• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4623493)   Today's Articles (255)   Subscriber (49411)
For: Konrad-Martin D, Keefe DH. Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears. J Acoust Soc Am 2005;117:3799-815. [PMID: 16018483 DOI: 10.1121/1.1904403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Number Cited by Other Article(s)
1
Prestin derived OHC surface area reduction underlies age-related rescaling of frequency place coding. Hear Res 2021;423:108406. [PMID: 34933788 DOI: 10.1016/j.heares.2021.108406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
2
Lewis JD. Efferent-induced shifts in synchronized-spontaneous-otoacoustic-emission magnitude and frequency. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020;148:3258. [PMID: 33261385 DOI: 10.1121/10.0002643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
3
Liu Y, Ji F, Gong Q. Analyzing Stimulus-frequency Otoacoustic Emission Fine Structure Using an Additive Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020;2020:960-963. [PMID: 33018144 DOI: 10.1109/embc44109.2020.9175491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
4
Vencovský V, Vetešník A, Gummer AW. Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020;147:3992. [PMID: 32611132 DOI: 10.1121/10.0001394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
5
Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits. Ear Hear 2020;40:1345-1358. [PMID: 30882535 DOI: 10.1097/aud.0000000000000714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
6
Abdala C, Luo P, Guardia Y. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends Hear 2019;23:2331216519889226. [PMID: 31789131 PMCID: PMC6887807 DOI: 10.1177/2331216519889226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022]  Open
7
Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging. J Assoc Res Otolaryngol 2018;19:493-510. [PMID: 29968098 DOI: 10.1007/s10162-018-0680-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]  Open
8
Jedrzejczak WW, Kochanek K, Skarzynski H. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks. PLoS One 2018;13:e0192930. [PMID: 29451905 PMCID: PMC5815600 DOI: 10.1371/journal.pone.0192930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/26/2018] [Indexed: 11/18/2022]  Open
9
Abdala C, Guardia YC, Shera CA. Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018;143:181. [PMID: 29390734 PMCID: PMC5770274 DOI: 10.1121/1.5020275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
10
Zelle D, Lorenz L, Thiericke JP, Gummer AW, Dalhoff E. Input-output functions of the nonlinear-distortion component of distortion-product otoacoustic emissions in normal and hearing-impaired human ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017;141:3203. [PMID: 28599560 PMCID: PMC5426960 DOI: 10.1121/1.4982923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
11
Anderson JM, Campbell K. Assessment of Interventions to Prevent Drug-Induced Hearing Loss. FREE RADICALS IN ENT PATHOLOGY 2015. [DOI: 10.1007/978-3-319-13473-4_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
12
Lewis JD, Goodman SS. The effect of stimulus bandwidth on the nonlinear-derived tone-burst-evoked otoacoustic emission. J Assoc Res Otolaryngol 2014;15:915-31. [PMID: 25245497 DOI: 10.1007/s10162-014-0484-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 08/18/2014] [Indexed: 02/07/2023]  Open
13
Johnson TA, Beshaler L. Influence of stimulus parameters on amplitude-modulated stimulus frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013;134:1121-33. [PMID: 23927112 PMCID: PMC3745488 DOI: 10.1121/1.4812766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
14
Bell A. A resonance approach to cochlear mechanics. PLoS One 2012;7:e47918. [PMID: 23144835 PMCID: PMC3493581 DOI: 10.1371/journal.pone.0047918] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/20/2012] [Indexed: 12/02/2022]  Open
15
Keefe DH. Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012;132:3319-50. [PMID: 23145615 PMCID: PMC3505207 DOI: 10.1121/1.4757734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 05/24/2023]
16
Lichtenhan JT. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave. J Assoc Res Otolaryngol 2011;13:17-28. [PMID: 22002610 DOI: 10.1007/s10162-011-0296-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022]  Open
17
Abdala C, Dhar S, Mishra S. The breaking of cochlear scaling symmetry in human newborns and adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011;129:3104-3114. [PMID: 21568413 PMCID: PMC3108391 DOI: 10.1121/1.3569737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 05/30/2023]
18
Abdala C, Dhar S, Kalluri R. Level dependence of distortion product otoacoustic emission phase is attributed to component mixing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011;129:3123-33. [PMID: 21568415 PMCID: PMC3108393 DOI: 10.1121/1.3573992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 05/24/2023]
19
Recio-Spinoso A, Fan YH, Ruggero MA. Basilar-membrane responses to broadband noise modeled using linear filters with rational transfer functions. IEEE Trans Biomed Eng 2011;58:1456-65. [PMID: 20542757 PMCID: PMC3572753 DOI: 10.1109/tbme.2010.2052254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
20
Martin GK, Stagner BB, Lonsbury-Martin BL. Evidence for basal distortion-product otoacoustic emission components. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010;127:2955-72. [PMID: 21117746 PMCID: PMC2882660 DOI: 10.1121/1.3353121] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
21
Keefe DH, Schairer KS, Ellison JC, Fitzpatrick DF, Jesteadt W. Use of stimulus-frequency otoacoustic emissions to investigate efferent and cochlear contributions to temporal overshoot. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009;125:1595-604. [PMID: 19275317 PMCID: PMC2677284 DOI: 10.1121/1.3068443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 05/24/2023]
22
Lineton B, Wildgoose CMB. Comparing two proposed measures of cochlear mechanical filter bandwidth based on stimulus frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009;125:1558-66. [PMID: 19275314 DOI: 10.1121/1.3068452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
23
Goodman SS, Fitzpatrick DF, Ellison JC, Jesteadt W, Keefe DH. High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009;125:1014-32. [PMID: 19206876 PMCID: PMC2659524 DOI: 10.1121/1.3056566] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 05/15/2023]
24
Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP. Two-tone suppression of stimulus frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008;123:1479-94. [PMID: 18345837 PMCID: PMC2517244 DOI: 10.1121/1.2828209] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
25
Notaro G, Al-Maamury AM, Moleti A, Sisto R. Wavelet and matching pursuit estimates of the transient-evoked otoacoustic emission latency. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007;122:3576-3585. [PMID: 18247765 DOI: 10.1121/1.2799924] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
26
Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH. Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006;120:901-14. [PMID: 16938978 PMCID: PMC1661834 DOI: 10.1121/1.2214147] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
27
Killan EC, Kapadia S. Simultaneous suppression of tone burst-evoked otoacoustic emissions--effect of level and presentation paradigm. Hear Res 2005;212:65-73. [PMID: 16324810 DOI: 10.1016/j.heares.2005.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 10/18/2005] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA