1
|
Drexl M, Otto L, Wiegrebe L, Marquardt T, Gürkov R, Krause E. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics. Hear Res 2016; 332:87-94. [DOI: 10.1016/j.heares.2015.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023]
|
2
|
Kugler K, Wiegrebe L, Gürkov R, Krause E, Drexl M. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear. J Assoc Res Otolaryngol 2015; 16:713-25. [PMID: 26264256 DOI: 10.1007/s10162-015-0538-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
>Human hearing is rather insensitive for very low frequencies (i.e. below 100 Hz). Despite this insensitivity, low-frequency sound can cause oscillating changes of cochlear gain in inner ear regions processing even much higher frequencies. These alterations outlast the duration of the low-frequency stimulation by several minutes, for which the term 'bounce phenomenon' has been coined. Previously, we have shown that the bounce can be traced by monitoring frequency and level changes of spontaneous otoacoustic emissions (SOAEs) over time. It has been suggested elsewhere that large receptor potentials elicited by low-frequency stimulation produce a net Ca(2+) influx and associated gain decrease in outer hair cells. The bounce presumably reflects an underdamped, homeostatic readjustment of increased Ca(2+) concentrations and related gain changes after low-frequency sound offset. Here, we test this hypothesis by activating the medial olivocochlear efferent system during presentation of the bounce-evoking low-frequency (LF) sound. The efferent system is known to modulate outer hair cell Ca(2+) concentrations and receptor potentials, and therefore, it should modulate the characteristics of the bounce phenomenon. We show that simultaneous presentation of contralateral broadband noise (100 Hz-8 kHz, 65 and 70 dB SPL, 90 s, activating the efferent system) and ipsilateral low-frequency sound (30 Hz, 120 dB SPL, 90 s, inducing the bounce) affects the characteristics of bouncing SOAEs recorded after low-frequency sound offset. Specifically, the decay time constant of the SOAE level changes is shorter, and the transient SOAE suppression is less pronounced. Moreover, the number of new, transient SOAEs as they are seen during the bounce, are reduced. Taken together, activation of the medial olivocochlear system during induction of the bounce phenomenon with low-frequency sound results in changed characteristics of the bounce phenomenon. Thus, our data provide experimental support for the hypothesis that outer hair cell calcium homeostasis is the source of the bounce phenomenon.
Collapse
Affiliation(s)
- Kathrin Kugler
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany
| | - Lutz Wiegrebe
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany
| | - Robert Gürkov
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany
| | - Eike Krause
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany
| | - Markus Drexl
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany. .,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany. .,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany.
| |
Collapse
|
3
|
Aono K, Shaga RK, Chakrabartty S. Exploiting jump-resonance hysteresis in silicon auditory front-ends for extracting speaker discriminative formant trajectories. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:389-400. [PMID: 23893199 DOI: 10.1109/tbcas.2012.2218104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Jump-resonance is a phenomenon observed in non-linear circuits where the amplitude of the output signal exhibits an abrupt jump when the frequency of the input signal is varied. For [Formula: see text] filters used in the design of analog auditory front-ends (AFEs), jump-resonance is generally considered to be undesirable and several techniques have been proposed in literature to avoid or alleviate this artifact. In this paper we explore the use of jump-resonance based hysteresis in [Formula: see text] band-pass filters for encoding speech formant trajectories. Using prototypes of silicon AFEs fabricated in a 0.5 μm CMOS process, we demonstrate the benefits of the proposed approach for extracting speaker discriminative features. These benefits are validated using speaker recognition experiments where consistent improvements in equal-error-rates (EERs) are achieved using the jump-resonance based features as compared to conventional features.
Collapse
Affiliation(s)
- Kenji Aono
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 USA.
| | | | | |
Collapse
|
4
|
Drexl M, Gürkov R, Krause E. Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans. Hear Res 2012; 287:91-101. [DOI: 10.1016/j.heares.2012.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/13/2023]
Affiliation(s)
- Markus Drexl
- Integrated Centre for Research and Treatment of Vertigo, Balance and Ocular Motor Disorders, Ludwig-Maximilians University Munich, Marchioninistr 15, 81377 Munich, Germany.
| | | | | |
Collapse
|
5
|
On the differential diagnosis of Ménière's disease using low-frequency acoustic biasing of the 2f1-f2 DPOAE. Hear Res 2011; 282:119-27. [PMID: 21944944 DOI: 10.1016/j.heares.2011.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 01/13/2023]
Abstract
We have cyclically suppressed the 2f1-f2 distortion product otoacoustic emission (DPOAE) with low-frequency tones (17-97 Hz) as a way of differentially diagnosing the endolymphatic hydrops assumed to be associated with Ménière's syndrome. Round-window electrocochleography (ECochG) was performed in subjects with sensorineural hearing loss (SNHL) on the day of DPOAE testing, and from which the amplitude of the summating potential (SP) was measured, to support the diagnosis of Ménière's syndrome based on symptoms. To summarize and compare the cyclic patterns of DPOAE modulation in these groups we have used the simplest model of DPOAE generation and modulation, by assuming that the DPOAEs were generated by a 1st-order Boltzmann nonlinearity so that the magnitude of the 2f1-f2 DPOAE resembled the 3rd derivative of the Boltzmann function. We have also assumed that the modulation of the DPOAEs by the low-frequency tones was simply due to a sinusoidal change in the operating point on the Boltzmann nonlinearity. We have found the cyclic DPOAE modulation to be different in subjects with Ménière's syndrome (n = 16) when compared to the patterns in normal subjects (n = 16) and in other control subjects with non-Ménière's SNHL and/or vestibular disorders (n = 13). The DPOAEs of normal and non-Ménière's ears were suppressed more during negative ear canal pressure than during positive ear canal pressure. By contrast, DPOAE modulation in Ménière's ears with abnormal ECochG was greatest during positive ear canal pressures. This test may provide a tool for diagnosing Ménière's in the early stages, and might be used to investigate the pathological mechanism underlying the hearing symptoms of this syndrome.
Collapse
|
6
|
Bian L, Chen S. Behaviors of cubic distortion product otoacoustic emissions evoked by amplitude modulated tones. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:828-839. [PMID: 21361441 DOI: 10.1121/1.3531813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) were measured using sinusoidal amplitude modulation (AM) tones. When one of the primary stimuli (f(1) or f(2), f(1) < f(2)) was amplitude modulated, a series of changes in the cubic difference tone (CDT) were observed. In the frequency domain, multiple sidebands were present around the CDT and their sizes grew with the modulation depth of the AM stimulus. In the time domain, the CDT showed different modulation patterns between two major signal conditions: the AM tone was used as the f(1) or the f(2). The CDT amplitude followed the AM tone when the f(1) was amplitude modulated. However, when the AM tone acted as the f(2), the CDT showed a more complex modulation pattern with a notch present at the AM tone peak. The relatively linear dependence of CDT on f(1) and the nonlinear relation with f(2) can be explained with a variable gain-control model representing hair cell functions at the DPOAE generation site. It is likely that processing of AM signals at a particular cochlear location depends on whether the hair cells are tuned to the frequency of the carrier. Nonlinear modulation is related to on-frequency carriers and off-frequency carriers are processed relatively linearly.
Collapse
Affiliation(s)
- Lin Bian
- Auditory Physiology Laboratory, Department of Speech and Hearing Science, Arizona State University, 3430 Coor Hall, Tempe, Arizona 85287-0102, USA.
| | | |
Collapse
|
7
|
Distortion product otoacoustic emissions evoked by tone complexes. J Assoc Res Otolaryngol 2010; 12:29-44. [PMID: 20838846 PMCID: PMC3015028 DOI: 10.1007/s10162-010-0233-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/11/2010] [Indexed: 11/01/2022] Open
Abstract
Distortion product otoacoustic emissions (DPOAEs) are traditionally evoked by two-tone stimuli. In this study, emission data from Mongolian gerbils are reported that were obtained with stimuli consisting of six to 10 tones. The stimuli were constructed by replacing one of the tones of a tone pair by a narrowband multitone complex. This produced rich spectra of the ear canal sound pressure in which many of the third-order DPOAEs originated from the interaction of triplets of stimulus components. A careful choice of the stimulus frequencies ensured that none of these DPOAE components coincided. Three groups of DPOAEs are reported, two of which are closely related to DPOAEs evoked by tone pairs. The third group has no two-tone equivalent and only arises when using a multitone stimulus. We analyzed the relation between multitone-evoked DPOAEs and DPOAEs evoked by tone pairs, and explored the new degrees of freedom offered by the multitone paradigm.
Collapse
|
8
|
Salt AN, Hullar TE. Responses of the ear to low frequency sounds, infrasound and wind turbines. Hear Res 2010; 268:12-21. [PMID: 20561575 PMCID: PMC2923251 DOI: 10.1016/j.heares.2010.06.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 01/12/2023]
Abstract
Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit "hearing" to the brain. The sensory stereocilia ("hairs") on the IHC are "fluid coupled" to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear's responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the infrasound component of wind turbine noise could influence the physiology of the ear.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, Box 8115, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
9
|
Brown DJ, Hartsock JJ, Gill RM, Fitzgerald HE, Salt AN. Estimating the operating point of the cochlear transducer using low-frequency biased distortion products. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:2129-2145. [PMID: 19354389 PMCID: PMC2736732 DOI: 10.1121/1.3083228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 05/27/2023]
Abstract
Distortion products in the cochlear microphonic (CM) and in the ear canal in the form of distortion product otoacoustic emissions (DPOAEs) are generated by nonlinear transduction in the cochlea and are related to the resting position of the organ of Corti (OC). A 4.8 Hz acoustic bias tone was used to displace the OC, while the relative amplitude and phase of distortion products evoked by a single tone [most often 500 Hz, 90 dB SPL (sound pressure level)] or two simultaneously presented tones (most often 4 kHz and 4.8 kHz, 80 dB SPL) were monitored. Electrical responses recorded from the round window, scala tympani and scala media of the basal turn, and acoustic emissions in the ear canal were simultaneously measured and compared during the bias. Bias-induced changes in the distortion products were similar to those predicted from computer models of a saturating transducer with a first-order Boltzmann distribution. Our results suggest that biased DPOAEs can be used to non-invasively estimate the OC displacement, producing a measurement equivalent to the transducer operating point obtained via Boltzmann analysis of the basal turn CM. Low-frequency biased DPOAEs might provide a diagnostic tool to objectively diagnose abnormal displacements of the OC, as might occur with endolymphatic hydrops.
Collapse
Affiliation(s)
- Daniel J Brown
- Department of Otolaryngology, School of Medicine, Washington University in St Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
10
|
Salt AN, Brown DJ, Hartsock JJ, Plontke SK. Displacements of the organ of Corti by gel injections into the cochlear apex. Hear Res 2009; 250:63-75. [PMID: 19217935 DOI: 10.1016/j.heares.2009.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/16/2009] [Accepted: 02/05/2009] [Indexed: 11/20/2022]
Abstract
In order to transduce sounds efficiently, the stereocilia of hair cells in the organ of Corti must be positioned optimally. Mechanical displacements, such as pressure differentials across the organ caused by endolymphatic hydrops, may impair sensitivity. Studying this phenomenon has been limited by the technical difficulty of inducing sustained displacements of stereocilia in vivo. We have found that small injections (0.5-2 microL) of Healon gel into the cochlear apex of guinea pigs produced sustained changes of endocochlear potential (EP), summating potential (SP) and transducer operating point (OP) in a manner consistent with a mechanically-induced position change of the organ of Corti in the basal turn. Induced changes immediately recovered when injection ceased. In addition, effects of low-frequency bias tones on EP, SP and OP were enhanced during the injection of gel and remained hypersensitive after injection ceased. This is thought to result from the viscous gel mechanically limiting pressure shunting through the helicotrema. Cochlear microphonics measured as frequency was varied showed enhancement below 100 Hz but most notably in the sub-auditory range. Sensitivity to low-frequency biasing was also enhanced in animals with surgically-induced endolymphatic hydrops, suggesting that obstruction of the perilymphatic space by hydrops could contribute to the pathophysiology of this condition.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Box 8115, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
11
|
Bian L, Chen S. Comparing the optimal signal conditions for recording cubic and quadratic distortion product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:3739-3750. [PMID: 19206801 PMCID: PMC2676628 DOI: 10.1121/1.3001706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 05/27/2023]
Abstract
Odd- and even-order distortion products (DPs), evoked by two primary tones (f(1),f(2),f(1)<f(2)), represent different aspects of cochlear nonlinearity. The cubic and quadratic difference tones (CDT 2f(1)-f(2) and QDT f(2)-f(1)) are prominent representatives of the odd and even DPs. Distortion product otoacoustic emissions (DPOAEs) were measured within a primary level (L(1),L(2)) space over a wide range of f(2)f(1) ratios to compare the optimal signal conditions for these DPs. For CDT, the primary level difference decreased as L(1) increased with a rate proportional to the f(2)f(1) ratio. Moreover, the optimal ratio increased with L(1). A set of two formulas is proposed to describe the optimal signal conditions. However, for a given level of a primary, increasing the other tone level could maximize the QDT amplitude. The frequency ratio at the maximal QDT was about 1.3 and quite constant across different primary levels. A notch was found in the QDT amplitude at the f(2)f(1) ratio of about 1.22-1.25. These opposite behaviors suggest that the optimal recording conditions are different for CDT and QDT due to the different aspects in the cochlear nonlinearity. Optimizing the DPOAE recordings could improve the reliability in clinical or research practices.
Collapse
Affiliation(s)
- Lin Bian
- Department of Speech and Hearing Science, Auditory Physiology Lab, Arizona State University, Tempe, Arizona 85287-0102, USA.
| | | |
Collapse
|
12
|
Bian L. Effects of low-frequency biasing on spontaneous otoacoustic emissions: frequency modulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:3009-3021. [PMID: 19045788 PMCID: PMC2677352 DOI: 10.1121/1.2990716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 05/27/2023]
Abstract
It was previously reported that low-frequency biasing of cochlear structures can suppress and modulate the amplitudes of spontaneous otoacoustic emissions (SOAEs) in humans [Bian, L. and Watts, K. L. (2008). "Effects of low-frequency biasing on spontaneous otoacoustic emissions: Amplitude modulation," J. Acoust. Soc. Am. 123, 887-898]. In addition to amplitude modulation, the bias tone produced an upward shift of the SOAE frequency and a frequency modulation. These frequency effects usually occurred prior to significant modifications of SOAE amplitudes and were dependent on the relative strength of the bias tone and a particular SOAE. The overall SOAE frequency shifts were usually less than 2%. A quasistatic modulation pattern showed that biasing in either positive or negative pressure direction increased SOAE frequency. The instantaneous SOAE frequency revealed a "W-shaped" modulation pattern within one biasing cycle. The SOAE frequency was maximal at the biasing extremes and minimized at the zero crossings of the bias tone. The temporal modulation of SOAE frequency occurred with a short delay. These static and dynamic effects indicate that modifications of the mechanical properties of the cochlear transducer could underlie the frequency shift and modulation. These biasing effects are consistent with the suppression and modulation of SOAE amplitude due to shifting of the cochlear transducer operating point.
Collapse
Affiliation(s)
- Lin Bian
- Auditory Physiology Laboratory, 3430 Coor Hall, Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287-0102, USA.
| |
Collapse
|
13
|
Bian L, Watts KL. Effects of low-frequency biasing on spontaneous otoacoustic emissions: amplitude modulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:887-98. [PMID: 18247892 PMCID: PMC2637524 DOI: 10.1121/1.2821983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The dynamic effects of low-frequency biasing on spontaneous otoacoustic emissions (SOAEs) were studied in human subjects under various signal conditions. Results showed a combined suppression and modulation of the SOAE amplitudes at high bias tone levels. Ear-canal acoustic spectra demonstrated a reduction in SOAE amplitude and growths of sidebands while increasing the bias tone level. These effects varied depending on the relative strength of the bias tone to a particular SOAE. The SOAE magnitudes were suppressed when the cochlear partition was biased in both directions. This quasi-static modulation pattern showed a shape consistent with the first derivative of a sigmoid-shaped nonlinear function. In the time domain, the SOAE amplitudes were modulated with the instantaneous phase of the bias tone. For each biasing cycle, the SOAE envelope showed two peaks each corresponded to a zero crossing of the bias tone. The temporal modulation patterns varied systematically with the level and frequency of the bias tone. These dynamic behaviors of the SOAEs are consistent with the shifting of the operating point along the nonlinear transducer function of the cochlea. The results suggest that the nonlinearity in cochlear hair cell transduction may be involved in the generation of SOAEs.
Collapse
Affiliation(s)
- Lin Bian
- Auditory Physiology Laboratory, 3430 Coor Hall, Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287-0102, USA.
| | | |
Collapse
|
14
|
Jedrzejczak WW, Smurzynski J, Blinowska KJ. Origin of suppression of otoacoustic emissions evoked by two-tone bursts. Hear Res 2007; 235:80-9. [PMID: 18082347 DOI: 10.1016/j.heares.2007.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/03/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
Otoacoustic emission (OAE) data recorded for tone bursts presented separately and as a two-tone burst complex, that had been reported previously [Yoshikawa, H., Smurzynski, J., Probst R., 2000. Suppression of tone burst evoked otoacoustic emissions in relation to frequency separation. Hear. Res. 148, 95-106], were re-processed using the method of adaptive approximations by matching pursuit (MP). Two types of stimuli were applied to record tone burst OAEs (TBOAEs): (a) cosine-windowed tone bursts of 5-ms duration with center frequencies of 1, 1.5, 2 and 3kHz, (b) complex stimuli consisting of a digital addition of the 1-kHz tone burst together with either the 1.5-, 2- or 3-kHz tone burst. The MP method allowed decomposition of signals into waveforms of defined frequency, latency, time span, and amplitude. This approach provided a high time-frequency (t-f) resolution and identified patterns of resonance modes that were characteristic for TBOAEs recorded in each individual ear. Individual responses to single-tone bursts were processed off-line to form 'sum of singles' responses. The results confirmed linear superposition behavior for a frequency separation of two-tone bursts of 2kHz (the 1-kHz and 3-kHz condition). For the 1, 1.5-kHz condition, the MP results revealed the existence of closely positioned resonance modes associated with responses recorded individually with the stimuli differing in frequency by 500Hz. Then, the differences between t-f distributions calculated for dual (two-tone bursts) and sum-of-singles conditions exhibited mutual suppression of resonance modes common to both stimuli. The degree of attenuation depended on the individual pattern of characteristic resonance modes, i.e., suppression occurred when two resonant modes excited by both stimuli overlapped. It was postulated that the suppression observed in case of dual stimuli with closely-spaced components is due to mutual attenuation of the overlapping resonance modes.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, ul. Zgrupowania AK Kampinos 1, 01-943 Warszawa, Poland.
| | | | | |
Collapse
|