1
|
Guo Y, Lee H, Kim C, Park C, Yamamichi A, Chuntova P, Gallus M, Bernabeu MO, Okada H, Jo H, Arvanitis C. Ultrasound frequency-controlled microbubble dynamics in brain vessels regulate the enrichment of inflammatory pathways in the blood-brain barrier. Nat Commun 2024; 15:8021. [PMID: 39271721 PMCID: PMC11399249 DOI: 10.1038/s41467-024-52329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Microbubble-enhanced ultrasound provides a noninvasive physical method to locally overcome major obstacles to the accumulation of blood-borne therapeutics in the brain, posed by the blood-brain barrier (BBB). However, due to the highly nonlinear and coupled behavior of microbubble dynamics in brain vessels, the impact of microbubble resonant effects on BBB signaling and function remains undefined. Here, combined theoretical and prospective experimental investigations reveal that microbubble resonant effects in brain capillaries can control the enrichment of inflammatory pathways that are sensitive to wall shear stress and promote differential expression of a range of transcripts in the BBB, supporting the notion that microbubble dynamics exerted mechanical stress can be used to establish molecular, in addition to spatial, therapeutic windows to target brain diseases. Consistent with these findings, a robust increase in cytotoxic T-cell accumulation in brain tumors was observed, demonstrating the functional relevance and potential clinical significance of the observed immuno-mechano-biological responses.
Collapse
Affiliation(s)
- Yutong Guo
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
- Stanford University, Department of Radiology, Stanford, USA
| | - Hohyun Lee
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
| | - Chulyong Kim
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA
| | - Christian Park
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA
| | - Akane Yamamichi
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Pavlina Chuntova
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Marco Gallus
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
| | - Miguel O Bernabeu
- The University of Edinburgh, Centre for Medical Informatics, Usher Institute, Edinburgh, United Kingdom
- The University of Edinburgh, The Bayes Centre, Edinburgh, United Kingdom
| | - Hideho Okada
- University of California San Francisco, Department of Neurological Surgery, San Francisco, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, USA
| | - Hanjoong Jo
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA
- Emory University, Department of Medicine, Atlanta, USA
| | - Costas Arvanitis
- Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, USA.
- Georgia Institute of Technology and Emory University, Coulter Department of Biomedical Engineering, Atlanta, USA.
| |
Collapse
|
2
|
Newsome IG, Kierski TM, Pang G, Yin J, Yang J, Cherin E, Foster FS, Carnevale CA, Demore CEM, Dayton PA. Implementation of a Novel 288-Element Dual-Frequency Array for Acoustic Angiography: In Vitro and In Vivo Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2657-2666. [PMID: 33872146 PMCID: PMC8375591 DOI: 10.1109/tuffc.2021.3074025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging method that produces high-resolution, 3-D maps of the microvasculature. Previous acoustic angiography studies have used twoelement, annular,mechanicallyactuated transducers(called "wobblers") to image microvasculature in preclinical tumor models with high contrast-to-tissue ratio and resolution, but these earlywobbler transducerscould not achieve the depth and sensitivity required for clinical acoustic angiography. In this work, we present a system for performing acoustic angiography with a novel dual-frequency(DF) transducer-a coaxially stacked DF array (DFA). We evaluate the DFA system bothin vitro andin vivo and demonstrate improvements in sensitivity and imaging depth up to 13.1 dB and 10 mm, respectively, compared with previous wobbler probes.
Collapse
|
3
|
Sujarittam K, Choi JJ. Angular dependence of the acoustic signal of a microbubble cloud. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:2958. [PMID: 33261381 DOI: 10.1121/10.0002490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Microbubble-mediated ultrasound therapies have a common need for methods that can noninvasively monitor the treatment. One approach is to use the bubbles' acoustic emissions as feedback to the operator or a control unit. Current methods interpret the emissions' frequency content to infer the microbubble activities and predict therapeutic outcomes. However, different studies placed their sensors at different angles relative to the emitter and bubble cloud. Here, it is evaluated whether such angles influence the captured emissions such as the frequency content. In computer simulations, 128 coupled bubbles were sonicated with a 0.5-MHz, 0.35-MPa pulse, and the acoustic emissions generated by the bubbles were captured with two sensors placed at different angles. The simulation was replicated in experiments using a microbubble-filled gel channel (0.5-MHz, 0.19-0.75-MPa pulses). A hydrophone captured the emissions at two different angles. In both the simulation and the experiments, one angle captured periodic time-domain signals, which had high contributions from the first three harmonics. In contrast, the other angle captured visually aperiodic time-domain features, which had much higher harmonic and broadband content. Thus, by placing acoustic sensors at different positions, substantially different acoustic emissions were captured, potentially leading to very different conclusions about the treatment outcome.
Collapse
Affiliation(s)
- Krit Sujarittam
- Department of Bioengineering, Imperial College London, 2 Imperial College Road, South Kensington, London, SW7 2AZ, United Kingdom
| | - James J Choi
- Department of Bioengineering, Imperial College London, 2 Imperial College Road, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
King DA, O’Brien WD. Quantitative analysis of ultrasound contrast agent postexcitation collapse. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1237-1241. [PMID: 24960713 PMCID: PMC4123746 DOI: 10.1109/tuffc.2014.3023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An empirically based peak-detection technique is described for statistically analyzing single ultrasound contrast agent collapses. It is shown that microbubbles with postexcitation collapse initially exhibit a stronger principal response on average than those without postexcitation, and that lower insonifying frequencies lead to postexcitation signals which have greater separation from their principal response and persist through more rebounds.
Collapse
Affiliation(s)
- Daniel A. King
- Department of Mathematical Sciences, Eastern Mennonite University, Harrisonburg, VA
| | - William D. O’Brien
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
5
|
Synthesis of laboratory Ultrasound Contrast Agents. Molecules 2013; 18:13078-95. [PMID: 24152677 PMCID: PMC6270217 DOI: 10.3390/molecules181013078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023] Open
Abstract
Ultrasound Contrast Agents (UCAs) were developed to maximize reflection contrast so that organs can be seen clearly in ultrasound imaging. UCAs increase the signal to noise ratio (SNR) by linear and non-linear mechanisms and thus help more accurately visualize the internal organs and blood vessels. However, the UCAs on the market are not only expensive, but are also not optimized for use in various therapeutic research applications such as ultrasound-aided drug delivery. The UCAs fabricated in this study utilize conventional lipid and albumin for shell formation and perfluorobutane as the internal gas. The shape and density of the UCA bubbles were verified by optical microscopy and Cryo SEM, and compared to those of the commercially available UCAs, Definity® and Sonovue®. The size distribution and characteristics of the reflected signal were also analyzed using a particle size analyzer and ultrasound imaging equipment. Our experiments indicate that UCAs composed of spherical microbubbles, the majority of which were smaller than 1 um, were successfully synthesized. Microbubbles 10 um or larger were also identified when different shell characteristics and filters were used. These laboratory UCAs can be used for research in both diagnoses and therapies.
Collapse
|
6
|
Radhakrishnan K, Bader KB, Haworth KJ, Kopechek JA, Raymond JL, Huang SL, McPherson DD, Holland CK. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents. Phys Med Biol 2013; 58:6541-63. [PMID: 24002637 PMCID: PMC4170692 DOI: 10.1088/0031-9155/58/18/6541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration-dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the onscreen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations ('sample volumes') in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and inertial cavitation are necessary in order to trigger complete loss of echogenicity acoustically from UCAs and this finding can be used when planning diagnostic and therapeutic applications.
Collapse
|
7
|
Bader KB, Holland CK. Gauging the likelihood of stable cavitation from ultrasound contrast agents. Phys Med Biol 2012; 58:127-44. [PMID: 23221109 DOI: 10.1088/0031-9155/58/1/127] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form I(CAV) = P(r)/f (where P(r) is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
8
|
Kopechek JA, Haworth KJ, Raymond JL, Douglas Mast T, Perrin SR, Klegerman ME, Huang S, Porter TM, McPherson DD, Holland CK. Acoustic characterization of echogenic liposomes: frequency-dependent attenuation and backscatter. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:3472-81. [PMID: 22088022 PMCID: PMC3248067 DOI: 10.1121/1.3626124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound contrast agents (UCAs) are used clinically to aid detection and diagnosis of abnormal blood flow or perfusion. Characterization of UCAs can aid in the optimization of ultrasound parameters for enhanced image contrast. In this study echogenic liposomes (ELIPs) were characterized acoustically by measuring the frequency-dependent attenuation and backscatter coefficients at frequencies between 3 and 30 MHz using a broadband pulse-echo technique. The experimental methods were initially validated by comparing the attenuation and backscatter coefficients measured from 50-μm and 100-μm polystyrene microspheres with theoretical values. The size distribution of the ELIPs was measured and found to be polydisperse, ranging in size from 40 nm to 6 μm in diameter, with the highest number observed at 65 nm. The ELIP attenuation coefficients ranged from 3.7 ± 1.0 to 8.0 ± 3.3 dB/cm between 3 and 25 MHz. The backscatter coefficients were 0.011 ± 0.006 (cm str)(-1) between 6 and 9 MHz and 0.023 ± 0.006 (cm str)(-1) between 13 and 30 MHz. The measured scattering-to-attenuation ratio ranged from 8% to 22% between 6 and 25 MHz. Thus ELIPs can provide enhanced contrast over a broad range of frequencies and the scattering properties are suitable for various ultrasound imaging applications including diagnostic and intravascular ultrasound.
Collapse
Affiliation(s)
- Jonathan A Kopechek
- Department of Biomedical Engineering, University of Cincinnati, 2901 Campus Drive, Cincinnati, Ohio 45221, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
King DA, O'Brien WD. Comparison between maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:114-21. [PMID: 21302993 PMCID: PMC3055285 DOI: 10.1121/1.3523339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Experimental postexcitation signal data of collapsing Definity microbubbles are compared with the Marmottant theoretical model for large amplitude oscillations of ultrasound contrast agents (UCAs). After taking into account the insonifying pulse characteristics and size distribution of the population of UCAs, a good comparison between simulated results and previously measured experimental data is obtained by determining a threshold maximum radial expansion (Rmax) to indicate the onset of postexcitation. This threshold Rmax is found to range from 3.4 to 8.0 times the initial bubble radius, R0, depending on insonification frequency. These values are well above the typical free bubble inertial cavitation threshold commonly chosen at 2R0. The close agreement between the experiment and models suggests that lipid-shelled UCAs behave as unshelled bubbles during most of a large amplitude cavitation cycle, as proposed in the Marmottant equation.
Collapse
Affiliation(s)
- Daniel A King
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green Street, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
10
|
King DA, Malloy MJ, Roberts AC, Haak A, Yoder CC, O'Brien WD. Determination of postexcitation thresholds for single ultrasound contrast agent microbubbles using double passive cavitation detection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:3449-55. [PMID: 20550244 PMCID: PMC2896405 DOI: 10.1121/1.3373405] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This work presents experimental responses of single ultrasound contrast agents to short, large amplitude pulses, characterized using double passive cavitation detection. In this technique, two matched, focused receive transducers were aligned orthogonally to capture the acoustic response of a microbubble from within the overlapping confocal region. The microbubbles were categorized according to a classification scheme based on the presence or absence of postexcitation signals, which are secondary broadband spikes following the principle oscillatory response of the ultrasound contrast agent and are indicative of the transient collapse of the microbubble. Experiments were conducted varying insonifying frequencies (0.9, 2.8, 4.6, and 7.1 MHz) and peak rarefactional pressures (200 kPa to 6.2 MPa) for two types of contrast agents (Definity and Optison). Results were fit using logistic regression analysis to define pressure thresholds where at least 5% and 50% of the microbubble populations collapsed for each frequency. These thresholds were found to occur at lower pressures for Definity than for Optison over the range of frequencies studied; additionally, the thresholds occurred at lower pressures with lower frequencies for both microbubble types in most cases, though this trend did not follow a mechanical index scaling.
Collapse
Affiliation(s)
- Daniel A King
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|