1
|
Mulsow J, Schlundt CE, Strahan MG, Finneran JJ. Erratum: Bottlenose dolphin temporary threshold shift following exposure to 10-ms impulses centered at 8 kHz [J. Acoust. Soc. Am. 154(2), 1287-1298 (2023)]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2686. [PMID: 39422480 DOI: 10.1121/10.0032468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Jason Mulsow
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| | - Carolyn E Schlundt
- Peraton Corporation, 4045 Hancock Street, Suite 210, San Diego, California 92110, USA
| | - Madelyn G Strahan
- Department of Conservation Biology, National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
2
|
Lucke K, MacGillivray AO, Halvorsen MB, Ainslie MA, Zeddies DG, Sisneros JA. Recommendations on bioacoustical metrics relevant for regulating exposure to anthropogenic underwater sounda). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2508-2526. [PMID: 39400268 DOI: 10.1121/10.0028586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024]
Abstract
Metrics to be used in noise impact assessment must integrate the physical acoustic characteristics of the sound field with relevant biology of animals. Several metrics have been established to determine and regulate underwater noise exposure to aquatic fauna. However, recent advances in understanding cause-effect relationships indicate that additional metrics are needed to fully describe and quantify the impact of sound fields on aquatic fauna. Existing regulations have primarily focused on marine mammals and are based on the dichotomy of sound types as being either impulsive or non-impulsive. This classification of sound types, however, is overly simplistic and insufficient for adequate impact assessments of sound on animals. It is recommended that the definition of impulsiveness be refined by incorporating kurtosis as an additional parameter and applying an appropriate conversion factor. Auditory frequency weighting functions, which scale the importance of particular sound frequencies to account for an animal's sensitivity to those frequencies, should be applied. Minimum phase filters are recommended for calculating weighted sound pressure. Temporal observation windows should be reported as signal duration influences its detectability by animals. Acknowledging that auditory integration time differs across species and is frequency dependent, standardized temporal integration windows are proposed for various signal types.
Collapse
Affiliation(s)
- Klaus Lucke
- JASCO Applied Sciences, Droxford, SO32 3PW, United Kingdom
- German Environment Agency, Dessau-Roßlau, 06844, Germany
| | | | | | | | | | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
3
|
Gransier R, Kastelein RA. Similar susceptibility to temporary hearing threshold shifts despite different audiograms in harbor porpoises and harbor seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:396-404. [PMID: 38240666 DOI: 10.1121/10.0024343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
When they are exposed to loud fatiguing sounds in the oceans, marine mammals are susceptible to hearing damage in the form of temporary hearing threshold shifts (TTSs) or permanent hearing threshold shifts. We compared the level-dependent and frequency-dependent susceptibility to TTSs in harbor seals and harbor porpoises, species with different hearing sensitivities in the low- and high-frequency regions. Both species were exposed to 100% duty cycle one-sixth-octave noise bands at frequencies that covered their entire hearing range. In the case of the 6.5 kHz exposure for the harbor seals, a pure tone (continuous wave) was used. TTS was quantified as a function of sound pressure level (SPL) half an octave above the center frequency of the fatiguing sound. The species have different audiograms, but their frequency-specific susceptibility to TTS was more similar. The hearing frequency range in which both species were most susceptible to TTS was 22.5-50 kHz. Furthermore, the frequency ranges were characterized by having similar critical levels (defined as the SPL of the fatiguing sound above which the magnitude of TTS induced as a function of SPL increases more strongly). This standardized between-species comparison indicates that the audiogram is not a good predictor of frequency-dependent susceptibility to TTS.
Collapse
Affiliation(s)
- Robin Gransier
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, KU Leuven, Herestraat 49, Box 721, 3000 Leuven, Belgium
| | - Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3842 CC Harderwijk, The Netherlands
| |
Collapse
|
4
|
Mulsow J, Schlundt CE, Strahan MG, Finneran JJ. Bottlenose dolphin temporary threshold shift following exposure to 10-ms impulses centered at 8 kHza). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1287-1298. [PMID: 37646472 DOI: 10.1121/10.0020726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Studies of marine mammal temporary threshold shift (TTS) from impulsive sources have typically produced small TTS magnitudes, likely due to much of the energy in tested sources lying below the subjects' range of best hearing. In this study of dolphin TTS, 10-ms impulses centered at 8 kHz were used with the goal of inducing larger magnitudes of TTS and assessing the time course of hearing recovery. Most impulses had sound pressure levels of 175-180 dB re 1 μPa, while inter-pulse interval (IPI) and total number of impulses were varied. Dolphin TTS increased with increasing cumulative sound exposure level (SEL) and there was no apparent effect of IPI for exposures with equal SEL. The lowest TTS onset was 184 dB re 1 μPa2s, although early exposures with 20-s IPI and cumulative SEL of 182-183 dB re 1 μPa2s produced respective TTS of 35 and 16 dB in two dolphins. Continued testing with higher SELs up to 191 dB re 1 μPa2s in one of those dolphins, however, failed to result in TTS greater than 14 dB. Recovery rates were similar to those from other studies with non-impulsive sources and depended on the magnitude of the initial TTS.
Collapse
Affiliation(s)
- Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - Carolyn E Schlundt
- Peraton Corporation, 4045 Hancock Street, Suite 210, San Diego, California 92110, USA
| | - Madelyn G Strahan
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
5
|
Huang LF, Xu XM, Tao Y, Wang RX, Zhou YL, Xiao FG. Controllable acoustic deterrent based on the warning signals generated by nonel detonators. MARINE POLLUTION BULLETIN 2023; 188:114646. [PMID: 36709602 DOI: 10.1016/j.marpolbul.2023.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Acoustic deterrents are a practical strategy to mitigate the impact of underwater noise on marine mammals. However, their safety and effectiveness are still debatable. This study proposes a controllable acoustic deterrence method to protect marine mammals threatened by underwater blasting noise. The method creates strong-randomness warning signals using nonel detonators and establishes an escape time for animals protected. Combining the BELLHOP ray-based acoustic model with the marine environmental parameters and animals' auditory characteristics, we built a prediction model to establish a link between the acoustic fields and the adjustable source parameters, and provide a Risk zone and Deterrent zone for animals. The simulation and experimental results demonstrated that the root mean squared error between the simulated and measured sound pressure spectral density levels did not exceed 4.5 dB and the coefficient of determination remained at approximately 0.8, indicating that the new deterrent is an effective method with good controllable performances.
Collapse
Affiliation(s)
- Long-Fei Huang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Xiao-Mei Xu
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China.
| | - Yi Tao
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Rong-Xin Wang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Yang-Liang Zhou
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Fang-Gui Xiao
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| |
Collapse
|
6
|
von Benda-Beckmann AM, Ketten DR, Lam FPA, de Jong CAF, Müller RAJ, Kastelein RA. Evaluation of kurtosis-corrected sound exposure level as a metric for predicting onset of hearing threshold shifts in harbor porpoises (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:295. [PMID: 35931542 DOI: 10.1121/10.0012364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Application of a kurtosis correction to frequency-weighted sound exposure level (SEL) improved predictions of risk of hearing damage in humans and terrestrial mammals for sound exposures with different degrees of impulsiveness. To assess whether kurtosis corrections may lead to improved predictions for marine mammals, corrections were applied to temporary threshold shift (TTS) growth measurements for harbor porpoises (Phocoena phocoena) exposed to different sounds. Kurtosis-corrected frequency-weighted SEL predicted accurately the growth of low levels of TTS (TTS1-4 < 10 dB) for intermittent sounds with short (1-13 s) silence intervals but was not consistent with frequency-weighted SEL data for continuous sound exposures.
Collapse
Affiliation(s)
| | - D R Ketten
- The Hearing Research Center, Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02155, USA
| | - F P A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - C A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - R A J Müller
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - R A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
7
|
Martin SB, Lucke K, Barclay DR. Techniques for distinguishing between impulsive and non-impulsive sound in the context of regulating sound exposure for marine mammals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2159. [PMID: 32359266 DOI: 10.1121/10.0000971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Regulations designed to mitigate the effects of man-made sounds on marine mammal hearing specify maximum daily sound exposure levels. The limits are lower for impulsive than non-impulsive sounds. The regulations do not indicate how to quantify impulsiveness; instead sounds are grouped by properties at the source. To address this gap, three metrics of impulsiveness (kurtosis, crest factor, and the Harris impulse factor) were compared using values from random noise and real-world ocean sounds. Kurtosis is recommended for quantifying impulsiveness. Kurtosis greater than 40 indicates a sound is fully impulsive. Only sounds above the effective quiet threshold (EQT) are considered intense enough to accumulate over time and cause hearing injury. A functional definition for EQT is proposed: the auditory frequency-weighted sound pressure level (SPL) that could accumulate to cause temporary threshold shift from non-impulsive sound as described in Southall, Finneran, Reichmuth, Nachtigall, Ketten, Bowles, Ellison, Nowacek, and Tyack [(2019). Aquat. Mamm. 45, 125-232]. It is known that impulsive sounds change to non-impulsive as these sounds propagate. This paper shows that this is not relevant for assessing hearing injury because sounds retain impulsive character when SPLs are above EQT. Sounds from vessels are normally considered non-impulsive; however, 66% of vessels analyzed were impulsive when weighted for very-high frequency mammal hearing.
Collapse
Affiliation(s)
- S Bruce Martin
- JASCO Applied Sciences Canada, Suite 202, 32 Troop Avenue, Dartmouth, Nova Scotia, B3B 1Z1, Canada
| | - Klaus Lucke
- JASCO Applied Sciences, Australia, 1/14 Hook Street, Capalaba, Queensland 4157, Australia
| | - David R Barclay
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
8
|
Schaffeld T, Schnitzler JG, Ruser A, Woelfing B, Baltzer J, Siebert U. Effects of multiple exposures to pile driving noise on harbor porpoise hearing during simulated flights-An evaluation tool. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:685. [PMID: 32113263 DOI: 10.1121/10.0000595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Exploitation of renewable energy from offshore wind farms is substantially increasing worldwide. The majority of wind turbines are bottom mounted, causing high levels of impulsive noise during construction. To prevent temporary threshold shifts (TTS) in harbor porpoise hearing, single strike sound exposure levels (SELSS) are restricted in Germany by law to a maximum of 160 dB re 1 μPa2s at a distance of 750 m from the sound source. Underwater recordings of pile driving strikes, recorded during the construction of an offshore wind farm in the German North Sea, were analyzed. Using a simulation approach, it was tested whether a TTS can still be induced under current protective regulations by multiple exposures. The evaluation tool presented here can be easily adjusted for different sound propagation, acoustic signals, or species and enables one to calculate a minimum deterrence distance. Based on this simulation approach, only the combination of SELSS regulation, previous deterrence, and soft start allow harbor porpoises to avoid a TTS from multiple exposures. However, deterrence efficiency has to be monitored.
Collapse
Affiliation(s)
- Tobias Schaffeld
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Joseph G Schnitzler
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Benno Woelfing
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Johannes Baltzer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| |
Collapse
|
9
|
Schaffeld T, Ruser A, Woelfing B, Baltzer J, Kristensen JH, Larsson J, Schnitzler JG, Siebert U. The use of seal scarers as a protective mitigation measure can induce hearing impairment in harbour porpoises. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4288. [PMID: 31893707 DOI: 10.1121/1.5135303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Acoustic deterrent devices (ADDs) are used to deter seals from aquacultures but exposure of harbour porpoises (Phocoena phocoena) occurs as a side-effect. At construction sites, by contrast, ADDs are used to deter harbour porpoises from the zone in which pile driving noise can induce temporary threshold shifts (TTSs). ADDs emit such high pressure levels that there is concern that ADDs themselves may induce a TTS. A harbour porpoise in human care was exposed to an artificial ADD signal with a peak frequency of 14 kHz. A significant TTS was found, measured by auditory evoked potentials, with an onset of 142 dB re 1 μPa2s at 20 kHz and 147 dB re 1 μPa2s at 28 kHz. The authors therefore strongly recommend to gradually increase and down regulate source levels of ADDs to the desired deterrence range. However, further research is needed to develop a reliable relationship between received levels and deterrence.
Collapse
Affiliation(s)
- Tobias Schaffeld
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Benno Woelfing
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Johannes Baltzer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | | | | | - Joseph G Schnitzler
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| |
Collapse
|
10
|
Kastelein RA, Helder-Hoek L, Kommeren A, Covi J, Gransier R. Effect of pile-driving sounds on harbor seal (Phoca vitulina) hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3583. [PMID: 29960448 DOI: 10.1121/1.5040493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Seals exposed to intense sounds may suffer hearing loss. After exposure to playbacks of broadband pile-driving sounds, the temporary hearing threshold shift (TTS) of two harbor seals was quantified at 4 and 8 kHz (frequencies of the highest TTS) with a psychoacoustic technique. The pile-driving sounds had: a 127 ms pulse duration, 2760 strikes per h, a 1.3 s inter-pulse interval, a ∼9.5% duty cycle, and an average received single-strike unweighted sound exposure level (SELss) of 151 dB re 1 μPa2s. Exposure durations were 180 and 360 min [cumulative sound exposure level (SELcum): 190 and 193 dB re 1 μPa2s]. Control sessions were conducted under low ambient noise. TTS only occurred after 360 min exposures (mean TTS: seal 02, 1-4 min after sound stopped: 3.9 dB at 4 kHz and 2.4 dB at 8 kHz; seal 01, 12-16 min after sound stopped: 2.8 dB at 4 kHz and 2.6 dB at 8 kHz). Hearing recovered within 60 min post-exposure. The TTSs were small, due to the small amount of sound energy to which the seals were exposed. Biological TTS onset SELcum for the pile-driving sounds used in this study is around 192 dB re 1 μPa2s (for mean received SELss of 151 dB re 1 μPa and a duty cycle of ∼9.5%).
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Aimée Kommeren
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
11
|
Kastelein RA, Helder-Hoek L, Van de Voorde S, von Benda-Beckmann AM, Lam FPA, Jansen E, de Jong CAF, Ainslie MA. Temporary hearing threshold shift in a harbor porpoise (Phocoena phocoena) after exposure to multiple airgun sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:2430. [PMID: 29092610 DOI: 10.1121/1.5007720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In seismic surveys, reflected sounds from airguns are used under water to detect gas and oil below the sea floor. The airguns produce broadband high-amplitude impulsive sounds, which may cause temporary or permanent threshold shifts (TTS or PTS) in cetaceans. The magnitude of the threshold shifts and the hearing frequencies at which they occur depend on factors such as the received cumulative sound exposure level (SELcum), the number of exposures, and the frequency content of the sounds. To quantify TTS caused by airgun exposure and the subsequent hearing recovery, the hearing of a harbor porpoise was tested by means of a psychophysical technique. TTS was observed after exposure to 10 and 20 consecutive shots fired from two airguns simultaneously (SELcum: 188 and 191 dB re 1 μPa2s) with mean shot intervals of around 17 s. Although most of the airgun sounds' energy was below 1 kHz, statistically significant initial TTS1-4 (1-4 min after sound exposure stopped) of ∼4.4 dB occurred only at the hearing frequency 4 kHz, and not at lower hearing frequencies tested (0.5, 1, and 2 kHz). Recovery occurred within 12 min post-exposure. The study indicates that frequency-weighted SELcum is a good predictor for the low levels of TTS observed.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Shirley Van de Voorde
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | | | - Frans-Peter A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Erwin Jansen
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Christ A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Michael A Ainslie
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| |
Collapse
|
12
|
Kastelein RA, Helder-Hoek L, Van de Voorde S. Effects of exposure to sonar playback sounds (3.5 - 4.1 kHz) on harbor porpoise (Phocoena phocoena) hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1965. [PMID: 29092538 DOI: 10.1121/1.5005613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Safety criteria for naval sonar sounds are needed to protect harbor porpoise hearing. Two porpoises were exposed to sequences of AN/SQS-53C sonar playback sounds (3.5-4.1 kHz, without significant harmonics), at a mean received sound pressure level of 142 dB re 1 μPa, with a duty cycle of 96% (almost continuous). Behavioral hearing thresholds at 4 and 5.7 kHz were determined before and after exposure to the fatiguing sound, in order to quantify temporary threshold shifts (TTSs) and hearing recovery. Control sessions were also conducted. Significant mean initial TTS1-4 of 5.2 dB at 4 kHz and 3.1 dB at 5.7 kHz occurred after 30 min exposures (mean received cumulative sound exposure level, SELcum: 175 dB re 1 μPa2s). Hearing thresholds returned to pre-exposure levels within 12 min. Significant mean initial TTS1-4 of 5.5 dB at 4 kHz occurred after 60 min exposures (SELcum: 178 dB re 1 μPa2s). Hearing recovered within 60 min. The SELcum for AN/SQS-53C sonar sounds required to induce 6 dB of TTS 4 min after exposure (the definition of TTS onset) is expected to be between 175 and 180 dB re 1 μPa2s.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, the Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, the Netherlands
| | | |
Collapse
|
13
|
Houser DS, Yost W, Burkard R, Finneran JJ, Reichmuth C, Mulsow J. A review of the history, development and application of auditory weighting functions in humans and marine mammals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1371. [PMID: 28372133 DOI: 10.1121/1.4976086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This document reviews the history, development, and use of auditory weighting functions for noise impact assessment in humans and marine mammals. Advances from the modern era of electroacoustics, psychophysical studies of loudness, and other related hearing studies are reviewed with respect to the development and application of human auditory weighting functions, particularly A-weighting. The use of auditory weighting functions to assess the effects of environmental noise on humans-such as hearing damage-risk criteria-are presented, as well as lower-level effects such as annoyance and masking. The article also reviews marine mammal auditory weighting functions, the development of which has been fundamentally directed by the objective of predicting and preventing noise-induced hearing loss. Compared to the development of human auditory weighting functions, the development of marine mammal auditory weighting functions have faced additional challenges, including a large number of species that must be considered, a lack of audiometric information on most species, and small sample sizes for nearly all species for which auditory data are available. The review concludes with research recommendations to address data gaps and assumptions underlying marine mammal auditory weighting function design and application.
Collapse
Affiliation(s)
- Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - William Yost
- Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287, USA
| | - Robert Burkard
- Department of Rehabilitation Science, University at Buffalo, 510 Kimball Tower, Buffalo, New York 14214, USA
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| |
Collapse
|
14
|
Nachtigall PE, Supin AY, Pacini AF, Kastelein RA. Conditioned hearing sensitivity change in the harbor porpoise (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:960. [PMID: 27586728 DOI: 10.1121/1.4960783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hearing sensitivity, during trials in which a warning sound preceding a loud sound, was investigated in two harbor porpoises (Phocoena phocoena). Sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. When a hearing test/warning stimulus, with a frequency of either 45 or 32 kHz, preceded a loud 32 kHz tone with a sound pressure level of 152 dB re 1 μPa root mean square, lasting 2 s yielding an sound exposure level (SEL) of 155 dB re 1 μPa(2)s, pooled hearing thresholds measured just before the loud sound increased relative to baseline thresholds. During two experimental sessions the threshold increased up to 17 dB for the test frequency of 45 kHz and up to 11 dB for the test frequency of 32 kHz. An extinction test revealed very rapid threshold recovery within the first two experimental sessions. The SEL producing the hearing dampening effect was low compared to previous other odontocete hearing change efforts with each individual trial equal to 155 dB re 1 μPa(2) but the cumulative SEL for each subsession may have been as high as 168 dB re 1 μPa(2). Interpretations of conditioned hearing sensation change and possible change due to temporary threshold shifts are considered for the harbor porpoise and discussed in the light of potential mechanisms and echolocation.
Collapse
Affiliation(s)
- Paul E Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Aude F Pacini
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
15
|
Kastelein RA, Helder-Hoek L, Covi J, Gransier R. Pile driving playback sounds and temporary threshold shift in harbor porpoises (Phocoena phocoena): Effect of exposure duration. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:2842. [PMID: 27250176 DOI: 10.1121/1.4948571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High intensity underwater sounds may cause temporary hearing threshold shifts (TTSs) in harbor porpoises, the magnitude of which may depend on the exposure duration. After exposure to playbacks of pile driving sounds, TTSs in two porpoises were quantified at 4 and 8 kHz with a psychophysical technique. At 8 kHz, the pile driving sounds caused the highest TTS. Pile driving sounds had the following: pulse duration 124 ms, rate 2760 strikes/h, inter-pulse interval 1.3 s, duty cycle ∼9.5%, average received single-strike unweighted broadband sound exposure level (SELss) 145 dB re 1 μPa(2)s, exposure duration range 15-360 min (cumulative SEL range: 173-187 dB re 1 μPa(2)s). Control sessions were also carried out. Mean TTS (1-4 min after sound exposure stopped in one porpoise, and 12-16 min in the other animal) increased from 0 dB after 15 min exposure to 5 dB after 360 min exposure. Recovery occurred within 60 min post-exposure. For the signal duration, sound pressure level (SPL), and duty cycle used, the TTS onset SELcum is estimated to be around 175 dB re 1 μPa(2)s. The small increase in TTS between 15 and 360 min exposures is due to the small amount of sound energy per unit of time to which the porpoises were exposed [average (over time) broadband SPL ∼144 dB re 1 μPa].
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
16
|
Nachtigall PE, Supin AY, Estaban JA, Pacini AF. Learning and extinction of conditioned hearing sensation change in the beluga whale (Delphinapterus leucas). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:105-13. [DOI: 10.1007/s00359-015-1056-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
17
|
Finneran JJ. Noise-induced hearing loss in marine mammals: A review of temporary threshold shift studies from 1996 to 2015. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:1702-1726. [PMID: 26428808 DOI: 10.1121/1.4927418] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
One of the most widely recognized effects of intense noise exposure is a noise-induced threshold shift—an elevation of hearing thresholds following cessation of the noise. Over the past twenty years, as concerns over the potential effects of human-generated noise on marine mammals have increased, a number of studies have been conducted to investigate noise-induced threshold shift phenomena in marine mammals. The experiments have focused on measuring temporary threshold shift (TTS)—a noise-induced threshold shift that fully recovers over time—in marine mammals exposed to intense tones, band-limited noise, and underwater impulses with various sound pressure levels, frequencies, durations, and temporal patterns. In this review, the methods employed by the groups conducting marine mammal TTS experiments are described and the relationships between the experimental conditions, the noise exposure parameters, and the observed TTS are summarized. An attempt has been made to synthesize the major findings across experiments to provide the current state of knowledge for the effects of noise on marine mammal hearing.
Collapse
Affiliation(s)
- James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
18
|
Popov VV, Nechaev DI, Sysueva EV, Rozhnov VV, Supin AY. Spectrum pattern resolution after noise exposure in a beluga whale, Delphinapterus leucas: Evoked potential study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:377-388. [PMID: 26233037 DOI: 10.1121/1.4923157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Temporary threshold shift (TTS) and the discrimination of spectrum patterns after fatiguing noise exposure (170 dB re 1 μPa, 10 min duration) was investigated in a beluga whale, Delphinapterus leucas, using the evoked potential technique. Thresholds were measured using rhythmic (1000/s) pip trains of varying levels and recording the rhythmic evoked responses. Discrimination of spectrum patterns was investigated using rippled-spectrum test stimuli of various levels and ripple densities, recording the rhythmic evoked responses to ripple phase reversals. Before noise exposure, the greatest responses to rippled-spectrum probes were evoked by stimuli with a low ripple density with a decrease in the response magnitude occurring with an increasing ripple density. After noise exposure, both a TTS and a reduction of the responses to rippled-spectrum probes appeared and recovered in parallel. The reduction of the responses to rippled-spectrum probes was maximal for high-magnitude responses at low ripple densities and was negligible for low-magnitude responses at high ripple densities. It is hypothesized that the impacts of fatiguing sounds are not limited by increased thresholds and decreased sensitivity results in reduced ability to discriminate fine spectral content with the greatest impact on the discrimination of spectrum content that may carry the most obvious information about stimulus properties.
Collapse
Affiliation(s)
- Vladimir V Popov
- Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia
| | - Dmitry I Nechaev
- Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia
| | - Evgenia V Sysueva
- Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia
| | - Viatcheslav V Rozhnov
- Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia
| | - Alexander Ya Supin
- Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia
| |
Collapse
|
19
|
Finneran JJ, Schlundt CE, Branstetter BK, Trickey JS, Bowman V, Jenkins K. Effects of multiple impulses from a seismic air gun on bottlenose dolphin hearing and behavior. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1634-1646. [PMID: 25920816 DOI: 10.1121/1.4916591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To investigate the auditory effects of multiple underwater impulses, hearing thresholds were measured in three bottlenose dolphins before and after exposure to 10 impulses produced by a seismic air gun. Thresholds were measured at multiple frequencies using both psychophysical and electrophysiological (auditory evoked potential) methods. Exposures began at relatively low levels and gradually increased over a period of several months. The highest exposures featured peak sound pressure levels from 196 to 210 dB re 1 μPa, peak-peak sound pressure levels of 200-212 dB re 1 μPa, and cumulative (unweighted) sound exposure levels from 193 to 195 dB re 1 μPa(2)s. At the cessation of the study, no significant increases were observed in psychophysical thresholds; however, a small (9 dB) shift in mean auditory evoked potential thresholds, accompanied by a suppression of the evoked potential amplitude function, was seen in one subject at 8 kHz. At the highest exposure condition, two of the dolphins also exhibited behavioral reactions indicating that they were capable of anticipating and potentially mitigating the effects of impulsive sounds presented at fixed time intervals.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152
| | | | - Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Jennifer S Trickey
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Victoria Bowman
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Keith Jenkins
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152
| |
Collapse
|
20
|
Kastelein RA, Gransier R, Schop J, Hoek L. Effects of exposure to intermittent and continuous 6-7 kHz sonar sweeps on harbor porpoise (Phocoena phocoena) hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1623-1633. [PMID: 25920815 DOI: 10.1121/1.4916590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Safety criteria for mid-frequency naval sonar sounds are needed to protect harbor porpoise hearing. A porpoise was exposed to sequences of one-second 6-7 kHz sonar down-sweeps, with 10-200 sweeps in a sequence, at an average received sound pressure level (SPLav.re.) of 166 dB re 1 μPa, with duty cycles of 10% (intermittent sounds) and 100% (continuous). Behavioral hearing thresholds at 9.2 kHz were determined before and after exposure to the fatiguing noise, to quantify temporary hearing threshold shifts (TTS1-4 min) and recovery. Significant TTS1-4 min occurred after 10-25 sweeps when the duty cycle was 10% (cumulative sound exposure level, SELcum: ∼178 dB re 1 μPa(2)s). For the same SELcum, the TTS1-4 min was greater for exposures with 100% duty cycle. The difference in TTS between the two duty cycle exposures increased as the number of sweeps in the exposure sequences increased. Therefore, to predict TTS and permanent threshold shift, not only SELcum needs to be known, but also the duty cycle or equivalent sound pressure level (Leq). It appears that the injury criterion for non-pulses proposed by Southall, Bowles, Ellison, Finneran, Gentry, Greene, Kastak, Ketten, Miller, Nachtigall, Richardson, Thomas, and Tyack [(2007). Aquat. Mamm. 33, 411-521] for cetaceans echolocating at high frequency (SEL 215 dB re 1 μPa(2)s) is too high for the harbor porpoise.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jessica Schop
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
21
|
Nachtigall PE, Supin AY. Conditioned frequency-dependent hearing sensitivity reduction in the bottlenose dolphin (Tursiops truncatus). ACTA ACUST UNITED AC 2015; 218:999-1005. [PMID: 25657210 DOI: 10.1242/jeb.114066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022]
Abstract
The frequency specificity of conditioned dampening of hearing, when a loud sound is preceded by a warning sound, was investigated in a bottlenose dolphin. The loud sounds were 5 s tones of 16, 22.5 or 32 kHz, sound pressure level of 165 dB root mean square (RMS) re. 1 µPa. Hearing sensitivity was tested at the same three frequencies. Hearing sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. The test sound stimuli served also as warning sounds. The durations of the warning sounds were varied randomly to avoid locking a conditioning effect to the timing immediately before the loud sound. Hearing thresholds before the loud sound increased, relative to the baseline, at test frequencies equal to or higher than the loud sound frequency. The highest threshold increase appeared at test frequencies of 0.5 octaves above the loud sound frequencies.
Collapse
Affiliation(s)
- Paul E Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1106, Kailua, HI 96734, USA
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| |
Collapse
|
22
|
Kastelein RA, Gransier R, Marijt MAT, Hoek L. Hearing frequency thresholds of harbor porpoises (Phocoena phocoena) temporarily affected by played back offshore pile driving sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:556-564. [PMID: 25697990 DOI: 10.1121/1.4906261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Harbor porpoises may suffer hearing loss when exposed to intense sounds. After exposure to playbacks of broadband pile driving sounds for 60 min, the temporary hearing threshold shift (TTS) of a porpoise was quantified at 0.5, 1, 2, 4, 8, 16, 32, 63, and 125 kHz with a psychoacoustic technique. Details of the pile driving sounds were as follows: pulse duration 124 ms, rate 2760 strikes/h, inter-pulse interval 1.3 s, average received single strike unweighted sound exposure level (SEL) 146 dB re 1 μPa(2) s (cumulative SEL: 180 dB re 1 μPa(2) s). Statistically significant TTS only occurred at 4 and 8 kHz; mean TTS (1-4 min. after sound exposure stopped) was 2.3 dB at 4 kHz, and 3.6 dB at 8 kHz; recovery occurred within 48 min. This study shows that exposure to multiple impulsive sounds with most of their energy in the low frequencies can cause reduced hearing at higher frequencies in harbor porpoises. The porpoise's hearing threshold for the frequency in the range of its echolocation signals was not affected by the pile driving playback sounds.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Michelle A T Marijt
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
23
|
Kastelein RA, Hoek L, Gransier R, Rambags M, Claeys N. Effect of level, duration, and inter-pulse interval of 1-2 kHz sonar signal exposures on harbor porpoise hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:412-422. [PMID: 24993225 DOI: 10.1121/1.4883596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria, a porpoise was exposed to sequences consisting of series of 1-s, 1-2 kHz sonar down-sweeps without harmonics (as fatiguing noise) at various combinations of average received sound pressure levels (SPLs; 144-179 dB re 1 μPa), exposure durations (1.9-240 min), and duty cycles (5%-100%). Hearing thresholds were determined for a narrow-band frequency-swept sine wave centered at 1.5 kHz before exposure to the fatiguing noise, and at 1-4, 4-8, 8-12, 48, 96, 144, and 1400 min after exposure, to quantify temporary threshold shifts (TTSs) and recovery of hearing. Results show that the inter-pulse interval of the fatiguing noise is an important parameter in determining the magnitude of noise-induced TTS. For the reported range of exposure combinations (duration and SPL), the energy of the exposure (i.e., cumulative sound exposure level; SELcum) can be used to predict the induced TTS, if the inter-pulse interval is known. Exposures with equal SELcum but with different inter-pulse intervals do not result in the same induced TTS.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Martijn Rambags
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Naomi Claeys
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
24
|
Nachtigall PE, Supin AY. Conditioned hearing sensitivity reduction in a bottlenose dolphin (Tursiops truncatus). J Exp Biol 2014; 217:2806-13. [DOI: 10.1242/jeb.104091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The conditioned change in hearing sensitivity during a warning sound preceding a loud sound was investigated in the bottlenose dolphin. Hearing sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. When the test/warning stimulus with a frequency of 22.5 or 32 kHz preceded the loud sound with a frequency of 22.5 kHz and a sound pressure level of 165 dB re 1 μPa rms, hearing thresholds before the loud sound increased relative to the baseline. The threshold increased up to 15 dB. In order to further investigate whether the observed threshold increase was due to conditioning, the dependence of the effect on warning duration and inter-trial interval was investigated. The duration of the warning substantially influenced the effect. Shorter warnings resulted in deeper suppression of responses and higher threshold increases than longer warnings. Alternatively, the effect was nearly independent of the duration of the inter-trial interval, i.e. independent of the delay from the loud sound to the test/warning sound in the subsequent trial. These data are considered as evidence that the observed hearing threshold increases were not a result of the unconditioned effect of the loud sound and were instead a manifestation of a conditioned dampening of hearing when the subject anticipated the quick appearance of a loud sound in the bottlenose dolphin in the same way as previously demonstrated in the false killer whale.
Collapse
|
25
|
Popov VV, Supin AY, Rozhnov VV, Nechaev DI, Sysuyeva EV, Klishin VO, Pletenko MG, Tarakanov MB. Hearing threshold shifts and recovery after noise exposure in beluga whales, Delphinapterus leucas. ACTA ACUST UNITED AC 2013; 216:1587-96. [PMID: 23596281 DOI: 10.1242/jeb.078345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Temporary threshold shift (TTS) after loud noise exposure was investigated in a male and a female beluga whale (Delphinapterus leucas). The thresholds were evaluated using the evoked-potential technique, which allowed for threshold tracing with a resolution of ~1 min. The fatiguing noise had a 0.5 octave bandwidth, with center frequencies ranging from 11.2 to 90 kHz, a level of 165 dB re. 1 μPa and exposure durations from 1 to 30 min. The effects of the noise were tested at probe frequencies ranging from -0.5 to +1.5 octaves relative to the noise center frequency. The effect was estimated in terms of both immediate (1.5 min) post-exposure TTS and recovery duration. The highest TTS with the longest recovery duration was produced by noises of lower frequencies (11.2 and 22.5 kHz) and appeared at a test frequency of +0.5 octave. At higher noise frequencies (45 and 90 kHz), the TTS decreased. The TTS effect gradually increased with prolonged exposures ranging from 1 to 30 min. There was a considerable TTS difference between the two subjects.
Collapse
Affiliation(s)
- Vladimir V Popov
- Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow 119071, Russia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kastelein RA, Gransier R, Hoek L. Comparative temporary threshold shifts in a harbor porpoise and harbor seal, and severe shift in a seal. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:13-16. [PMID: 23862780 DOI: 10.1121/1.4808078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Anthropogenic noise may cause temporary hearing threshold shifts (TTSs) in marine mammals. Tests with identical methods show that harbor porpoises are more susceptible to TTS induced by octave-band white noise (OBN) centered around 4 kHz than harbor seals, although their unmasked (basic) hearing thresholds for that frequency are similar. A harbor seal was exposed for 1 h to an OBN with a very high sound pressure level (SPL), 22-30 dB above levels causing TTS onset. This elicited 44 dB TTS; hearing recovered within 4 days. Thus, for this signal and this single exposure, permanent threshold shift requires levels at least 22 dB above TTS onset levels. The severe TTS in the seal suggests that the critical level (above which TTS increases rapidly with increasing SPL) is between 150 and 160 dB re 1 μPa for a 60 min exposure to OBN centered at 4 kHz. In guidelines on TTS in marine mammals produced by policy makers in many countries, TTS is assumed to follow the equal energy hypothesis, so that when the sound exposure levels of fatiguing sounds are equal, the same TTS is predicted to be induced. However, like previous studies, the present study calls this model into question.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands.
| | | | | |
Collapse
|
27
|
Finneran JJ, Schlundt CE. Effects of fatiguing tone frequency on temporary threshold shift in bottlenose dolphins (Tursiops truncatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1819-1826. [PMID: 23464050 DOI: 10.1121/1.4776211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Temporary threshold shift (TTS) was measured in two bottlenose dolphins (Tursiops truncatus) after exposure to 16-s tones between 3 and 80 kHz to examine the effects of exposure frequency on the onset, growth, and recovery of TTS. Hearing thresholds were measured approximately one-half octave above the exposure frequency using a behavioral response paradigm featuring an adaptive staircase procedure. Results show frequency-specific differences in TTS onset and growth, and suggest increased susceptibility to auditory fatigue for frequencies between approximately 10 and 30 kHz. Between 3 and 56 kHz, the relationship between exposure frequency and the exposure level required to induce 6 dB of TTS, measured 4 min post-exposure, agrees closely with an auditory weighting function for bottlenose dolphins developed from equal loudness contours [Finneran and Schlundt. (2011). J. Acoust. Soc. Am. 130, 3124-3136].
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA.
| | | |
Collapse
|
28
|
Kastelein RA, Gransier R, Hoek L, Olthuis J. Temporary threshold shifts and recovery in a harbor porpoise (Phocoena phocoena) after octave-band noise at 4 kHz. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:3525-3537. [PMID: 23145632 DOI: 10.1121/1.4757641] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Safety criteria for underwater sound produced during offshore pile driving are needed to protect marine mammals. A harbor porpoise was exposed to fatiguing noise at 18 sound pressure level (SPL) and duration combinations. Its temporary hearing threshold shift (TTS) and hearing recovery were quantified with a psychoacoustic technique. Octave-band white noise centered at 4 kHz was the fatiguing stimulus at three mean received SPLs (124, 136, and 148 dB re 1 μPa) and at six durations (7.5, 15, 30, 60, 120, and 240 min). Approximate received sound exposure levels (SELs) varied between 151 and 190 dB re 1 μPa(2) s. Hearing thresholds were determined for a narrow-band frequency-swept sine wave (3.9-4.1 kHz; 1 s) before exposure to the fatiguing noise, and at 1-4, 4-8, 8-12, 48, and 96 min after exposure. The lowest SEL (151 dB re 1 μPa(2) s) which caused a significant TTS(1-4) was due to exposure to an SPL of 124 dB re 1 μPa for 7.5 min. The maximum TTS(1-4), induced after a 240 min exposure to 148 dB re 1 μPa, was around 15 dB at a SEL of 190 dB re 1 μPa(2) s. Recovery time following TTS varied between 4 min and under 96 min, depending on the exposure level, duration, and the TTS induced.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Finneran JJ. Auditory effects of underwater noise in odontocetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 730:197-202. [PMID: 22278481 DOI: 10.1007/978-1-4419-7311-5_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James J Finneran
- US Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, San Diego, CA 92152, USA.
| |
Collapse
|
30
|
Lucke K, Lepper PA, Blanchet MA, Siebert U. The use of an air bubble curtain to reduce the received sound levels for harbor porpoises (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:3406-3412. [PMID: 22088014 DOI: 10.1121/1.3626123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In December 2005 construction work was started to replace a harbor wall in Kerteminde harbor, Denmark. A total of 175 wooden piles were piled into the ground at the waters edge over a period of 3 months. During the same period three harbor porpoises were housed in a marine mammal facility on the opposite side of the harbor. All animals showed strong avoidance reactions after the start of the piling activities. As a measure to reduce the sound exposure for the animals an air bubble curtain was constructed and operated in a direct path between the piling site and the opening of the animals' semi-natural pool. The sound attenuation effect achieved with this system was determined by quantitative comparison of pile driving impulses simultaneously measured in front of and behind the active air bubble curtain. Mean levels of sound attenuation over a sequence of 95 consecutive pile strikes were 14 dB (standard deviation (s.d.) 3.4 dB) for peak to peak values and 13 dB (s.d. 2.5 dB) for SEL values. As soon as the air bubble curtain was installed and operated, no further avoidance reactions of the animals to the piling activities were apparent.
Collapse
Affiliation(s)
- Klaus Lucke
- Forschungs- und Technologiezentrum Westküste, Christian-Albrechts-Universität zu Kiel, 25761 Büsum, Germany.
| | | | | | | |
Collapse
|
31
|
Popov VV, Klishin VO, Nechaev DI, Pletenko MG, Rozhnov VV, Supin AY, Sysueva EV, Tarakanov MB. Influence of acoustic noises on the white whale hearing thresholds. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2011; 440:332-334. [PMID: 22134825 DOI: 10.1134/s001249661105019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Indexed: 05/31/2023]
Affiliation(s)
- V V Popov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Popov VV, Supin AY, Wang D, Wang K, Dong L, Wang S. Noise-induced temporary threshold shift and recovery in Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:574-584. [PMID: 21786923 DOI: 10.1121/1.3596470] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis, the effects of fatiguing noise on hearing thresholds at frequencies of 32, 45, 64, and 128 kHz were investigated. The noise parameters were: 0.5-oct bandwidth, -1 to +0.5 oct relative to the test frequency, 150 dB re 1 μPa (140-160 dB re 1 μPa in one measurement series), with 1-30 min exposure time. Thresholds were evaluated using the evoked-potential technique allowing the tracing of threshold variations with a temporal resolution better than 1 min. The most effective fatiguing noise was centered at 0.5 octave below the test frequency. The temporary threshold shift (TTS) depended on the frequencies of the fatiguing noise and test signal: The lower the frequencies, the bigger the noise effect. The time-to-level trade of the noise effect was incomplete: the change of noise level by 20 dB resulted in a change of TTS level by nearly 20 dB, whereas the tenfold change of noise duration resulted in a TTS increase by 3.8-5.8 dB.
Collapse
Affiliation(s)
- Vladimir V Popov
- Institute of Ecology and Evolution, Russian Academy of Sciences. 33 Leninsky Prospect, 119071 Moscow, Russia
| | | | | | | | | | | |
Collapse
|