1
|
Ashjaei S, Behroozmand R, Fozdar S, Farrar R, Arjmandi M. Vocal control and speech production in cochlear implant listeners: A review within auditory-motor processing framework. Hear Res 2024; 453:109132. [PMID: 39447319 DOI: 10.1016/j.heares.2024.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
A comprehensive literature review is conducted to summarize and discuss prior findings on how cochlear implants (CI) affect the users' abilities to produce and control vocal and articulatory movements within the auditory-motor integration framework of speech. Patterns of speech production pre- versus post-implantation, post-implantation adjustments, deviations from the typical ranges of speakers with normal hearing (NH), the effects of switching the CI on and off, as well as the impact of altered auditory feedback on vocal and articulatory speech control are discussed. Overall, findings indicate that CIs enhance the vocal and articulatory control aspects of speech production at both segmental and suprasegmental levels. While many CI users achieve speech quality comparable to NH individuals, some features still deviate in a group of CI users even years post-implantation. More specifically, contracted vowel space, increased vocal jitter and shimmer, longer phoneme and utterance durations, shorter voice onset time, decreased contrast in fricative production, limited prosodic patterns, and reduced intelligibility have been reported in subgroups of CI users compared to NH individuals. Significant individual variations among CI users have been observed in both the pace of speech production adjustments and long-term speech outcomes. Few controlled studies have explored how the implantation age and the duration of CI use influence speech features, leaving substantial gaps in our understanding about the effects of spectral resolution, auditory rehabilitation, and individual auditory-motor processing abilities on vocal and articulatory speech outcomes in CI users. Future studies under the auditory-motor integration framework are warranted to determine how suboptimal CI auditory feedback impacts auditory-motor processing and precise vocal and articulatory control in CI users.
Collapse
Affiliation(s)
- Samin Ashjaei
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 North Floyd Road, Richardson, TX 75080, USA
| | - Shaivee Fozdar
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Reed Farrar
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Meisam Arjmandi
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA; Institute for Mind and Brain, University of South Carolina, Barnwell Street, Columbia, SC 29208, USA.
| |
Collapse
|
2
|
Jahn KN, Wiegand-Shahani BM, Moturi V, Kashiwagura ST, Doak KR. Cochlear-implant simulated spectral degradation attenuates emotional responses to environmental sounds. Int J Audiol 2024:1-7. [PMID: 39146030 DOI: 10.1080/14992027.2024.2385552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Cochlear implants (CI) provide users with a spectrally degraded acoustic signal that could impact their auditory emotional experiences. This study evaluated the effects of CI-simulated spectral degradation on emotional valence and arousal elicited by environmental sounds. DESIGN Thirty emotionally evocative sounds were filtered through a noise-band vocoder. Participants rated the perceived valence and arousal elicited by each of the full-spectrum and vocoded stimuli. These ratings were compared across acoustic conditions (full-spectrum, vocoded) and as a function of stimulus type (unpleasant, neutral, pleasant). STUDY SAMPLE Twenty-five young adults (age 19 to 34 years) with normal hearing. RESULTS Emotional responses were less extreme for spectrally degraded (i.e., vocoded) sounds than for full-spectrum sounds. Specifically, spectrally degraded stimuli were perceived as more negative and less arousing than full-spectrum stimuli. CONCLUSION By meticulously replicating CI spectral degradation while controlling for variables that are confounded within CI users, these findings indicate that CI spectral degradation can compress the range of sound-induced emotion independent of hearing loss and other idiosyncratic device- or person-level variables. Future work will characterize emotional reactions to sound in CI users via objective, psychoacoustic, and subjective measures.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Richardson, TX, USA
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX, USA
| | - Braden M Wiegand-Shahani
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Richardson, TX, USA
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX, USA
| | - Vaishnavi Moturi
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Richardson, TX, USA
| | - Sean Takamoto Kashiwagura
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Richardson, TX, USA
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX, USA
| | - Karlee R Doak
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Richardson, TX, USA
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
3
|
Fagniart S, Delvaux V, Harmegnies B, Huberlant A, Huet K, Piccaluga M, Watterman I, Charlier B. Nasal/Oral Vowel Perception in French-Speaking Children With Cochlear Implants and Children With Typical Hearing. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1243-1267. [PMID: 38457658 DOI: 10.1044/2024_jslhr-23-00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
PURPOSE The present study investigates the perception of vowel nasality in French-speaking children with cochlear implants (CIs; CI group) and children with typical hearing (TH; TH group) aged 4-12 years. By investigating the vocalic nasality feature in French, the study aims to document more broadly the effects of the acoustic limitations of CI in processing segments characterized by acoustic cues that require optimal spectral resolution. The impact of various factors related to children's characteristics, such as chronological/auditory age, age of implantation, and exposure to cued speech, has been studied on performance, and the acoustic characteristics of the stimuli in perceptual tasks have also been investigated. METHOD Identification and discrimination tasks involving French nasal and oral vowels were administered to two groups of children: 13 children with CIs (CI group) and 25 children with TH (TH group) divided into three age groups (4-6 years, 7-9 years, and 10-12 years). French nasal vowels were paired with their oral phonological counterpart (phonological pairing) as well as to the closest oral vowel in terms of phonetic proximity (phonetic pairing). Post hoc acoustic analyses of the stimuli were linked to the performance in perception. RESULTS The results indicate an effect of the auditory status on the performance in the two tasks, with the CI group performing at a lower level than the TH group. However, the scores of the children in the CI group are well above chance level, exceeding 80%. The most common errors in identification were substitutions between nasal vowels and phonetically close oral vowels as well as confusions between the phoneme /u/ and other oral vowels. Phonetic pairs showed lower discrimination performance in the CI group with great variability in the results. Age effects were observed only in TH children for nasal vowel identification, whereas in children with CIs, a positive impact of cued speech practice and early implantation was found. Differential links between performance and acoustic characteristics were found within our groups, suggesting that in children with CIs, selective use of certain acoustic features, presumed to be better transmitted by the implant, leads to better perceptual performance. CONCLUSIONS The study's results reveal specific challenges in children with CIs when processing segments characterized by fine spectral resolution cues. However, the CI children in our study appear to effectively compensate for these difficulties by utilizing various acoustic cues assumed to be well transmitted by the implant, such as cues related to the temporal resolution of stimuli. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25328704.
Collapse
Affiliation(s)
- Sophie Fagniart
- Language Sciences and Metrology Unit, University of Mons, Belgium
- Research Institute for Language Science and Technology, University of Mons, Belgium
| | - Véronique Delvaux
- Language Sciences and Metrology Unit, University of Mons, Belgium
- Research Institute for Language Science and Technology, University of Mons, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
- Fund for Scientific Research (F.R.S.-FNRS), Brussels, Belgium
| | - Bernard Harmegnies
- Research Institute for Language Science and Technology, University of Mons, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Huberlant
- Functional Rehabilitation Center "Comprendre et Parler," Brussels, Belgium
| | - Kathy Huet
- Language Sciences and Metrology Unit, University of Mons, Belgium
- Research Institute for Language Science and Technology, University of Mons, Belgium
| | - Myriam Piccaluga
- Language Sciences and Metrology Unit, University of Mons, Belgium
- Research Institute for Language Science and Technology, University of Mons, Belgium
| | - Isabelle Watterman
- Université Libre de Bruxelles, Brussels, Belgium
- Functional Rehabilitation Center "Comprendre et Parler," Brussels, Belgium
| | - Brigitte Charlier
- Université Libre de Bruxelles, Brussels, Belgium
- Functional Rehabilitation Center "Comprendre et Parler," Brussels, Belgium
| |
Collapse
|
4
|
Cychosz M, Winn MB, Goupell MJ. How to vocode: Using channel vocoders for cochlear-implant research. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2407-2437. [PMID: 38568143 PMCID: PMC10994674 DOI: 10.1121/10.0025274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
The channel vocoder has become a useful tool to understand the impact of specific forms of auditory degradation-particularly the spectral and temporal degradation that reflect cochlear-implant processing. Vocoders have many parameters that allow researchers to answer questions about cochlear-implant processing in ways that overcome some logistical complications of controlling for factors in individual cochlear implant users. However, there is such a large variety in the implementation of vocoders that the term "vocoder" is not specific enough to describe the signal processing used in these experiments. Misunderstanding vocoder parameters can result in experimental confounds or unexpected stimulus distortions. This paper highlights the signal processing parameters that should be specified when describing vocoder construction. The paper also provides guidance on how to determine vocoder parameters within perception experiments, given the experimenter's goals and research questions, to avoid common signal processing mistakes. Throughout, we will assume that experimenters are interested in vocoders with the specific goal of better understanding cochlear implants.
Collapse
Affiliation(s)
- Margaret Cychosz
- Department of Linguistics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Matthew B Winn
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, College Park, Maryland 20742, USA
| |
Collapse
|
5
|
Mecklenburg DJ, Graham PL, James CJ. Relationships Between Speech, Spatial and Qualities of Hearing Short Form SSQ12 Item Scores and their Use in Guiding Rehabilitation for Cochlear Implant Recipients. Trends Hear 2024; 28:23312165231224643. [PMID: 38361477 PMCID: PMC10874150 DOI: 10.1177/23312165231224643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Cochlear implantation successfully improves hearing in most adult recipients. However, in rare cases, post-implant rehabilitation is required to maximize benefit. The primary aim of this investigation was to test if self-reports by cochlear implant users indicate the need for post-implant rehabilitation. Listening performance was assessed with the Speech, Spatial and Qualities short-form SSQ12, which was self-administered via a web-based survey. Subjects included over 2000 adult bilateral or unilateral cochlear implant users with at least one year of experience. A novel application of regression tree analysis identified core SSQ12 items that serve as first steps in establishing a plan for further rehabilitation: items 1, 8, and 11 dealing with single-talker situations, loudness perception, and clarity, respectively. Further regression and classification tree analyses revealed that SSQ12 item scores were weakly related to age, degree of tinnitus, and use of bilateral versus unilateral implants. Conversely, SSQ12 scores were strongly associated with self-rated satisfaction and confidence in using their cochlear implant. The SSQ12 total scores did not vary significantly over 1-9 or more years' experience. These findings suggest that the SSQ12 may be a useful tool to guide rehabilitation at any time after cochlear implantation. Identification of poor performance may have implications for timely management to improve the outcomes, through various techniques such as device fitting adjustments, counseling, active sound exposure, and training spatial hearing.
Collapse
Affiliation(s)
| | - Petra L. Graham
- School of Mathematical and Physical Sciences, Macquarie University, North Ryde, Australia
| | | |
Collapse
|
6
|
Franke-Trieger A, Lailach S, Shetty J, Murrmann K, Zahnert T, Neudert M. Word Recognition with a Cochlear Implant in Relation to Prediction and Electrode Position. J Clin Med 2023; 13:183. [PMID: 38202190 PMCID: PMC10780042 DOI: 10.3390/jcm13010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND the word recognition score (WRS) achieved with cochlear implants (CIs) varies widely. To account for this, a predictive model was developed based on patients' age and their pre-operative WRS. This retrospective study aimed to find out whether the insertion depth of the nucleus lateral-wall electrode arrays contributes to the deviation of the CI-achieved WRS from the predicted WRS. MATERIALS AND METHODS patients with a pre-operative maximum WRS > 0 or a pure-tone audiogram ≥80 dB were included. The insertion depth was determined via digital volume tomography. RESULTS fifty-three patients met the inclusion criteria. The median WRS achieved with the CI was 70%. The comparison of pre- and post-operative scores achieved with a hearing aid and a CI respectively in the aided condition showed a median improvement of 65 percentage points (pp). A total of 90% of the patients improved by at least 20 pp. The majority of patients reached or exceeded the prediction, with a median absolute error of 11 pp. No significant correlation was found between the deviation from the predicted WRS and the insertion depth. CONCLUSIONS our data support a previously published model for the prediction of the WRS after cochlear implantation. For the lateral-wall electrode arrays evaluated, the insertion depth did not influence the WRS with a CI.
Collapse
Affiliation(s)
- Annett Franke-Trieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany (T.Z.)
| | | | | | | | | | | |
Collapse
|
7
|
Dillon MT, Helpard L, Brown KD, Selleck AM, Richter ME, Rooth MA, Thompson NJ, Dedmon MM, Ladak HM, Agrawal S. Influence of the Frequency-to-Place Function on Recognition with Place-Based Cochlear Implant Maps. Laryngoscope 2023; 133:3540-3547. [PMID: 37078508 DOI: 10.1002/lary.30710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Comparison of acute speech recognition for cochlear implant (CI) alone and electric-acoustic stimulation (EAS) users listening with default maps or place-based maps using either a spiral ganglion (SG) or a new Synchrotron Radiation-Artificial Intelligence (SR-AI) frequency-to-place function. METHODS Thirteen adult CI-alone or EAS users completed a task of speech recognition at initial device activation with maps that differed in the electric filter frequency assignments. The three map conditions were: (1) maps with the default filter settings (default map), (2) place-based maps with filters aligned to cochlear SG tonotopicity using the SG function (SG place-based map), and (3) place-based maps with filters aligned to cochlear Organ of Corti (OC) tonotopicity using the SR-AI function (SR-AI place-based map). Speech recognition was evaluated using a vowel recognition task. Performance was scored as the percent correct for formant 1 recognition due to the rationale that the maps would deviate the most in the estimated cochlear place frequency for low frequencies. RESULTS On average, participants had better performance with the OC SR-AI place-based map as compared to the SG place-based map and the default map. A larger performance benefit was observed for EAS users than for CI-alone users. CONCLUSION These pilot data suggest that EAS and CI-alone users may experience better performance with a patient-centered mapping approach that accounts for the variability in cochlear morphology (OC SR-AI frequency-to-place function) in the individualization of the electric filter frequencies (place-based mapping procedure). LEVEL OF EVIDENCE 3 Laryngoscope, 133:3540-3547, 2023.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luke Helpard
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Kevin D Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A Morgan Selleck
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret E Richter
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith A Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J Thompson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew M Dedmon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hanif M Ladak
- School of Biomedical Engineering, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| | - Sumit Agrawal
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Dillon MT, Buss E, Johnson AD, Canfarotta MW, O’Connell BP. Comparison of Two Place-Based Mapping Procedures on Masked Sentence Recognition as a Function of Electrode Array Angular Insertion Depth and Presence of Acoustic Low-Frequency Information: A Simulation Study. Audiol Neurootol 2023; 28:478-487. [PMID: 37482054 PMCID: PMC10948008 DOI: 10.1159/000531262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/23/2023] [Indexed: 07/25/2023] Open
Abstract
INTRODUCTION Cochlear implant (CI) and electric-acoustic stimulation (EAS) users may experience better performance with maps that align the electric filter frequencies to the cochlear place frequencies, known as place-based maps, than with maps that present spectrally shifted information. Individual place-based mapping procedures differ in the frequency content that is aligned to cochlear tonotopicity versus discarded or spectrally shifted. The performance benefit with different place-based maps may vary due to individual differences in angular insertion depth (AID) of the electrode array and whether functional acoustic low-frequency information is available in the implanted ear. The present study compared masked speech recognition with two types of place-based maps as a function of AID and presence of acoustic low-frequency information. METHODS Sixty adults with normal hearing listened acutely to CI or EAS simulations of two types of place-based maps for one of three cases of electrode arrays at shallow AIDs. The strict place-based (Strict-PB) map aligned the low- and mid-frequency information to cochlear tonotopicity and discarded information below the frequency associated with the most apical electrode contact. The alternative place-based map (LFshift-PB) aligned the mid-frequency information to cochlear tonotopicity and provided more of the speech spectrum by compressing low-frequency information on the apical electrode contacts (i.e., <1 kHz). Three actual cases of a 12-channel, 24-mm electrode array were simulated by assigning the carrier frequency for an individual channel as the cochlear place frequency of the associated electrode contact. The AID and cochlear place frequency for the most apical electrode contact were 460° and 498 Hz for case 1, 389° and 728 Hz for case 2, and 335° and 987 Hz for case 3, respectively. RESULTS Generally, better performance was observed with the Strict-PB maps for cases 1 and 2, where mismatches were 2-4 octaves for the most apical channel with the LFshift-PB map. Similar performance was observed between maps for case 3. For the CI simulations, performance with the Strict-PB map declined with decreases in AID, while performance with the LFshift-PB map remained stable across cases. For the EAS simulations, performance with the Strict-PB map remained stable across cases, while performance with the LFshift-PB map improved with decreases in AID. CONCLUSIONS Listeners demonstrated differences with the Strict-PB versus LFshift-PB maps as a function of AID and whether acoustic low-frequency information was available (CI vs. EAS). These data support the use of the Strict-PB mapping procedure for AIDs ≥335°, though further study including time for acclimatization in CI and EAS users is warranted.
Collapse
Affiliation(s)
- Margaret T. Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alec D. Johnson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael W. Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brendan P. O’Connell
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Charlotte Eye Ear Nose & Throat Associates, P.A., Charlotte, NC, USA
| |
Collapse
|
9
|
Alothman N, Almuhawas F, Badghaish R, Alotaibi AH, Alhabib SF, Alzhrani F, Hagr A. Cochlear Implantation in Pediatrics: The Effect of Cochlear Coverage. J Pers Med 2023; 13:jpm13030562. [PMID: 36983743 PMCID: PMC10051355 DOI: 10.3390/jpm13030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The effect of insertion depth and position of cochlear implant (CI) electrode arrays on speech perception remains unclear. This study aimed to determine the relationship between cochlear coverage and speech performance in children with prelingual hearing loss with CI. Pure tone audiometry (PTA) and speech audiometry, including speech reception threshold (SRT) using spondee words and speech discrimination score (SDS) using phonetically balanced monosyllabic words, were tested. The Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scales were also used. Thirty-one ears were implanted with the FLEX 28 electrode array, and 54 with the FORM 24 were included in the current study. For the studied ear, the mean cochlear duct length was 30.82 ± 2.24 mm; the mean cochlear coverage was 82.78 ± 7.49%. Cochlear coverage was a significant negative predictor for the mean pure tone threshold across frequecnies of 0.5, 1, 2, and 4 kHz (PTA4) (p = 0.019). Cochlear coverage was a significant positive predictor of SDS (p = 0.009). In children with cochlear coverage ≥ 82.78%, SDS was significantly better than in those with coverage < 82.78% (p = 0.04). Cochlear coverage was not a significant predictor of the SRT, CAP, or SIR. In conclusion, the cochlear coverage of the CI electrode array has an impact on the users' SDS. Further long-term studies with larger sample sizes should be conducted to address the most critical factors affecting CI recipients' outcomes.
Collapse
Affiliation(s)
- Noura Alothman
- Health Communication Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Fida Almuhawas
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Reem Badghaish
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Al Hanouf Alotaibi
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Salman F Alhabib
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Farid Alzhrani
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
10
|
Leclère T, Johannesen PT, Wijetillake A, Segovia-Martínez M, Lopez-Poveda EA. A computational modelling framework for assessing information transmission with cochlear implants. Hear Res 2023; 432:108744. [PMID: 37004271 DOI: 10.1016/j.heares.2023.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Computational models are useful tools to investigate scientific questions that would be complicated to address using an experimental approach. In the context of cochlear-implants (CIs), being able to simulate the neural activity evoked by these devices could help in understanding their limitations to provide natural hearing. Here, we present a computational modelling framework to quantify the transmission of information from sound to spikes in the auditory nerve of a CI user. The framework includes a model to simulate the electrical current waveform sensed by each auditory nerve fiber (electrode-neuron interface), followed by a model to simulate the timing at which a nerve fiber spikes in response to a current waveform (auditory nerve fiber model). Information theory is then applied to determine the amount of information transmitted from a suitable reference signal (e.g., the acoustic stimulus) to a simulated population of auditory nerve fibers. As a use case example, the framework is applied to simulate published data on modulation detection by CI users obtained using direct stimulation via a single electrode. Current spread as well as the number of fibers were varied independently to illustrate the framework capabilities. Simulations reasonably matched experimental data and suggested that the encoded modulation information is proportional to the total neural response. They also suggested that amplitude modulation is well encoded in the auditory nerve for modulation rates up to 1000 Hz and that the variability in modulation sensitivity across CI users is partly because different CI users use different references for detecting modulation.
Collapse
Affiliation(s)
- Thibaud Leclère
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain
| | - Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain; Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca 37007, Spain.
| |
Collapse
|
11
|
Dillon MT, Canfarotta MW, Buss E, Rooth MA, Richter ME, Overton AB, Roth NE, Dillon SM, Raymond JH, Young A, Pearson AC, Davis AG, Dedmon MM, Brown KD, O'Connell BP. Influence of Electric Frequency-to-Place Mismatches on the Early Speech Recognition Outcomes for Electric-Acoustic Stimulation Users. Am J Audiol 2023; 32:251-260. [PMID: 36800505 PMCID: PMC10166189 DOI: 10.1044/2022_aja-21-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/21/2022] [Accepted: 11/28/2022] [Indexed: 02/19/2023] Open
Abstract
PURPOSE Cochlear implant (CI) recipients with hearing preservation experience significant improvements in speech recognition with electric-acoustic stimulation (EAS) as compared to with a CI alone, although outcomes across EAS users vary. The individual differences in performance may be due in part to default mapping procedures, which result in electric frequency-to-place mismatches for the majority of EAS users. This study assessed the influence of electric mismatches on the early speech recognition for EAS users. METHOD Twenty-one participants were randomized at EAS activation to listen exclusively with a default or place-based map. For both groups, the unaided thresholds determined the acoustic cutoff frequency (i.e., > 65 dB HL). For default maps, the electric filter frequencies were assigned to avoid spectral gaps in frequency information but created varying magnitudes of mismatches. For place-based maps, the electric filter frequencies were assigned to avoid frequency-to-place mismatches. Recognition of consonant-nucleus-consonant words and vowels was assessed at activation and 1, 3, and 6 months postactivation. RESULTS For participants with default maps, electric mismatch at 1500 Hz ranged from 2 to -12.0 semitones (Mdn = -5 semitones). Poorer performance was observed for those with larger magnitudes of electric mismatch. This effect was observed through 6 months of EAS listening experience. CONCLUSIONS The present sample of EAS users experienced better initial performance when electric mismatches were small or eliminated. These data suggest the utility of methods that reduce electric mismatches, such as place-based mapping procedures. Investigation is ongoing to determine whether these differences persist with long-term EAS use. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.22096523.
Collapse
Affiliation(s)
- Margaret T. Dillon
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill
| | - Michael W. Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Meredith A. Rooth
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Margaret E. Richter
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill
| | | | | | | | | | - Allison Young
- Department of Audiology, UNC Health, Chapel Hill, NC
| | | | - Amanda G. Davis
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill
| | - Matthew M. Dedmon
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Kevin D. Brown
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| | - Brendan P. O'Connell
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, The University of North Carolina at Chapel Hill
| |
Collapse
|
12
|
Helke C, Reinhardt M, Arnold M, Schwenzer F, Haase M, Wachs M, Goßler C, Götz J, Keppeler D, Wolf B, Schaeper J, Salditt T, Moser T, Schwarz UT, Reuter D. On the Fabrication and Characterization of Polymer-Based Waveguide Probes for Use in Future Optical Cochlear Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:106. [PMID: 36614443 PMCID: PMC9821155 DOI: 10.3390/ma16010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Improved hearing restoration by cochlear implants (CI) is expected by optical cochlear implants (oCI) exciting optogenetically modified spiral ganglion neurons (SGNs) via an optical pulse generated outside the cochlea. The pulse is guided to the SGNs inside the cochlea via flexible polymer-based waveguide probes. The fabrication of these waveguide probes is realized by using 6" wafer-level micromachining processes, including lithography processes such as spin-coating cladding layers and a waveguide layer in between and etch processes for structuring the waveguide layer. Further adhesion layers and metal layers for laser diode (LD) bonding and light-outcoupling structures are also integrated in this waveguide process flow. Optical microscope and SEM images revealed that the majority of the waveguides are sufficiently smooth to guide light with low intensity loss. By coupling light into the waveguides and detecting the outcoupled light from the waveguide, we distinguished intensity losses caused by bending the waveguide and outcoupling. The probes were used in first modules called single-beam guides (SBGs) based on a waveguide probe, a ball lens and an LD. Finally, these SBGs were tested in animal models for proof-of-concept implantation experiments.
Collapse
Affiliation(s)
- Christian Helke
- Fraunhofer Institute for Electronic Nanosystems ENAS, 09126 Chemnitz, Germany
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Markus Reinhardt
- Fraunhofer Institute for Electronic Nanosystems ENAS, 09126 Chemnitz, Germany
- Experimental Sensor Science, Technical University of Chemnitz, 09126 Chemnitz, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Markus Arnold
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Falk Schwenzer
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Micha Haase
- Fraunhofer Institute for Electronic Nanosystems ENAS, 09126 Chemnitz, Germany
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Matthias Wachs
- Experimental Sensor Science, Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Christian Goßler
- Experimental Sensor Science, Technical University of Chemnitz, 09126 Chemnitz, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Jonathan Götz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Bettina Wolf
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Jannis Schaeper
- Institute for X-ray Physics, University of Goettingen, 37075 Goettingen, Germany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Goettingen, 37075 Goettingen, Germany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center Goettingen, 37075 Goettingen, Germany
| | | | - Danny Reuter
- Fraunhofer Institute for Electronic Nanosystems ENAS, 09126 Chemnitz, Germany
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| |
Collapse
|
13
|
Effect of Electrode Insertion Angle on Cochlear Implantation Outcomes in Adult and Children Patients with Sensorineural Hearing Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9914716. [PMID: 36052159 PMCID: PMC9427248 DOI: 10.1155/2022/9914716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
Purpose To determine the role played by electrode insertion angle in cochlear implantation (CI) outcomes in adult and children patients with sensorineural hearing loss (SNHL). Methods Adults (n = 10) and children (n = 19) with SNHL undergoing CI in a tertiary specialized hospital were retrospectively enrolled. The measurements were evaluated before and after CI surgery using sound field audiometry and speech recognition tests. Questionnaires were used to assess subjective benefits. Electrode insertion angles were determined using postoperative X-rays. Results Both adult and children patients showed significant improvements in hearing, speech performance, and audiology and speech-related quality of life after CI. The angular insertion depths of adult and children group were 323.70 ± 43.57° and 341.53 ± 57.07°, respectively, showing no significant difference. In the adult group, deeper insertion depths were found to be strongly linked to lower postoperative pure tone thresholds at 12 months and higher postoperative disyllabic Word Recognition and Sentence Recognition Scores at 6 months (all P < 0.05). In the children group, deeper insertion depth had a positive correlation with postoperative monosyllabic Word Recognition Scores 6 and 12 months after CI surgery (both P < 0.05). Multiple linear regression models were constructed to predict disyllabic Word Recognition Scores at 6 and 12 months postoperatively in the children group, in which insertion angle, duration of hearing loss, and preoperative questionnaire result were identified as dependent variables. Conclusions Greater angular insertion depths resulted in improved hearing and speech performances after CI. The benefits of greater angular insertion depths can be found in both adult and children patients and last for at least 12 months. Clinicians are expected to determine the optimal implantation direction during CI and ensure the insertion depth to improve the speech rehabilitation of patients.
Collapse
|
14
|
American Cochlear Implant Alliance Task Force Guidelines for Clinical Assessment and Management of Adult Cochlear Implantation for Single-Sided Deafness. Ear Hear 2022; 43:1605-1619. [PMID: 35994570 PMCID: PMC9592177 DOI: 10.1097/aud.0000000000001260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The indications for cochlear implantation have expanded to include individuals with profound sensorineural hearing loss in the impaired ear and normal hearing (NH) in the contralateral ear, known as single-sided deafness (SSD). There are additional considerations for the clinical assessment and management of adult cochlear implant candidates and recipients with SSD as compared to conventional cochlear implant candidates with bilateral moderate to profound sensorineural hearing loss. The present report reviews the current evidence relevant to the assessment and management of adults with SSD. A systematic review was also conducted on published studies that investigated outcomes of cochlear implant use on measures of speech recognition in quiet and noise, sound source localization, tinnitus perception, and quality of life for this patient population. Expert consensus and systematic review of the current literature were combined to provide guidance for the clinical assessment and management of adults with SSD.
Collapse
|
15
|
Drouin JR, Theodore RM. Many tasks, same outcome: Role of training task on learning and maintenance of noise-vocoded speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:981. [PMID: 36050170 PMCID: PMC9553285 DOI: 10.1121/10.0013507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Listeners who use cochlear implants show variability in speech recognition. Research suggests that structured auditory training can improve speech recognition outcomes in cochlear implant users, and a central goal in the rehabilitation literature is to identify factors that maximize training. Here, we examined factors that may influence perceptual learning for noise-vocoded speech in normal hearing listeners as a foundational step towards clinical recommendations. Three groups of listeners were exposed to anomalous noise-vocoded sentences and completed one of three training tasks: transcription with feedback, transcription without feedback, or talker identification. Listeners completed a word transcription test at three time points: immediately before training, immediately after training, and one week following training. Accuracy at test was indexed by keyword accuracy at the sentence-initial and sentence-final position for high and low predictability noise-vocoded sentences. Following training, listeners showed improved transcription for both sentence-initial and sentence-final items, and for both low and high predictability sentences. The training groups showed robust and equivalent learning of noise-vocoded sentences immediately after training. Critically, gains were largely maintained equivalently among training groups one week later. These results converge with evidence pointing towards the utility of non-traditional training tasks to maximize perceptual learning of noise-vocoded speech.
Collapse
Affiliation(s)
- Julia R Drouin
- Department of Communication Sciences and Disorders, California State University Fullerton, Fullerton, California 92831, USA
| | - Rachel M Theodore
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
16
|
Dillon MT, O'Connell BP, Canfarotta MW, Buss E, Hopfinger J. Effect of Place-Based Versus Default Mapping Procedures on Masked Speech Recognition: Simulations of Cochlear Implant Alone and Electric-Acoustic Stimulation. Am J Audiol 2022; 31:322-337. [PMID: 35394798 DOI: 10.1044/2022_aja-21-00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Cochlear implant (CI) recipients demonstrate variable speech recognition when listening with a CI-alone or electric-acoustic stimulation (EAS) device, which may be due in part to electric frequency-to-place mismatches created by the default mapping procedures. Performance may be improved if the filter frequencies are aligned with the cochlear place frequencies, known as place-based mapping. Performance with default maps versus an experimental place-based map was compared for participants with normal hearing when listening to CI-alone or EAS simulations to observe potential outcomes prior to initiating an investigation with CI recipients. METHOD A noise vocoder simulated CI-alone and EAS devices, mapped with default or place-based procedures. The simulations were based on an actual 24-mm electrode array recipient, whose insertion angles for each electrode contact were used to estimate the respective cochlear place frequency. The default maps used the filter frequencies assigned by the clinical software. The filter frequencies for the place-based maps aligned with the cochlear place frequencies for individual contacts in the low- to mid-frequency cochlear region. For the EAS simulations, low-frequency acoustic information was filtered to simulate aided low-frequency audibility. Performance was evaluated for the AzBio sentences presented in a 10-talker masker at +5 dB signal-to-noise ratio (SNR), +10 dB SNR, and asymptote. RESULTS Performance was better with the place-based maps as compared with the default maps for both CI-alone and EAS simulations. For instance, median performance at +10 dB SNR for the CI-alone simulation was 57% correct for the place-based map and 20% for the default map. For the EAS simulation, those values were 59% and 37% correct. Adding acoustic low-frequency information resulted in a similar benefit for both maps. CONCLUSIONS Reducing frequency-to-place mismatches, such as with the experimental place-based mapping procedure, produces a greater benefit in speech recognition than maximizing bandwidth for CI-alone and EAS simulations. Ongoing work is evaluating the initial and long-term performance benefits in CI-alone and EAS users. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.19529053.
Collapse
Affiliation(s)
- Margaret T. Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill
| | - Brendan P. O'Connell
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Michael W. Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Joseph Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| |
Collapse
|
17
|
Jahn KN, Arenberg JG, Horn DL. Spectral Resolution Development in Children With Normal Hearing and With Cochlear Implants: A Review of Behavioral Studies. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:1646-1658. [PMID: 35201848 PMCID: PMC9499384 DOI: 10.1044/2021_jslhr-21-00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE This review article provides a theoretical overview of the development of spectral resolution in children with normal hearing (cNH) and in those who use cochlear implants (CIs), with an emphasis on methodological considerations. The aim was to identify key directions for future research on spectral resolution development in children with CIs. METHOD A comprehensive literature review was conducted to summarize and synthesize previously published behavioral research on spectral resolution development in normal and impaired auditory systems. CONCLUSIONS In cNH, performance on spectral resolution tasks continues to improve through the teenage years and is likely driven by gradual maturation of across-channel intensity resolution. A small but growing body of evidence from children with CIs suggests a more complex relationship between spectral resolution development, patient demographics, and the quality of the CI electrode-neuron interface. Future research should aim to distinguish between the effects of patient-specific variables and the underlying physiology on spectral resolution abilities in children of all ages who are hard of hearing and use auditory prostheses.
Collapse
Affiliation(s)
- Kelly N. Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson
- Callier Center for Communication Disorders, The University of Texas at Dallas
| | - Julie G. Arenberg
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston
| | - David L. Horn
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle
- Division of Otolaryngology, Seattle Children's Hospital, WA
| |
Collapse
|
18
|
Canfarotta MW, Dillon MT, Brown KD, Pillsbury HC, Dedmon MM, O'Connell BP. Insertion Depth and Cochlear Implant Speech Recognition Outcomes: A Comparative Study of 28- and 31.5-mm Lateral Wall Arrays. Otol Neurotol 2022; 43:183-189. [PMID: 34772886 PMCID: PMC8752482 DOI: 10.1097/mao.0000000000003416] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES 1) To compare speech recognition outcomes between cochlear implant (CI) recipients of 28- and 31.5-mm lateral wall electrode arrays, and 2) to characterize the relationship between angular insertion depth (AID) and speech recognition. STUDY DESIGN Retrospective review. SETTING Tertiary academic referral center. PATIENTS Seventy-five adult CI recipients of fully inserted 28-mm (n = 28) or 31.5-mm (n = 47) lateral wall arrays listening with a CI-alone device. INTERVENTIONS Cochlear implantation with postoperative computed tomography. MAIN OUTCOME MEASURES Consonant-nucleus-consonant (CNC) word recognition assessed with the CI-alone at 12 months postactivation. RESULTS The mean AID of the most apical electrode contact for the 31.5-mm array recipients was significantly deeper than the 28-mm array recipients (628° vs 571°, p < 0.001). Following 12 months of listening experience, mean CNC word scores were significantly better for recipients of 31.5-mm arrays compared with those implanted with 28-mm arrays (59.5% vs 48.3%, p = 0.004; Cohen's d = 0.70; 95% CI [0.22, 1.18]). There was a significant positive correlation between AID and CNC word scores (r = 0.372, p = 0.001), with a plateau in performance observed around 600°. CONCLUSIONS Cochlear implant recipients implanted with a 31.5-mm array experienced better speech recognition than those with a 28-mm array at 12 months postactivation. Deeper insertion of a lateral wall array appears to confer speech recognition benefit up to ∼600°, with a plateau in performance observed thereafter. These data provide preliminary evidence of the insertion depth necessary to optimize speech recognition outcomes for lateral wall electrode arrays among CI-alone users.
Collapse
Affiliation(s)
- Michael W Canfarotta
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
19
|
Ketterer MC, Aschendorff A, Arndt S, Beck R. Electrode array design determines scalar position, dislocation rate and angle and postoperative speech perception. Eur Arch Otorhinolaryngol 2021; 279:4257-4267. [PMID: 34778920 PMCID: PMC9363302 DOI: 10.1007/s00405-021-07160-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023]
Abstract
Purpose The aim of this study is to examine the scalar dislocation rate in straight and perimodiolar electrode arrays in relation to cochlear morphology. Furthermore, we aim to analyze the specific dislocation point of electrode arrays depending on their design and shape and to correlate these results to postoperative speech perception. Methods We conducted a comparative analysis of patients (ears: n = 495) implanted between 2013 and 2018 with inserted perimodiolar or straight electrode arrays from Cochlear™ or MED-EL. CBCT (cone beam computed tomography) was used to determine electrode array position (scalar insertion, intra-cochlear dislocation, point of dislocation and angular insertion depth). Furthermore, cochlear morphology was measured. The postoperative speech discrimination was compared regarding electrode array dislocation, primary scalar insertion and angular insertion depth. Results The electrode array with the highest rate of primary SV insertions was the CA; the electrode array with the highest rate of dislocations out of ST was the FlexSoft. We did not find significantly higher dislocation rates in cochleostomy-inserted arrays. The angle of dislocation was electrode array design-specific. A multivariate nonparametric analysis revealed that the dislocation of the electrode array has no significant influence on postoperative speech perception. Nevertheless, increasing angular insertion depth significantly reduced postoperative speech perception for monosyllables. Conclusion This study demonstrates the significant influence of electrode array design on scalar location, dislocation and the angle of dislocation itself. Straight and perimodiolar electrode arrays differ from each other regarding both the rate and place of dislocation. Insertion via cochleostomy does not lead to increased dislocation rates in any of the included electrode arrays. Furthermore, speech perception is significantly negatively influenced by angular insertion depth.
Collapse
Affiliation(s)
- Manuel Christoph Ketterer
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| | - Antje Aschendorff
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Susan Arndt
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Rainer Beck
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| |
Collapse
|
20
|
Wagner L, Altindal R, Plontke SK, Rahne T. Pure tone discrimination with cochlear implants and filter-band spread. Sci Rep 2021; 11:20236. [PMID: 34642437 PMCID: PMC8511217 DOI: 10.1038/s41598-021-99799-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022] Open
Abstract
For many cochlear implant (CI) users, frequency discrimination is still challenging. We studied the effect of frequency differences relative to the electrode frequency bands on pure tone discrimination. A single-center, prospective, controlled, psychoacoustic exploratory study was conducted in a tertiary university referral center. Thirty-four patients with Cochlear Ltd. and MED-EL CIs and 19 age-matched normal-hearing control subjects were included. Two sinusoidal tones were presented with varying frequency differences. The reference tone frequency was chosen according to the center frequency of basal or apical electrodes. Discrimination abilities were psychophysically measured in a three-interval, two-alternative, forced-choice procedure (3I-2AFC) for various CI electrodes. Hit rates were measured, particularly with respect to discrimination abilities at the corner frequency of the electrode frequency-bands. The mean rate of correct decision concerning pitch difference was about 60% for CI users and about 90% for the normal-hearing control group. In CI users, the difference limen was two semitones, while normal-hearing participants detected the difference of one semitone. No influence of the corner frequency of the CI electrodes was found. In CI users, pure tone discrimination seems to be independent of tone positions relative to the corner frequency of the electrode frequency-band. Differences of 2 semitones can be distinguished within one electrode.
Collapse
Affiliation(s)
- Luise Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany. .,Universitätsklinikum Halle (Saale), HNO-Klinik, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| | - Reyhan Altindal
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan K Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Torsten Rahne
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
21
|
Relationship Between Electrocochleography, Angular Insertion Depth, and Cochlear Implant Speech Perception Outcomes. Ear Hear 2021; 42:941-948. [PMID: 33369942 PMCID: PMC8217403 DOI: 10.1097/aud.0000000000000985] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Electrocochleography (ECochG), obtained before the insertion of a cochlear implant (CI) array, provides a measure of residual cochlear function that accounts for a substantial portion of variability in postoperative speech perception outcomes in adults. It is postulated that subsequent surgical factors represent independent sources of variance in outcomes. Prior work has demonstrated a positive correlation between angular insertion depth (AID) of straight arrays and speech perception under the CI-alone condition, with an inverse relationship observed for precurved arrays. The purpose of the present study was to determine the combined effects of ECochG, AID, and array design on speech perception outcomes. DESIGN Participants were 50 postlingually deafened adult CI recipients who received one of three straight arrays (MED-EL Flex24, MED-EL Flex28, and MED-EL Standard) and two precurved arrays (Cochlear Contour Advance and Advanced Bionics HiFocus Mid-Scala). Residual cochlear function was determined by the intraoperative ECochG total response (TR) measured before array insertion, which is the sum of magnitudes of spectral components in response to tones of different stimulus frequencies across the speech spectrum. The AID was then determined with postoperative imaging. Multiple linear regression was used to predict consonant-nucleus-consonant (CNC) word recognition in the CI-alone condition at 6 months postactivation based on AID, TR, and array design. RESULTS Forty-one participants received a straight array and nine received a precurved array. The AID of the most apical electrode contact ranged from 341° to 696°. The TR measured by ECochG accounted for 43% of variance in speech perception outcomes (p < 0.001). A regression model predicting CNC word scores with the TR tended to underestimate the performance for precurved arrays and deeply inserted straight arrays, and to overestimate the performance for straight arrays with shallower insertions. When combined in a multivariate linear regression, the TR, AID, and array design accounted for 72% of variability in speech perception outcomes (p < 0.001). CONCLUSIONS A model of speech perception outcomes that incorporates TR, AID, and array design represents an improvement over a model based on TR alone. The success of this model shows that peripheral factors including cochlear health and electrode placement may play a predominant role in speech perception with CIs.
Collapse
|
22
|
Abstract
Supplemental Digital Content is available in the text. The primary objective of this study is to identify the biographic, audiologic, and electrode position factors that influence speech perception performance in adult cochlear implant (CI) recipients implanted with a device from a single manufacturer. The secondary objective is to investigate the independent association of the type of electrode (precurved or straight) with speech perception.
Collapse
|
23
|
The smaller the frequency-to-place mismatch the better the hearing outcomes in cochlear implant recipients? Eur Arch Otorhinolaryngol 2021; 279:1875-1883. [PMID: 34131770 DOI: 10.1007/s00405-021-06899-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the effect of frequency-to-place mismatch, i.e. the mismatch between the tonotopic frequency map in the cochlea and the frequency band that is assigned to an electrode contact of a cochlear implant (CI) at the same cochlear location on speech perception outcomes, using postoperative CT images. STUDY DESIGN Retrospective observational single-centre study. METHODS Retrospective pre- and postoperative clinical CT data of 39 CI recipients with normal cochlear anatomy were analysed in an otological surgical planning software. The tonotopic frequency at each electrode position was estimated using the Greenwood function. For each patient, frequency-to-place mismatch between the tonotopic frequency and the fitted centre frequency for each electrode contact was calculated. The influence of frequency-to-place mismatch on speech perception in noise at 6 and 12 months after CI activation was studied. RESULTS A significant linear correlation was found between the frequency-to-place mismatch and speech perception in noise 6 months after cochlear implantation (p < 0.05). The smaller the frequency-to-place mismatch, the better the initial speech perception in noise results of the CI recipients. The significant effect disappeared after 12 months CI experience. CONCLUSION The study findings support the idea of minimizing the frequency-to-place mismatch in CI recipients in order to pursue better initial speech perception in noise. Further research is needed to investigate the prospect of tonotopic fitting strategies based upon postoperative CT images of the exact locations of the electrode contacts.
Collapse
|
24
|
Dillon MT, Canfarotta MW, Buss E, O'Connell BP. Comparison of Speech Recognition With an Organ of Corti Versus Spiral Ganglion Frequency-to-Place Function in Place-Based Mapping of Cochlear Implant and Electric-Acoustic Stimulation Devices. Otol Neurotol 2021; 42:721-725. [PMID: 33625196 PMCID: PMC8935664 DOI: 10.1097/mao.0000000000003070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To compare acute speech recognition with a cochlear implant (CI) alone or electric-acoustic stimulation (EAS) device for place-based maps calculated with an organ of Corti (OC) versus a spiral ganglion (SG) frequency-to-place function. PATIENTS Eleven adult CI recipients of a lateral wall electrode array. INTERVENTION Postoperative imaging was used to derive place-based maps calculated with an OC versus SG function. MAIN OUTCOME MEASURE Phoneme recognition was evaluated at initial activation with consonant-nucleus-consonant (CNC) words presented using an OC versus a SG place-based map. RESULTS For the 9 CI-alone users, there was a nonsignificant trend for better acute phoneme recognition with the SG map (mean 18 RAUs) than the OC map (mean 9 RAUs; p = 0.071, 95% CI [≤-1.2]). When including the 2 EAS users in the analysis, performance was significantly better with the SG map (mean 21 RAUs) than the OC map (mean 7 RAUs; p = 0.019, 95% CI [≤-6.2]). CONCLUSIONS Better phoneme recognition with the SG frequency-to-place function could indicate more natural tonotopic alignment of information compared with the OC place-based map.A prospective, randomized investigation is currently underway to assess longitudinal outcomes with place-based mapping in CI-alone and EAS devices using the SG frequency-to-place function.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
- Division of Speech & Hearing, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, North Carolina
| | | | - Emily Buss
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
| | | |
Collapse
|
25
|
Canfarotta MW, Dillon MT, Brown KD, Pillsbury HC, Dedmon MM, O'Connell BP. Incidence of Complete Insertion in Cochlear Implant Recipients of Long Lateral Wall Arrays. Otolaryngol Head Neck Surg 2021; 165:571-577. [PMID: 33588627 DOI: 10.1177/0194599820987456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High rates of partial insertion have been reported for cochlear implant (CI) recipients of long lateral wall electrode arrays, presumably caused by resistance encountered during insertion due to cochlear morphology. With recent advances in long-electrode array design, we sought to investigate (1) the incidence of complete insertions among patients implanted with 31.5-mm flexible arrays and (2) whether complete insertion is limited by cochlear duct length (CDL). STUDY DESIGN Retrospective review. SETTING Tertiary referral center. METHODS Fifty-one adult CI recipients implanted with 31.5-mm flexible lateral wall arrays underwent postoperative computed tomography to determine the rate of complete insertion, defined as all contacts being intracochlear. CDL and angular insertion depth (AID) were compared between complete and partial insertion cohorts. RESULTS Most cases had a complete insertion (96.1%, n = 49). Among the complete insertion cohort, the median CDL was 33.6 mm (range, 30.3-37.9 mm), and median AID was 641° (range, 533-751°). Two cases of partial insertion had relatively short CDL (31.8 mm and 32.3 mm) and shallow AID (542° and 575°). Relatively shallow AID for the 2 cases of partial insertion fails to support the idea that CDL alone prevents a complete insertion. CONCLUSION Complete insertion of a 31.5-mm flexible array is feasible in most cases and does not appear to be limited by the range of CDL observed in this cohort. Future studies are needed to estimate other variations in cochlear morphology that could predict resistance and failure to achieve complete insertion with long arrays.
Collapse
Affiliation(s)
- Michael W Canfarotta
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Kevin D Brown
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Harold C Pillsbury
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Matthew M Dedmon
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Brendan P O'Connell
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
Tejani VD, Kim JS, Oleson JJ, Abbas PJ, Brown CJ, Hansen MR, Gantz BJ. Residual Hair Cell Responses in Electric-Acoustic Stimulation Cochlear Implant Users with Complete Loss of Acoustic Hearing After Implantation. J Assoc Res Otolaryngol 2021; 22:161-176. [PMID: 33538936 DOI: 10.1007/s10162-021-00785-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/03/2021] [Indexed: 11/27/2022] Open
Abstract
Changes in cochlear implant (CI) design and surgical techniques have enabled the preservation of residual acoustic hearing in the implanted ear. While most Nucleus Hybrid L24 CI users retain significant acoustic hearing years after surgery, 6-17 % experience a complete loss of acoustic hearing (Roland et al. Laryngoscope. 126(1):175-81. (2016), Laryngoscope. 128(8):1939-1945 (2018); Scheperle et al. Hear Res. 350:45-57 (2017)). Electrocochleography (ECoG) enables non-invasive monitoring of peripheral auditory function and may provide insight into the pathophysiology of hearing loss. The ECoG response is evoked using an acoustic stimulus and includes contributions from the hair cells (cochlear microphonic-CM) as well as the auditory nerve (auditory nerve neurophonic-ANN). Seven Hybrid L24 CI users with complete loss of residual hearing months after surgery underwent ECoG measures before and after loss of hearing. While significant reductions in CMs were evident after hearing loss, all participants had measurable CMs despite having no measurable acoustic hearing. None retained measurable ANNs. Given histological data suggesting stable hair cell and neural counts after hearing loss (e.g., Quesnel et al. Hear Res. 333:225-234. (2016)), the loss of ECoG and audiometric hearing may reflect reduced synaptic input. This is consistent with the theory that residual CM responses coupled with little to no ANN responses reflect a "disconnect" between hair cells and auditory nerve fibers (Fontenot et al. Ear Hear. 40(3):577-591. 2019). This "disconnection" may prevent proper encoding of auditory stimulation at higher auditory pathways, leading to a lack of audiometric responses, even in the presence of viable cochlear hair cells.
Collapse
Affiliation(s)
- Viral D Tejani
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA. .,Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA.
| | - Jeong-Seo Kim
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Jacob J Oleson
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Paul J Abbas
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Carolyn J Brown
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Bruce J Gantz
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
27
|
Rak K, Ilgen L, Taeger J, Schendzielorz P, Voelker J, Kaulitz S, Müller-Graff FT, Kurz A, Neun T, Hagen R. Influence of cochlear parameters on the current practice in cochlear implantation : Development of a concept for personalized medicine. HNO 2021; 69:24-30. [PMID: 33459799 DOI: 10.1007/s00106-020-00969-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
Since the introduction of cochlear implants into clinical routine, the interest in measuring cochlear parameters, particularly the cochlear duct length (CDL) has increased, since these can have an influence on the correct selection of the electrode. On the one hand, coverage of an optimal frequency band is relevant for a good audiological result, and on the other hand, cochlear trauma due to too deep insertion or displacement of the electrode must be avoided. Cochlear implants stimulate the spiral ganglion cells (SGC). The number of SGC and particularly their distribution can also have an influence on the function of a cochlear implant. In addition, the frequency assignment of each electrode contact can play a decisive role in the postoperative success, since the frequency distribution of the human cochlea with varying CDL shows substantial interindividual differences. The aim of this work is to provide an overview of the methods used to determine the cochlear parameters as well as of relevant studies on the CDL, the number and distribution of SGZ, and the frequency assignment of electrode contacts. Based on this, a concept for individualized cochlear implantation will be presented. In summary, this work should help to promote individualized medicine in the field of cochlear implants in the future, in order to overcome current limitations and optimize audiological outcomes.
Collapse
Affiliation(s)
- K Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| | - L Ilgen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - J Taeger
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - P Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - J Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - S Kaulitz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - F-T Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - A Kurz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - T Neun
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - R Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| |
Collapse
|
28
|
Dillon MT, Canfarotta MW, Buss E, Hopfinger J, O'Connell BP. Effectiveness of Place-based Mapping in Electric-Acoustic Stimulation Devices. Otol Neurotol 2021; 42:197-202. [PMID: 33885267 PMCID: PMC8787166 DOI: 10.1097/mao.0000000000002965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The default mapping procedure for electric-acoustic stimulation (EAS) devices uses the cochlear implant recipient's unaided detection thresholds in the implanted ear to derive the acoustic settings and assign the lowest frequency filter of electric stimulation. Individual differences for speech recognition with EAS may be due to discrepancies between the electric frequency filters of individual electrode contacts and the cochlear place of stimulation, known as a frequency-to-place mismatch. Frequency-to-place mismatch of greater than 1/2 octave has been demonstrated in up to 60% of EAS users. Aligning the electric frequency filters via a place-based mapping procedure using postoperative imaging may improve speech recognition with EAS. METHODS Masked sentence recognition was evaluated for normal-hearing subjects (n = 17) listening with vocoder simulations of EAS, using a place-based map and a default map. Simulation parameters were based on audiometric and imaging data from a representative 24-mm electrode array recipient and EAS user. The place-based map aligned electric frequency filters with the cochlear place frequency, which introduced a gap between the simulated acoustic and electric output. The default map settings were derived from the clinical programming software and provided the full speech frequency range. RESULTS Masked sentence recognition was significantly better for simulated EAS with the place-based map as compared with the default map. CONCLUSION The simulated EAS place-based map supported better performance than the simulated EAS default map. This indicates that individualizing maps may improve performance in EAS users by helping them achieve better asymptotic performance earlier and mitigate the need for acclimatization.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
- Division of Speech & Hearing, Department of Allied Health Sciences
| | | | - Emily Buss
- Department of Otolaryngology/Head and Neck Surgery, School of Medicine
| | - Joseph Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, North Carolina
| | | |
Collapse
|
29
|
[Influence of cochlear parameters on the current practice in cochlear implantation : Development of a concept for personalized medicine. German version]. HNO 2020; 69:943-951. [PMID: 33315129 DOI: 10.1007/s00106-020-00968-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 10/22/2022]
Abstract
Since the introduction of cochlear implants into clinical routine, the interest in measuring cochlear parameters, particularly the cochlear duct length (CDL) has increased, since these can have an influence on the correct selection of the electrode. On the one hand, coverage of an optimal frequency band is relevant for a good audiological result, and on the other hand, cochlear trauma due to too deep insertion or displacement of the electrode must be avoided. Cochlear implants stimulate the spiral ganglion cells (SGC). The number of SGC and particularly their distribution can also have an influence on the function of a cochlear implant. In addition, the frequency assignment of each electrode contact can play a decisive role in the postoperative success, since the frequency distribution of the human cochlea with varying CDL shows substantial interindividual differences. The aim of this work is to provide an overview of the methods used to determine the cochlear parameters as well as of relevant studies on the CDL, the number and distribution of SGZ, and the frequency assignment of electrode contacts. Based on this, a concept for individualized cochlear implantation will be presented. In summary, this work should help to promote individualized medicine in the field of cochlear implants in the future, in order to overcome current limitations and optimize audiological outcomes.
Collapse
|
30
|
Lambriks LJG, van Hoof M, Debruyne JA, Janssen M, Chalupper J, van der Heijden KA, Hof JR, Hellingman CA, George ELJ, Devocht EMJ. Evaluating hearing performance with cochlear implants within the same patient using daily randomization and imaging-based fitting - The ELEPHANT study. Trials 2020; 21:564. [PMID: 32576247 PMCID: PMC7310427 DOI: 10.1186/s13063-020-04469-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/30/2020] [Indexed: 02/08/2023] Open
Abstract
Background Prospective research in the field of cochlear implants is hampered by methodological issues and small sample sizes. The ELEPHANT study presents an alternative clinical trial design with a daily randomized approach evaluating individualized tonotopical fitting of a cochlear implant (CI). Methods A single-blinded, daily-randomized clinical trial will be implemented to evaluate a new imaging-based CI mapping strategy. A minimum of 20 participants will be included from the start of the rehabilitation process with a 1-year follow-up period. Based on a post-operative cone beam CT scan (CBCT), mapping of electrical input will be aligned to natural place-pitch arrangement in the individual cochlea. The CI’s frequency allocation table will be adjusted to match the electrical stimulation of frequencies as closely as possible to corresponding acoustic locations in the cochlea. A randomization scheme will be implemented whereby the participant, blinded to the intervention allocation, crosses over between the experimental and standard fitting program on a daily basis, and thus effectively acts as his own control, followed by a period of free choice between both maps to incorporate patient preference. With this new approach the occurrence of a first-order carryover effect and a limited sample size is addressed. Discussion The experimental fitting strategy is thought to give rise to a steeper learning curve, result in better performance in challenging listening situations, improve sound quality, better complement residual acoustic hearing in the contralateral ear and be preferred by recipients of a CI. Concurrently, the suitability of the novel trial design will be considered in investigating these hypotheses. Trial registration ClinicalTrials.gov: NCT03892941. Registered 27 March 2019.
Collapse
Affiliation(s)
- L J G Lambriks
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands.
| | - M van Hoof
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J A Debruyne
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands
| | - M Janssen
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Methodology and Statistics, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Chalupper
- Advanced Bionics European Research Centre (AB ERC), Hannover, Germany
| | - K A van der Heijden
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J R Hof
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands
| | - C A Hellingman
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands
| | - E L J George
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands
| | - E M J Devocht
- Department of ENT/Audiology, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
31
|
Noble AR, Christianson E, Norton SJ, Ou HC, Phillips GS, Khalatbari H, Friedman SD, Horn DL. Reliability of Measuring Insertion Depth in Cochlear Implanted Infants and Children Using Cochlear View Radiography. Otolaryngol Head Neck Surg 2020; 163:822-828. [PMID: 32450736 DOI: 10.1177/0194599820921857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Cochlear implant depth of insertion affects audiologic outcomes and can be measured in adults using plain films obtained in the "cochlear view." The objective of this study was to assess interrater and intrarater reliability of measuring depth of insertion using cochlear view radiography. STUDY DESIGN Prospective, observational. SETTING Tertiary referral pediatric hospital. SUBJECTS AND METHODS Patients aged 11 months to 20 years (median, 4 years; interquartile range [IQR], 1-8 years) undergoing cochlear implantation at our institution were studied over 1 year. Children underwent cochlear view imaging on postoperative day 1. Films were deidentified and 1 image per ear was selected. Two cochlear implant surgeons and 2 radiologists evaluated each image and determined angular depth of insertion. Images were re-reviewed 6 weeks later by all raters. Inter- and intrarater reliability were calculated with intraclass correlation coefficients (ICCs). RESULTS Fifty-seven ears were imaged from 42 children. Forty-nine ears (86%) had successful cochlear view x-rays. Median angular depth of insertion was 381° (minimum, 272°; maximum, 450°; IQR, 360°-395°) during the first round of measurement. Measurements of the same images reviewed 6 weeks later showed median depth of insertion of 382° (minimum, 272°; maximum, 449°; IQR, 360°-397°). Interrater and intrarater reliability ICCs ranged between 0.81 and 0.96, indicating excellent reliability. CONCLUSIONS Postoperative cochlear view radiography is a reliable tool for measurement of cochlear implant depth of insertion in infants and children. Further studies are needed to determine reliability of intraoperatively obtained cochlear view radiographs in this population.
Collapse
Affiliation(s)
- Anisha R Noble
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Erin Christianson
- Childhood Communication Center, Seattle Children's Hospital, Seattle, Washington, USA
| | - Susan J Norton
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA.,Childhood Communication Center, Seattle Children's Hospital, Seattle, Washington, USA.,Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, USA
| | - Henry C Ou
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Grace S Phillips
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Hedieh Khalatbari
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Seth D Friedman
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - David L Horn
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA.,Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Angular Electrode Insertion Depth and Speech Perception in Adults With a Cochlear Implant: A Systematic Review. Otol Neurotol 2020; 40:900-910. [PMID: 31135680 PMCID: PMC6641467 DOI: 10.1097/mao.0000000000002298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective: By discussing the design, findings, strengths, and weaknesses of available studies investigating the influence of angular insertion depth on speech perception, we intend to summarize the current status of evidence; and using evidence based conclusions, possibly contribute to the determination of the optimal cochlear implant (CI) electrode position. Data Sources: Our search strategy yielded 10,877 papers. PubMed, Ovid EMBASE, Web of Science, and the Cochrane Library were searched up to June 1, 2018. Both keywords and free-text terms, related to patient population, predictive factor, and outcome measurements were used. There were no restrictions in languages or year of publication. Study Selection: Seven articles were included in this systematic review. Articles eligible for inclusion: (a) investigated cochlear implantation of any CI system in adults with post-lingual onset of deafness and normal cochlear anatomy; (b) investigated the relationship between angular insertion depth and speech perception; (c) measured angular insertion depth on imaging; and (d) measured speech perception at, or beyond 1-year post-activation. Data Extraction and Synthesis: In included studies; quality was judged low-to-moderate and risk of bias, evaluated using a Quality-in-Prognostic-Studies-tool (QUIPS), was high. Included studies were too heterogeneous to perform meta-analyses, therefore, effect estimates of the individual studies are presented. Six out of seven included studies found no effect of angular insertion depth on speech perception. Conclusion: All included studies are characterized by methodological flaws, and therefore, evidence-based conclusions regarding the influence of angular insertion depth cannot be drawn to date.
Collapse
|
33
|
Tejani VD, Brown CJ. Speech masking release in Hybrid cochlear implant users: Roles of spectral and temporal cues in electric-acoustic hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3667. [PMID: 32486815 PMCID: PMC7255813 DOI: 10.1121/10.0001304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 06/04/2023]
Abstract
When compared with cochlear implant (CI) users utilizing electric-only (E-Only) stimulation, CI users utilizing electric-acoustic stimulation (EAS) in the implanted ear show improved speech recognition in modulated noise relative to steady-state noise (i.e., speech masking release). It has been hypothesized, but not shown, that masking release is attributed to spectral resolution and temporal fine structure (TFS) provided by acoustic hearing. To address this question, speech masking release, spectral ripple density discrimination thresholds, and fundamental frequency difference limens (f0DLs) were evaluated in the acoustic-only (A-Only), E-Only, and EAS listening modes in EAS CI users. The spectral ripple and f0DL tasks are thought to reflect access to spectral and TFS cues, which could impact speech masking release. Performance in all three measures was poorest when EAS CI users were tested using the E-Only listening mode, with significant improvements in A-Only and EAS listening modes. f0DLs, but not spectral ripple density discrimination thresholds, significantly correlated with speech masking release when assessed in the EAS listening mode. Additionally, speech masking release correlated with AzBio sentence recognition in noise. The correlation between speech masking release and f0DLs likely indicates that TFS cues provided by residual hearing were used to obtain speech masking release, which aided sentence recognition in noise.
Collapse
Affiliation(s)
- Viral D Tejani
- Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, 21003 Pomerantz Family Pavilion, Iowa City, Iowa 52242-1078, USA
| | - Carolyn J Brown
- Communication Sciences and Disorders, Wendell Johnson Speech and Hearing Center-127B, University of Iowa, 250 Hawkins Drive, Iowa City, Iowa 52242, USA
| |
Collapse
|
34
|
Luo X, Garrett C. Dynamic current steering with phantom electrode in cochlear implants. Hear Res 2020; 390:107949. [PMID: 32200300 DOI: 10.1016/j.heares.2020.107949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/01/2022]
Abstract
Phantom electrode (PE) stimulation can extend the lower limit of pitch perception with cochlear implants (CIs) by using simultaneous out-of-phase stimulation of the most apical primary electrode and the adjacent basal compensating electrode. The total electrical field may push the excitation pattern beyond the most apical electrode to elicit a lower pitch, depending on the ratio of current between the compensating and primary electrodes (i.e., the compensation coefficient σ). This study tested the hypothesis that dynamic current steering of PE stimuli can be implemented by varying σ over time to encode spectral details in low frequencies. To determine the range of σ for current steering and the corresponding current levels, Experiment 1 tested CI users' loudness balance and pitch ranking of static PE stimuli with σ from 0 to 0.6 in steps of 0.2. It was found that the equal-loudness most comfortable level significantly increased with σ and can be modeled by a piecewise linear function of σ. Consistent with the previous findings, higher σ elicited either lower or similar pitches without salient pitch reversals than lower σ. Based on the results of Experiment 1, Experiment 2 created flat, rising, and falling pitch contours of 300-1000 ms using dynamic PE stimuli with time-varying σ from 0 to 0.6 and equal-loudness current levels. In a pitch contour identification (PCI) task, CI users scored 80% and above on average. Increasing the stimulus duration from 300 to 1000 ms slightly but did not significantly improve the PCI scores. Across subjects, the 1000-ms PCI scores in Experiment 2 were significantly correlated with the cumulative pitch-ranking sensitivity in Experiment 1. It is thus feasible to use dynamic current steering with PE to encode low-frequency pitch cues for CI users.
Collapse
Affiliation(s)
- Xin Luo
- Program of Speech and Hearing Science, College of Health Solutions, Arizona State University, 975 S. Myrtle Av., P.O. Box 870102, Tempe, AZ, 85287, USA.
| | - Christopher Garrett
- Program of Speech and Hearing Science, College of Health Solutions, Arizona State University, 975 S. Myrtle Av., P.O. Box 870102, Tempe, AZ, 85287, USA
| |
Collapse
|
35
|
Lim J, Kim Y, Kim N. Mechanical Effects of Cochlear Implants on Residual Hearing Loss: A Finite Element Analysis. IEEE Trans Biomed Eng 2020; 67:3253-3261. [PMID: 32191879 DOI: 10.1109/tbme.2020.2981863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of cochlear implants on residual hearing loss is investigated through a finite element model of human auditory periphery consisting of the cochlea and middle ear. The simulation results show that a round window stiffness is the dominant factor in residual hearing loss. The increased round window stiffness to five times caused over 4 dB residual hearing loss at low frequencies below 500 Hz. Without considering round window ossification, inserting a cochlear implant can show at most 4 dB difference of residual hearing loss in magnitude from the no-implant case although the cochlear implant's geometry and position has been varied. If the stiffness of the round window is the same, the simulation results suggest to use a thin-straight-cochlear implant inserted into the lateral side in order to preserve residual hearing at frequencies below 700 Hz. In addition, when the distance between the basilar membrane and a cochlear implant is closer, the residual hearing loss becomes severe at high frequencies above 1 kHz. The results would be helpful for choice of a cochlear implant depending on a patient's condition.
Collapse
|
36
|
Winn MB. Accommodation of gender-related phonetic differences by listeners with cochlear implants and in a variety of vocoder simulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:174. [PMID: 32006986 PMCID: PMC7341679 DOI: 10.1121/10.0000566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 06/01/2023]
Abstract
Speech perception requires accommodation of a wide range of acoustic variability across talkers. A classic example is the perception of "sh" and "s" fricative sounds, which are categorized according to spectral details of the consonant itself, and also by the context of the voice producing it. Because women's and men's voices occupy different frequency ranges, a listener is required to make a corresponding adjustment of acoustic-phonetic category space for these phonemes when hearing different talkers. This pattern is commonplace in everyday speech communication, and yet might not be captured in accuracy scores for whole words, especially when word lists are spoken by a single talker. Phonetic accommodation for fricatives "s" and "sh" was measured in 20 cochlear implant (CI) users and in a variety of vocoder simulations, including those with noise carriers with and without peak picking, simulated spread of excitation, and pulsatile carriers. CI listeners showed strong phonetic accommodation as a group. Each vocoder produced phonetic accommodation except the 8-channel noise vocoder, despite its historically good match with CI users in word intelligibility. Phonetic accommodation is largely independent of linguistic factors and thus might offer information complementary to speech intelligibility tests which are partially affected by language processing.
Collapse
Affiliation(s)
- Matthew B Winn
- Department of Speech & Hearing Sciences, University of Minnesota, 164 Pillsbury Drive Southeast, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
37
|
Cochlear Implantation With a Novel Long Straight Electrode: the Insertion Results Evaluated by Imaging and Histology in Human Temporal Bones. Otol Neurotol 2019; 39:e784-e793. [PMID: 30199496 DOI: 10.1097/mao.0000000000001953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS To evaluate the insertion results of a novel straight array (EVO) by detailed imaging and subsequent histology in human temporal bones (TB). BACKGROUND The main focuses of modern cochlear implant surgery are to prevent damage to the intracochlear structures and to preserve residual hearing. This is often achievable with new atraumatic electrode arrays in combination with meticulous surgical techniques. METHODS Twenty fresh-frozen TBs were implanted with the EVO. Pre- and postoperative cone beam computed tomography scans were reconstructed and fused for an artifact-free representation of the electrode. The array's vertical position was quantified in relation to the basilar membrane on basis of which trauma was classified (Grades 0-4). The basilar membrane location was modeled from previous histologic data. The TBs underwent subsequent histologic examination. RESULTS The EVOs were successfully inserted in all TBs. Atraumatic insertion (Grades 0-1) were accomplished in 14 of 20 TBs (70%). There were three apical translocations, and two basal translocations due to electrode bulging. One TB had multiple translocations. The sensitivity and specificity of imaging for detecting insertion trauma (Grades 2-4) was 87.5% and 97.3.0%, respectively. CONCLUSION Comparable insertion results as reported for other arrays were also found for the EVO. Insertion trauma can be mostly avoided with meticulous insertion techniques to prevent bulging and by limiting the insertion depth angle to 360 degrees. The image fusion technique is a reliable tool for evaluating electrode placement and is feasible for trauma grading.
Collapse
|
38
|
|
39
|
Downing M. Electrode Designs for Protection of the Delicate Cochlear Structures. J Int Adv Otol 2019; 14:401-403. [PMID: 30644381 DOI: 10.5152/iao.2018.6461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most recent electrode introductions from Advanced Bionics, the HiFocus™ Mid-Scala and the HiFocus SlimJ arrays, have common design goals intended to provide sufficient access to the necessary frequency range while avoiding intracochlear trauma. The electrode choice, either a pre-curved (mid-scala) array or straight (lateral) array, can be made by the surgeon based on anatomical considerations and/or their preferred surgical approach. Both arrays offer ease of handling, suitability for a round window and cochleostomy based insertion and control of the insertion speed.
Collapse
|
40
|
Abstract
Residual hearing loss in cochlear implant users is investigated using the mechanical-human-cochlear model. Hearing loss due to stiffening of the round window increases significantly as input frequencies decrease from 3 kHz to 1 kHz but remains constant at lower frequencies, whereas loss due to the presence of an electrode insert becomes significantly higher at lower frequencies ([Formula: see text] kHz). The latter also shifts the characteristic frequency map toward the basal end of the cochlea. In the region away from the end of the electrode insert, cochlear function recovers, but the user still suffers from hearing loss caused by round window stiffening.
Collapse
|
41
|
El Boghdady N, Başkent D, Gaudrain E. Effect of frequency mismatch and band partitioning on vocal tract length perception in vocoder simulations of cochlear implant processing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3505. [PMID: 29960490 DOI: 10.1121/1.5041261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The vocal tract length (VTL) of a speaker is an important voice cue that aids speech intelligibility in multi-talker situations. However, cochlear implant (CI) users demonstrate poor VTL sensitivity. This may be partially caused by the mismatch between frequencies received by the implant and those corresponding to places of stimulation along the cochlea. This mismatch can distort formant spacing, where VTL cues are encoded. In this study, the effects of frequency mismatch and band partitioning on VTL sensitivity were investigated in normal hearing listeners with vocoder simulations of CI processing. The hypotheses were that VTL sensitivity may be reduced by increased frequency mismatch and insufficient spectral resolution in how the frequency range is partitioned, specifically where formants lie. Moreover, optimal band partitioning might mitigate the detrimental effects of frequency mismatch on VTL sensitivity. Results showed that VTL sensitivity decreased with increased frequency mismatch and reduced spectral resolution near the low frequencies of the band partitioning map. Band partitioning was independent of mismatch, indicating that if a given partitioning is suboptimal, a better partitioning might improve VTL sensitivity despite the degree of mismatch. These findings suggest that customizing the frequency partitioning map may enhance VTL perception in individual CI users.
Collapse
Affiliation(s)
- Nawal El Boghdady
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands
| | - Deniz Başkent
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands
| | - Etienne Gaudrain
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands
| |
Collapse
|
42
|
|
43
|
Schurzig D, Timm ME, Lexow GJ, Majdani O, Lenarz T, Rau TS. Cochlear helix and duct length identification – Evaluation of different curve fitting techniques. Cochlear Implants Int 2018; 19:268-283. [DOI: 10.1080/14670100.2018.1460025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Daniel Schurzig
- MED-EL Medical Electronics, Hannover Research Center, Hannover, Germany
| | - Max Eike Timm
- Cluster of Excellence Hearing4all, Dept. of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - G. Jakob Lexow
- Cluster of Excellence Hearing4all, Dept. of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Omid Majdani
- Cluster of Excellence Hearing4all, Dept. of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Cluster of Excellence Hearing4all, Dept. of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas S. Rau
- Cluster of Excellence Hearing4all, Dept. of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization. Ear Hear 2018; 37:e377-e390. [PMID: 27438871 DOI: 10.1097/aud.0000000000000328] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. DESIGN Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. RESULTS Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of voice onset time or with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. CONCLUSIONS When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart nonlinguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (voice onset time) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language.
Collapse
|
45
|
Chang SA, Won JH, Kim H, Oh SH, Tyler RS, Cho CH. Frequency-Limiting Effects on Speech and Environmental Sound Identification for Cochlear Implant and Normal Hearing Listeners. J Audiol Otol 2018; 22:28-38. [PMID: 29325391 PMCID: PMC5784366 DOI: 10.7874/jao.2017.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES It is important to understand the frequency region of cues used, and not used, by cochlear implant (CI) recipients. Speech and environmental sound recognition by individuals with CI and normal-hearing (NH) was measured. Gradients were also computed to evaluate the pattern of change in identification performance with respect to the low-pass filtering or high-pass filtering cutoff frequencies. SUBJECTS AND METHODS Frequency-limiting effects were implemented in the acoustic waveforms by passing the signals through low-pass filters (LPFs) or high-pass filters (HPFs) with seven different cutoff frequencies. Identification of Korean vowels and consonants produced by a male and female speaker and environmental sounds was measured. Crossover frequencies were determined for each identification test, where the LPF and HPF conditions show the identical identification scores. RESULTS CI and NH subjects showed changes in identification performance in a similar manner as a function of cutoff frequency for the LPF and HPF conditions, suggesting that the degraded spectral information in the acoustic signals may similarly constraint the identification performance for both subject groups. However, CI subjects were generally less efficient than NH subjects in using the limited spectral information for speech and environmental sound identification due to the inefficient coding of acoustic cues through the CI sound processors. CONCLUSIONS This finding will provide vital information in Korean for understanding how different the frequency information is in receiving speech and environmental sounds by CI processor from normal hearing.
Collapse
Affiliation(s)
- Son-A Chang
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Jong Ho Won
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, TN, USA
| | - HyangHee Kim
- Graduate Program of Speech and Language Pathology, Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Ha Oh
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Richard S Tyler
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Chang Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
46
|
Connor SEJ. Contemporary imaging of auditory implants. Clin Radiol 2017; 73:19-34. [PMID: 28388970 DOI: 10.1016/j.crad.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
There have been significant advances in the diversity and effectiveness of hearing technologies in recent years. Implanted auditory devices may be divided into those that stimulate the cochlear hair cells (bone conduction devices and middle ear implants), and those that stimulate the neural structures (cochlear implants and central auditory implants). Contemporary preoperative and postoperative imaging may be used to help individualise implant selection, optimise surgical technique and predict auditory outcome. This review will introduce the concepts behind auditory implants, and explains how imaging is increasingly used to aid insertion and evaluation of these devices.
Collapse
Affiliation(s)
- S E J Connor
- Neuroradiology Department, King's College Hospital, London, UK; Radiology Department, Guy's and St Thomas' Hospital, London, UK.
| |
Collapse
|
47
|
|
48
|
Landsberger DM, Svrakic M, Roland JT, Svirsky M. The Relationship Between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear Implants. Ear Hear 2016; 36:e207-13. [PMID: 25860624 DOI: 10.1097/aud.0000000000000163] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Commercially available cochlear implant systems attempt to deliver frequency information going down to a few hundred Hertz, but the electrode arrays are not designed to reach the most apical regions of the cochlea, which correspond to these low frequencies. This may cause a mismatch between the frequencies presented by a cochlear implant electrode array and the frequencies represented at the corresponding location in a normal-hearing cochlea. In the following study, the mismatch between the frequency presented at a given cochlear angle and the frequency expected by an acoustic hearing ear at the corresponding angle is examined for the cochlear implant systems that are most commonly used in the United States. DESIGN The angular insertion of each of the electrodes on four different electrode arrays (MED-EL Standard, MED-EL Flex28, Advanced Bionics HiFocus 1J, and Cochlear Contour Advance) was estimated from X-ray. For the angular location of each electrode on each electrode array, the predicted spiral ganglion frequency was estimated. The predicted spiral ganglion frequency was compared with the center frequency provided by the corresponding electrode using the manufacturer's default frequency-to-electrode allocation. RESULTS Differences across devices were observed for the place of stimulation for frequencies below 650 Hz. Longer electrode arrays (i.e., the MED-EL Standard and Flex28) demonstrated smaller deviations from the spiral ganglion map than the other electrode arrays. For insertion angles up to approximately 270°, the frequencies presented at a given location were typically approximately an octave below what would be expected by a spiral ganglion frequency map, while the deviations were larger for angles deeper than 270°. For frequencies above 650 Hz, the frequency to angle relationship was consistent across all four electrode models. CONCLUSIONS A mismatch was observed between the predicted frequency and the default frequency provided by every electrode on all electrode arrays. The mismatch can be reduced by changing the default frequency allocations, inserting electrodes deeper into the cochlea, or allowing cochlear implant users to adapt to the mismatch. Further studies are required to fully assess the clinical significance of the frequency mismatch.
Collapse
Affiliation(s)
- David M Landsberger
- Department of Otolaryngology, New York University School of Medicine, New York, USA
| | | | | | | |
Collapse
|
49
|
Mistrík P, Jolly C. Optimal electrode length to match patient specific cochlear anatomy. Eur Ann Otorhinolaryngol Head Neck Dis 2016; 133 Suppl 1:S68-71. [DOI: 10.1016/j.anorl.2016.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/15/2022]
|
50
|
The Intelligibility of Interrupted Speech: Cochlear Implant Users and Normal Hearing Listeners. J Assoc Res Otolaryngol 2016; 17:475-91. [PMID: 27090115 PMCID: PMC5023536 DOI: 10.1007/s10162-016-0565-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 03/18/2016] [Indexed: 11/13/2022] Open
Abstract
Compared with normal-hearing listeners, cochlear implant (CI) users display a loss of intelligibility of speech interrupted by silence or noise, possibly due to reduced ability to integrate and restore speech glimpses across silence or noise intervals. The present study was conducted to establish the extent of the deficit typical CI users have in understanding interrupted high-context sentences as a function of a range of interruption rates (1.5 to 24 Hz) and duty cycles (50 and 75 %). Further, factors such as reduced signal quality of CI signal transmission and advanced age, as well as potentially lower speech intelligibility of CI users even in the lack of interruption manipulation, were explored by presenting young, as well as age-matched, normal-hearing (NH) listeners with full-spectrum and vocoded speech (eight-channel and speech intelligibility baseline performance matched). While the actual CI users had more difficulties in understanding interrupted speech and taking advantage of faster interruption rates and increased duty cycle than the eight-channel noise-band vocoded listeners, their performance was similar to the matched noise-band vocoded listeners. These results suggest that while loss of spectro-temporal resolution indeed plays an important role in reduced intelligibility of interrupted speech, these factors alone cannot entirely explain the deficit. Other factors associated with real CIs, such as aging or failure in transmission of essential speech cues, seem to additionally contribute to poor intelligibility of interrupted speech.
Collapse
|