PMID: 21684454 DOI: 10.1016/j.ultrasmedbio.2011.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 03/28/2011] [Accepted: 04/21/2011] [Indexed: 05/30/2023]
Abstract
In ultrasound-guided high-intensity focused ultrasound (HIFU) therapy, the changes observed on tissue are subtle during treatment; some ultrasound-guided HIFU protocols rely on the observation of significant brightness changes as the indicator of tissue lesions. The occurrence of a distinct hyperechogenic region ("bright-up") around the focus is often associated with acoustic cavitation resulting in microbubble formation, but it may indicate different physical events such as larger bubbles from boiling (known to alter acoustic impedance) or sometimes lesion formation. A reliable method to distinguish and spatially localize these causes within the tissue would assist the control of HIFU delivery, which is the subject of this paper. Spectral analysis of the radio frequency (RF) signal underlying the B-mode image provides more information on the physical cause, but the usual techniques that are methods on the Fourier transform require a long series for good spectral resolution and so they give poor spatial resolution. This paper introduces an active spectral cavitation detection method to attain high spatial resolution (0.15 × 0.15 mm per pixel) through a parametric statistical method (ARMA modeling) used on finite-length data sets, which enables local changes to be identified more easily. This technique uses the characteristics of the signal itself to optimize the model parameters and structure. Its performance is assessed using synthesized cavitation RF data, and it is then demonstrated in ex vivo bovine liver during and after HIFU exposure. The results suggest that good spatial and spectral resolution can be obtained by the design of suitable algorithms. In ultrasound-guided HIFU, the technique provides a useful supplement to B-mode analysis, with no additional time penalty in data acquisition.
Collapse
Affiliation(s)
- Chang-Yu Hsieh
- Institute of Biomedical Engineering, Department of Engineering, University of Oxford, UK.
| | | | | | | |
Collapse
|
23
|
Chen D, Fan T, Zhang D, Wu J. A feasibility study of temperature rise measurement in a tissue phantom as an alternative way for characterization of the therapeutic high intensity focused ultrasonic field. ULTRASONICS 2009; 49:733-742. [PMID: 19576607 DOI: 10.1016/j.ultras.2009.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/07/2009] [Accepted: 05/25/2009] [Indexed: 05/28/2023]
Abstract
The feasibility that temperature field measurements in vitro as an alternative way to characterize the high intensity focused ultrasound (HIFU) field used in therapeutic applications has been explored in a phantom study. Thermocouples (copper-constantan, diameter 0.125 mm) are embedded in a phantom filled with tissue mimicking material that simulates the thermal and acoustic properties of soft-tissue. The temperature rises as a function of ultrasound exposure time near the focus of a HIFU transducer (1.1 MHz, active radius a=32 mm, geometric focal length=62 mm) of various acoustic powers up to 30 W are measured and compared with predicted values using a simple nonlinear Gaussian model. The experimental results can be explained well by the model if no acoustic cavitation takes place. When the acoustic power become higher (>5 W) and the local temperature elevation >15 degrees C and the local temperature is >40 degrees C at the focal point, cavitation vapor bubbles appear. The presence of the cavitation bubbles may increase the temperature rise rate initially. The bubble aggregates may form along the beam axis under sonication and then eventually makes the temperature elevation reach a saturated value. When acoustic cavitation occurs, the bubble-assisted enhancement of the initial temperature rise (exposure time t<2s) can still be predicted by the theory.
Collapse
Affiliation(s)
- Di Chen
- Department of Physics and The Materials Science Program, The University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
24
|
Lafon C, Murillo-Rincon A, Goldenstedt C, Chapelon JY, Mithieux F, Owen NR, Cathignol D. Feasibility of using ultrasound contrast agents to increase the size of thermal lesions induced by non-focused transducers: in vitro demonstration in tissue mimicking phantom. ULTRASONICS 2009; 49:172-178. [PMID: 18796342 DOI: 10.1016/j.ultras.2008.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 07/21/2008] [Accepted: 07/23/2008] [Indexed: 05/26/2023]
Abstract
Miniature flat ultrasound transducers have shown to be effective for a large variety of thermal therapies, but the associated superficial heating implicates developing original strategies in order to extend therapeutic depth. The goal of the present paper is to use ultrasound contrast agents (UCA) to increase remote attenuation and heating. Theoretical simulations demonstrated that increasing attenuation from 0.27 to 0.8 Np/cm at 10 MHz beyond a distance of 18 mm from the transducer should result in longer thermal damages due to protein coagulation in a tissue mimicking phantom. Contrast agents (BR14, Bracco, Plan-les-Ouates, Switzerland) were embedded in thermo-sensitive gel and attenuations ranging from 0.27 to 1.33 Np/cm were measured at 10 MHz for concentrations of BR14 between 0 and 4.8%. Thermal damages were then induced in several gels, which had different layering configurations. Thermal damages, 12.8mm in length, were obtained in homogeneous gels. When mixing contrast agents at a concentration of 3.2% beyond a first 18 mm-thick layer of homogeneous gel, the thermal damages reached 21.5mm in length. This work demonstrated that contrast agents can be used for increasing attenuation remotely and extending therapeutic depth induced by a non-focused transducer. Additional work must be done in vivo in order to verify the remote-only distribution of bubbles and associated increase in attenuation.
Collapse
|
25
|
Mast TD, Pucke DP, Subramanian SE, Bowlus WJ, Rudich SM, Buell JF. Ultrasound monitoring of in vitro radio frequency ablation by echo decorrelation imaging. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2008; 27:1685-1697. [PMID: 19022994 DOI: 10.7863/jum.2008.27.12.1685] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE The purpose of this study was to test ultrasound echo decorrelation imaging for mapping and characterization of tissue effects caused by radio frequency ablation (RFA). METHODS Radio frequency ablation procedures (6-minute duration, 20-W power) were performed on fresh ex vivo bovine liver tissue (n = 9) with continuous acquisition of beam-formed ultrasound echo data from a 7-MHz linear array. Echo data were processed to form B-scan images, echo decorrelation images (related to rapid random changes in echo waveforms), and integrated backscatter images (related to local changes in received echo energy). Echo decorrelation and integrated backscatter values at the location of a low-noise thermocouple were assessed as functions of temperature. Echo decorrelation and integrated backscatter images were directly compared with ablated tissue cross sections and quantitatively evaluated as predictors of tissue ablation and overtreatment. RESULTS Echo decorrelation maps corresponded with local tissue temperature and ablation effects. Consistent echo decorrelation increases were observed for temperatures above 75 degrees C, whereas integrated backscatter maps showed a nonmonotonic temperature dependence complicated by acoustic shadowing, with high variance at large temperature elevations. In receiver operating characteristic curve analysis of echo decorrelation and integrated backscatter maps as predictors of local tissue ablation, echo decorrelation performed well (area under the receiver operating characteristic curve [AUROC] = 0.855 for ablation and 0.913 for overtreatment), whereas integrated backscatter performed poorly (AUROC < 0.6). CONCLUSIONS Echo decorrelation imaging can map tissue changes due to RFA in vitro, with local echo decorrelation corresponding strongly to local tissue temperature elevations and ablation effects. With further development and in vivo validation, echo decorrelation imaging is potentially useful for improved image guidance of clinical RFA procedures.
Collapse
Affiliation(s)
- T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45267-0586, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Mast TD, Salgaonkar VA, Karunakaran C, Besse JA, Datta S, Holland CK. Acoustic emissions during 3.1 MHz ultrasound bulk ablation in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1434-48. [PMID: 18420337 PMCID: PMC3845361 DOI: 10.1016/j.ultrasmedbio.2008.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 11/29/2007] [Accepted: 02/04/2008] [Indexed: 05/05/2023]
Abstract
Acoustic emissions associated with cavitation and other bubble activity have previously been observed during ultrasound (US) ablation experiments. Because detectable bubble activity may be related to temperature, tissue state and sonication characteristics, these acoustic emissions are potentially useful for monitoring and control of US ablation. To investigate these relationships, US ablation experiments were performed with simultaneous measurements of acoustic emissions, tissue echogenicity and tissue temperature on fresh bovine liver. Ex vivo tissue was exposed to 0.9-3.3-s bursts of unfocused, continuous-wave, 3.10-MHz US from a miniaturized 32-element array, which performed B-scan imaging with the same piezoelectric elements during brief quiescent periods. Exposures used pressure amplitudes of 0.8-1.4 MPa for exposure times of 6-20 min, sufficient to achieve significant thermal coagulation in all cases. Acoustic emissions received by a 1-MHz, unfocused passive cavitation detector, beamformed A-line signals acquired by the array, and tissue temperature detected by a needle thermocouple were sampled 0.3-1.1 times per second. Tissue echogenicity was quantified by the backscattered echo energy from a fixed region-of-interest within the treated zone. Acoustic emission levels were quantified from the spectra of signals measured by the passive cavitation detector, including subharmonic signal components at 1.55 MHz, broadband signal components within the band 0.3-1.1 MHz and low-frequency components within the band 10-30 kHz. Tissue ablation rates, defined as the thermally ablated volumes per unit time, were assessed by quantitative analysis of digitally imaged, macroscopic tissue sections. Correlation analysis was performed among the averaged and time-dependent acoustic emissions in each band considered, B-mode tissue echogenicity, tissue temperature and ablation rate. Ablation rate correlated significantly with broadband and low-frequency emissions, but was uncorrelated with subharmonic emissions. Subharmonic emissions were found to depend strongly on temperature in a nonlinear manner, with significant emissions occurring within different temperature ranges for each sonication amplitude. These results suggest potential roles for passive detection of acoustic emissions in guidance and control of bulk US ablation treatments.
Collapse
Affiliation(s)
- T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45267-0586, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Yu T, Hu D, Xu C. Microbubbles improve the ablation efficiency of extracorporeal high intensity focused ultrasound against kidney tissues. World J Urol 2008; 26:631-6. [PMID: 18594828 DOI: 10.1007/s00345-008-0290-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 05/27/2008] [Indexed: 12/11/2022] Open
|
28
|
Hundt W, Yuh EL, Steinbach S, Bednarski MD, Guccione S. Comparison of continuous vs. pulsed focused ultrasound in treated muscle tissue as evaluated by magnetic resonance imaging, histological analysis, and microarray analysis. Eur Radiol 2008; 18:993-1004. [PMID: 18205005 DOI: 10.1007/s00330-007-0848-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 10/30/2007] [Accepted: 12/21/2007] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the effect of different application modes of high intensity focused ultrasound (HIFU) to muscle tissue. HIFU was applied to muscle tissue of the flank in C3H/Km mice. Two dose regimes were investigated, a continuous HIFU and a short-pulsed HIFU mode. Three hours after HIFU treatment pre- and post-contrast T1-weighted, T2-weighted images and a diffusion-weighted STEAM sequence were obtained. After MR imaging, the animals were euthanized and the treated, and the non-treated tissue was taken out for histology and functional genomic analysis. T2 images showed increased signal intensity and post-contrast T1 showed a decreased contrast uptake in the central parts throughout the tissue of both HIFU modes. A significantly higher diffusion coefficient was found in the muscle tissue treated with continuous wave focused ultrasound. Gene expression analysis revealed profound changes of 54 genes. For most of the analyzed genes higher expression was found after treatment with the short-pulse mode. The highest up-regulated genes encoded for the MHC class III (FC approximately 84), HSP 70 (FC approximately 75) and FBJ osteosarcoma related oncogene (FC approximately 21). Immunohistology and the immunoblot analysis confirmed the presence of HSP70 protein in both applied HIFU modes. The use of HIFU treatment on muscle tissue results in dramatic changes in gene expression; however, the same genes are up-regulated after the application of continuous or pulsed HIFU, indicating that the tissue reaction is independent of the type of tissue damage.
Collapse
Affiliation(s)
- Walter Hundt
- Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5488, USA.
| | | | | | | | | |
Collapse
|
29
|
Liu HL, Chang H, Chen WS, Shih TC, Hsiao JK, Lin WL. Feasibility of transrib focused ultrasound thermal ablation for liver tumors using a spherically curved 2D array: a numerical study. Med Phys 2007; 34:3436-48. [PMID: 17926945 DOI: 10.1118/1.2759888] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The use of focused ultrasound thermal ablation to treat hepatocarcinoma and other liver tumors produces promising clinical results. However, one of the major drawbacks is the high absorption of ultrasonic energy by the rib, making partial rib removal necessary in many cases. This study numerically investigated the feasibility of using a spherical ultrasound phased array for transrib liver-tumor thermal ablation. An independently array-element activitation scheme, which switches off the transducer elements obstructed by the ribs based on feedback anatomical medical imaging, was proposed to reduce the rib-overheating problem. The numerical results showed that the proposed treatment planning strategy can effectively reduce the specific energy absorbed by the rib while maintaining the energy at the target position, which both reduces the rib-overheating problem and increases the possibility of treating a target lesion under an intact rib. The analysis also demonstrated that the target position and the ultrasound frequency play key roles in the treatment. Patients with diverse characteristics were also tested to show the generality of the proposed strategy. The proposed treatment planning strategy also provides useful information for evaluating the treatment effectiveness prior to clinically performing transrib ultrasound liver-tumor thermal ablation.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuon, Taiwan.
| | | | | | | | | | | |
Collapse
|
30
|
Coussios CC, Farny CH, Haar GT, Roy RA. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperthermia 2007; 23:105-20. [PMID: 17578336 DOI: 10.1080/02656730701194131] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acoustic cavitation has been shown to play a key role in a wide array of novel therapeutic ultrasound applications. This paper presents a brief discussion of the physics of thermally relevant acoustic cavitation in the context of high-intensity focussed ultrasound (HIFU). Models for how different types of cavitation activity can serve to accelerate tissue heating are presented, and results suggest that the bulk of the enhanced heating effect can be attributed to the absorption of broadband acoustic emissions generated by inertial cavitation. Such emissions can be readily monitored using a passive cavitation detection (PCD) scheme and could provide a means for real-time treatment monitoring. It is also shown that the appearance of hyperechoic regions (or bright-ups) on B-mode ultrasound images constitutes neither a necessary nor a sufficient condition for inertial cavitation activity to have occurred during HIFU exposure. Once instigated at relatively large HIFU excitation amplitudes, bubble activity tends to grow unstable and to migrate toward the source transducer, causing potentially undesirable pre-focal damage. Potential means of controlling inertial cavitation activity using pulsed excitation so as to confine it to the focal region are presented, with the intention of harnessing cavitation-enhanced heating for optimal HIFU treatment delivery. The role of temperature elevation in mitigating bubble-enhanced heating effects is also discussed, along with other bubble-field effects such as multiple scattering and shielding.
Collapse
Affiliation(s)
- C C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
31
|
Liu HL, Shih TC, Chen WS, Ju KC. A novel strategy to increase heating efficiency in a split-focus ultrasound phased array. Med Phys 2007; 34:2957-67. [PMID: 17822004 DOI: 10.1118/1.2746508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Focus splitting using sector-based phased arrays increases the necrosed volume in a single sonication and reduces the total treatment time in the treatment of large tumors. However, split-focus sonication results in a lower energy density and worse focal-beam distortion, which limits its usefulness in practical treatments. Here, we propose a new heating strategy involving consecutive strongly focused and split-focus sonications to improve the heating efficiency. Theoretical predictions including linear and thermal-dose-dependent attenuation change were employed to investigate potential factors of this strategy, and ex vivo tissue experiments were conducted to confirm its effectiveness. Results showed that the thermal lesions produced by the proposed strategy could be increased when comparing with the previous reported strategies. The proposed heating strategy also induces a thermal lesion more rapidly, and exhibits higher robustness to various blood perfusion conditions, higher robustness to various power/heating time combinations, and superiority to generate deep-seated lesions through tissues with complex interfaces. Possible mechanisms include the optimization of the thermal conduction created by the strongly focused sonication and the temperature buildup gained from thermally induced tissue attenuation change based on the theoretical analysis. This may represent a useful technique for increasing the applicability of split-focus and multiple-focus sonication techniques, and solve the obstacles encountered when attempting to use these methods to shorten the total clinical treatment time.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Molecular Imaging Center Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
32
|
Parsons JE, Cain CA, Fowlkes JB. Spatial variability in acoustic backscatter as an indicator of tissue homogenate production in pulsed cavitational ultrasound therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2007; 54:576-90. [PMID: 17375826 DOI: 10.1109/tuffc.2007.280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Spatial variability in acoustic backscatter is investigated as a potential feedback metric for assessment of lesion morphology during cavitation-mediated mechanical tissue disruption ("histotripsy"). A 750-kHz annular array was aligned confocally with a 4.5 MHz passive backscatter receiver during ex vivo insonation of porcine myocardium. Various exposure conditions were used to elicit a range of damage morphologies and backscatter characteristics [pulse duration = 14 micros, pulse repetition frequency (PRF) = 0.07-3.1 kHz, average I(SPPA) = 22-44 kW/cm2]. Variability in backscatter spatial localization was quantified by tracking the lag required to achieve peak correlation between sequential RF A-lines received. Mean spatial variability was observed to be significantly higher when damage morphology consisted of mechanically disrupted tissue homogenate versus mechanically intact coagulation necrosis (2.35 +/- 1.59 mm versus 0.067 +/- 0.054 mm, p < 0.025). Statistics from these variability distributions were used as the basis for selecting a threshold variability level to identify the onset of homogenate formation via an abrupt, sustained increase in spatially dynamic backscatter activity. Specific indices indicative of the state of the homogenization process were quantified as a function of acoustic input conditions. The prevalence of backscatter spatial variability was observed to scale with the amount of homogenate produced for various PRFs and acoustic intensities.
Collapse
|
33
|
Liu HL, Chen YY, Chen WS, Shih TC, Chen JS, Lin WL. Interactions between consecutive sonications for characterizing the thermal mechanism in focused ultrasound therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:1411-21. [PMID: 16965981 DOI: 10.1016/j.ultrasmedbio.2006.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/24/2006] [Accepted: 05/04/2006] [Indexed: 05/11/2023]
Abstract
The use of focused ultrasound for thermal ablation or therapy has become a promising modality due to its high selectivity and noninvasiveness. The temperature increase that induces thermal necrosis in the focal beam area has been reported to be attributed to the absorption of ultrasound energy and heating enhancement by acoustic cavitation. The purpose of this study is to propose a novel experimental arrangement to observe the thermal lesion formation and to demonstrate that the presence of the ultrasound-induced, macroscopically-visible bubbles may exert a key effect in thermal lesion formation. In our experiments, consecutive sonications with orthogonal intersections were applied to observe the thermal lesion interaction induced by 577- or 1155-kHz ultrasound. Results showed that the 1155-kHz heating was dominated by ultrasound energy absorption, with blocking of consecutive sonications being evident only rarely. However, in 577-kHz sonications, the thermal process was dominated by inertial cavitation and the corresponding ultrasound-induced, macroscopically-visible bubbles, which was verified from the later lesion being blocked by the former one and direct observation from light microscopy. This study demonstrates that the operating frequency for ultrasound thermal ablation should be selected based on the intended specific thermal mechanisms to be induced.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Tung YS, Liu HL, Wu CC, Ju KC, Chen WS, Lin WL. Contrast-agent-enhanced ultrasound thermal ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:1103-10. [PMID: 16829324 DOI: 10.1016/j.ultrasmedbio.2006.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 03/21/2006] [Accepted: 04/06/2006] [Indexed: 05/03/2023]
Abstract
The small thermal lesions induced when using high-intensity focused ultrasound (HIFU) to ablate tumors results in long treatment duration. In this study, the effect of using ultrasound contrast agent (UCA, Definity) to enhance the ultrasound (US) thermal effects and, thus to enlarge the lesion size, was studied in transparent tissue phantoms insonified by 1.85-MHz US with acoustical powers of 28.9 and 40.4 W. The experimental results show that the lesion size depended strongly on the electrical power and the concentration of UCA. UCA also reduced the power required to form a lesion of a certain size by about 30%. However, UCA moved the greatest heating position from the transducer focus, by 2.16 cm for 0.015% UCA at 40.4 W, and with lesions forming at the surface for UCA concentrations higher than 0.1%. An optimal result was obtained when using 0.001% UCA and 28.9-W US, which produced a lesion 12 times larger and an acceptable shift (less than half of the lesion length). UCA can effectively increase the size of the HIFU lesions, but lesion shift should be carefully considered while performing HIFU ablations.
Collapse
Affiliation(s)
- Yao-Sheng Tung
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Liu HL, Chen WS, Chen JS, Shih TC, Chen YY, Lin WL. Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:759-67. [PMID: 16677935 DOI: 10.1016/j.ultrasmedbio.2006.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 01/03/2006] [Accepted: 01/17/2006] [Indexed: 05/03/2023]
Abstract
This paper demonstrates a novel approach for enhancing ultrasound-induced heating by the introduction of acoustic cavitation using simultaneous sonication with low- and high-frequency ultrasound. A spherical focused transducer (566 or 1155 kHz) was used to generate the thermal lesions, and a low-frequency planar transducer (40 or 28 kHz) was used to enhance the bubble activity. Ex vivo fresh porcine muscles were used as the target of ultrasound ablation. The emitted signals and the signals backscattered from the bubble activity were also recorded during the heating process by a PVDF-type needle hydrophone, and thermocouples were inserted to measure temperatures. Compared with the lesions formed by a single focused transducer, the size of the lesions generated by this approach were as much as 140% larger along the axial direction and 200% larger along the radial direction for combined 566- and 40-kHz sonication. They were 47% and 66% larger along the axial and radial directions, respectively, for combined 1155- and 28-kHz sonication. Cavitation activities enhanced by low-frequency ultrasound were confirmed by the presence of subharmonics in the spectrum and temperature increase as a result of increased tissue absorption. These observations imply that cavitation-enhanced lesions can be generated without reducing the penetration ability; they also show the advantage of producing larger and more uniform thermal lesions by multiple sonications. This technique provides an easy and effective way to achieve cavitation-enhanced heating, and may be useful for generating large and deep-seated thermal lesions.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Chen WS, Wu CC, Fang HY, Liu HL. Differences in the lesion formation process between focused ultrasound and microwave ablations. Med Phys 2006; 33:1346-51. [PMID: 16752570 DOI: 10.1118/1.2193689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The objective is to understand the differences in the lesion formation processes between microwave and high-intensity focused ultrasound (HIFU) ablation. The lesions formed by microwaves and HIFU were real-time monitored and compared using transparent tissue-mimicking phantoms at 60 and 70 W of driving electrical power. Microwaves and HIFU produced lesions different in shape, size, and developing processes. For HIFU ablations, the hyperechoic region appeared bigger in ultrasonic images, as compared with the protein denatured region observed optically at the end of 100 s ablations. On the contrary, the hyperechoic signal was only limited to a small region along the antenna of a microwave ablator. Careful monitoring and controlling the lesion formation process is essential for successful microwaves and HIFU thermal ablations.
Collapse
Affiliation(s)
- Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
37
|
Yu T, Fan X, Xiong S, Hu K, Wang Z. Microbubbles assist goat liver ablation by high intensity focused ultrasound. Eur Radiol 2006; 16:1557-63. [PMID: 16541226 DOI: 10.1007/s00330-006-0176-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/06/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
High intensity focused ultrasound (HIFU) has been introduced to treat cancers. However, this therapy is a time-consuming procedure; destructing a deeper volume is also difficult as ultrasonic energy attenuates exponentially with increasing depth in tissues. The aim of the present study was to investigate the effects of introducing microbubbles on liver HIFU ablation. Seventeen goats were divided into groups A (n=8) and B (n=9). The livers in both groups were ablated using HIFU (1.0 MHz, 22,593 W/cm2) performed in the manner of a clinical regime using a clinical device. A microbubble agent was bolus-injected intravenously before HIFU exposure in group B. All animals in group A and seven goats in group B were euthanased to evaluate the ablation efficiency 24 h after HIFU. The necrosis rate (mm3/s), which was the volume of necrosis tissue per second of HIFU exposure, was used to judge the ablation efficiency. Pathological examinations were performed to determine whether there were residual intact tissues within the exposed volume. The other two goats in group B were used to determine the delayed pathological changes 7 days after ultrasonic ablation. The necrosis rate (mm3/s) was increased in group B (14.4647+/-4.1960 versus 33.5302+/-12.4484, P=0.0059). Pathological examinations confirmed that there were no residual unaffected tissue focuses within the exposed volume. Two remarkable changes occurred in the other two goats in group B 7 days after HIFU: there were ghost-cell islands at the periphery of the ablated tissues, and surrounding adjacent tissues outside the reactive zone necrotized. These findings showed that microbubbles could be used to assist liver HIFU ablation.
Collapse
Affiliation(s)
- Tinghe Yu
- Institute of Ultrasound Engineering in Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | | | | | | | | |
Collapse
|
38
|
Lo AH, Kripfgans OD, Carson PL, Fowlkes JB. Spatial control of gas bubbles and their effects on acoustic fields. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:95-106. [PMID: 16364801 DOI: 10.1016/j.ultrasmedbio.2005.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 08/30/2005] [Accepted: 09/14/2005] [Indexed: 05/05/2023]
Abstract
Because microbubbles can enhance therapy, such as by cavitation or by thermal means, treatment could be confined with localization of microbubbles. This spatial control can be achieved by the vaporization of liquid-filled droplets present throughout the medium in a process known as acoustic droplet vaporization (ADV). Bubbles in the form of an orthogonal plane or "wall" can thus be created and can scatter ultrasound to enhance the proximal acoustic field while shielding distal tissues. To investigate the possible effects of a preexistent bubble wall, tissue-mimicking polyacrylamide gels embedded with perfluorocarbon droplets were insonified under various conditions. The preliminary results presented in this paper show that a bubble wall can successfully cause proximal ADV at approximately half the transmitted pressures that are required without the use of a bubble wall, while also serving as a viable shield against ADV and potential damage in distal areas. The results seen here in a gel medium are promising and suggest further development in vivo is needed.
Collapse
Affiliation(s)
- Andrea H Lo
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-0553, USA.
| | | | | | | |
Collapse
|
39
|
Parsons JE, Cain CA, Abrams GD, Fowlkes JB. Pulsed cavitational ultrasound therapy for controlled tissue homogenization. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:115-29. [PMID: 16364803 DOI: 10.1016/j.ultrasmedbio.2005.09.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/09/2005] [Accepted: 09/14/2005] [Indexed: 05/05/2023]
Abstract
Methods were investigated to acoustically control the extent to which cavitation-mediated tissue homogenization is responsible for lesion formation in vitro. These results may guide potential therapeutic procedures that induce damage predominantly via mechanical disruption and, thereby, avoid limitations associated with thermal ablative modalities. Porcine myocardium was insonified at 750 kHz using pulse sequences consisting of high-amplitude pulses (22 MPa Pr) interleaved with variable-amplitude "sustaining" pulses (e.g., 6.9 MPa Pr), which were intended to provide sufficient acoustic input to maintain cavitation activity between primary pulses, but to increase the spatial peak temporal average intensity (I(SPTA)) only marginally. Using modest temporal-average intensities (e.g., I(SPTA) approximately 200 W/cm2), approximately 0.5 cm3 lesions were produced consisting of homogenate that could be irrigated away to reveal smooth cavities. The prevalence of homogenate in a given lesion was sensitive to both pulse-repetition frequency and sustaining pulse amplitude, suggesting the existence of optimum acoustic parameters for producing homogenized lesions largely via mechanical perturbation.
Collapse
Affiliation(s)
- Jessica E Parsons
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
40
|
Mast TD, Makin IRS, Faidi W, Runk MM, Barthe PG, Slayton MH. Bulk ablation of soft tissue with intense ultrasound: modeling and experiments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 118:2715-24. [PMID: 16266191 DOI: 10.1121/1.2011157] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Methods for the bulk ablation of soft tissue using intense ultrasound, with potential applications in the thermal treatment of focal tumors, are presented. An approximate analytic model for bulk ablation predicts the progress of ablation based on tissue properties, spatially averaged ultrasonic heat deposition, and perfusion. The approximate model allows the prediction of threshold acoustic powers required for ablation in vivo as well as the comparison of cases with different starting temperatures and perfusion characteristics, such as typical in vivo and ex vivo experiments. In a full three-dimensional numerical model, heat deposition from array transducers is computed using the Fresnel approximation and heat transfer in tissue is computed by finite differences, accounting for heating changes caused by boiling and thermal dose-dependent absorption. Similar ablation trends due to perfusion effects are predicted by both the simple analytic model and the full numerical model. Comparisons with experimental results show the efficacy of both models in predicting tissue ablation effects. Phenomena illustrated by the simulations and experiments include power thresholds for in vivo ablation, differences between in vivo and ex vivo lesioning for comparable source conditions, the effect of tissue boiling and absorption changes on ablation depth, and the performance of a continuous rotational scanning method suitable for interstitial bulk ablation of soft tissue.
Collapse
Affiliation(s)
- T Douglas Mast
- Ethicon Endo-Surgery, 4545 Creek Rd., Cincinnati, Ohio 45242, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Dynamics and control of cavitation during high-intensity focused ultrasound application. ACTA ACUST UNITED AC 2005. [DOI: 10.1121/1.1901744] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:947-56. [PMID: 15972200 DOI: 10.1016/j.ultrasmedbio.2005.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 03/18/2005] [Accepted: 03/31/2005] [Indexed: 05/03/2023]
Abstract
High-intensity focused ultrasound (US), or HIFU, treatment of soft tissues has been shown to result in a hyperechoic region in B-mode US images. We report on detecting cavitation in vivo in correlation with the appearance of a hyperechoic region. The US system consisted of a HIFU transducer (3.3 MHz), a broadband A-mode transducer for active and passive cavitation detection and an US-imaging probe that were all confocal and synchronized. HIFU, at in situ intensities of 220 to 1710 W/cm(2), was applied for 10 s to pig muscles in vivo. Active and passive cavitation detection results showed a strong correlation between the onset of cavitation and the appearance of a hyperechoic region. Passive cavitation detection results showed that inertial cavitation typically occurred prior (within 0.5 s) to the appearance of a hyperechoic region. The observed cavitation activity confirms that bubbles are present during the formation of a hyperechoic region at the HIFU focus.
Collapse
Affiliation(s)
- Brian A Rabkin
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | | | | |
Collapse
|
43
|
Melodelima D, Chapelon JY, Theillère Y, Cathignol D. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:103-11. [PMID: 14962614 DOI: 10.1016/j.ultrasmedbio.2003.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Revised: 09/12/2003] [Accepted: 09/18/2003] [Indexed: 05/10/2023]
Abstract
In the high-intensity focused ultrasound (US), or HIFU, field, it is well-known that the cavitation effect can be used to induce lesions of larger volume. The principle is based on the increase in the equivalent attenuation coefficient of the tissue in the presence of the bubbles created by cavitation. The elementary lesions produced by combination of cavitation and thermal effects, using focused transducers, were spherical and developed upstream of the focal point. This paper presents a method that combines cavitation with a thermal effect to obtain deeper lesions using a plane transducer, rather than a focused one. The cavitation effect was produced by delivering intensities of 60 W/cm2 at the face of the transducer for 0.5 s. The applicator was then rotated through 90 degrees at a constant speed of between 0.5 and 1.5 degrees /s. During this rotation, ex vivo tissues were exposed continuously to an acoustic intensity of 14 W/cm2 to combine the cavitation effect with a thermal effect. The necroses were, on average, twice as deep when the cavitation effect was used as those obtained with a thermal effect alone. Observed macroscopically, the lesions have a very well-delimited geometry. Temperature measurements made at different angles of treatment have shown that they were coagulation necroses.
Collapse
|
44
|
Martin RW, Vaezy S, Proctor A, Myntti T, Lee JBJ, Crum LA. Water-cooled, high-intensity ultrasound surgical applicators with frequency tracking. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2003; 50:1305-1317. [PMID: 14609070 DOI: 10.1109/tuffc.2003.1244747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High-intensity, focused ultrasound (HIFU) applicators have been developed for arresting bleeding with the ultimate intent of use in surgery. The design uses a tapered titanium component for transmission coupling of the ultrasound energy from a spherically curved transducer to biological tissues. The nominal operating frequency is 5.5 MHz, in a highly resonant mode (quality factor of 327 with water load). Liquid cooling is used to remove energy loss important at net applied power greater than 18 W/cm2 at the surface of the piezoelectric element. A downward resonance frequency shift (>20 kHz) occurs, even with cooling, as the applicator warms with normal operation. A feedback technique is used for maintaining the excitation near optimum resonance. Standing wave ratios of the applied power of 1.6 or less are thus sustained. The system and applicators have been found to be highly robust, effective in achieving hemostasis in the hemorrhaging liver, spleen, lung, or blood vessels in rabbit and pig experiments. One unit has been operated for over 1.7 hours in treating organ hemorrhage in blunt trauma experiments with nine swine with electrical net power of up to 158 W (31 W/cm2 across the transducer) and intensity of 2560 W/cm2 at focus.
Collapse
Affiliation(s)
- Roy W Martin
- University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|