1
|
Terada T, Morisaka T, Yagi G, Kanda I, Ogawa K, Yoshioka M. Bimodal distribution of inter-individual distance in free-ranging narrow-ridged finless porpoises. Behav Processes 2024; 222:105102. [PMID: 39284376 DOI: 10.1016/j.beproc.2024.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
Inter-individual distance (IID) is an important indicator of social organisation because solitary species are spatially intolerant towards conspecifics, whereas group-living species are usually gregarious with collective behaviour. Therefore, by examining the relationship between the distribution of IIDs and the active space of cues or signals, and behaviours, we can predict their social organisation. The narrow-ridged finless porpoises (NRFPs) have been described as a solitary species; however, recent studies described NRFPs tend to live in groups more than alone. To resolve the inconsistency, the present study investigated IIDs, the active spaces of sounds, and behaviours. The distribution of IIDs measured using drone was classified into three distributions. The close and intermediate distributions were significantly shorter than the distribution predicted by the angle of drone camera, whereas the far distributions were not. The far distributions were thus a random distribution within the limited angle of the camera. The close distributions were shorter than the active space, exhibiting a high proportion of collective behaviours, while intermediate distributions did not. These results suggest that NRFPs have both solitary- and group-living characteristics. Specifically, the intermediate distribution suggests a solitary aspect to maintain IIDs from others, while the close distribution indicates a group-living aspect with social interactions.
Collapse
Affiliation(s)
- Tomoyoshi Terada
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Tadamichi Morisaka
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | - Genfu Yagi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | - Ikuko Kanda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | - Kiyohiro Ogawa
- Fisheries Research Laboratory, Mie University, 641-9 Ohama-cho, Toba, Mie 517-0015, Japan.
| | - Motoi Yoshioka
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
2
|
Leu AA, Hildebrand JA, Rice A, Baumann-Pickering S, Frasier KE. Echolocation click discrimination for three killer whale ecotypes in the Northeastern Pacific. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3197. [PMID: 35649922 DOI: 10.1121/10.0010450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Three killer whale ecotypes are found in the Northeastern Pacific: residents, transients, and offshores. These ecotypes can be discriminated in passive acoustic data based on distinct pulsed call repertoires. Killer whale acoustic encounters for which ecotypes were assigned based on pulsed call matching were used to characterize the ecotype-specific echolocation clicks. Recordings were made using seafloor-mounted sensors at shallow (∼120 m) and deep (∼1400 m) monitoring locations off the coast of Washington state. All ecotypes' echolocation clicks were characterized by energy peaks between 12 and 19 kHz, however, resident clicks featured sub peaks at 13.7 and 18.8 kHz, while offshore clicks had a single peak at 14.3 kHz. Transient clicks were rare and were characterized by lower peak frequencies (12.8 kHz). Modal inter-click intervals (ICIs) were consistent but indistinguishable for resident and offshore killer whale encounters at the shallow site (0.21-0.22 s). Offshore ICIs were longer and more variable at the deep site, and no modal ICI was apparent for the transient ecotype. Resident and offshore killer whale ecotype may be identified and distinguished in large passive acoustic datasets based on properties of their echolocation clicks, however, transient echolocation may be unsuitable in isolation as a cue for monitoring applications.
Collapse
Affiliation(s)
- Amanda A Leu
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - John A Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Ally Rice
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Simone Baumann-Pickering
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Kaitlin E Frasier
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
3
|
Pedersen MB, Uebel AS, Beedholm K, Foskolos I, Stidsholt L, Madsen PT. Echolocating Daubenton's bats call louder, but show no spectral jamming avoidance in response to bands of masking noise during a landing task. J Exp Biol 2022; 225:274668. [PMID: 35262171 DOI: 10.1242/jeb.243917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/20/2022]
Abstract
Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. Like for electrical fish that display clear spectral jamming avoidance responses (JAR), some studies have reported that bats mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratios (ENR). Here we test the hypothesis that FM bats employ a spectral JAR in response to six masking noise-bands ranging from 15-90kHz, by measuring the -3dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared to silent controls (all P>0.05, 60.73±0.96 kHz) (mean±s.e.m.), and -3dB endpoints decreased in noise irrespective of treatment-type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent ranging from 0.05 [0.04-0.06 mean±95% CI] dB/dB noise for the most narrowband (15-30 kHz) to 0.17 [0.16-0.18] dB/dB noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth dependent Lombard response.
Collapse
Affiliation(s)
- Michael Bjerre Pedersen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Astrid Særmark Uebel
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Kristian Beedholm
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Ilias Foskolos
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Laura Stidsholt
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Peter Teglberg Madsen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
4
|
Cosentino M, Nairn D, Coscarella M, Jackson JC, Windmill JFC. I beg your pardon? Acoustic behaviour of a wild solitary common dolphin who interacts with harbour porpoises. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2021.1982005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mel Cosentino
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Mariano Coscarella
- Cesimar – Cct Cenpat -conicet, Puerto Madryn, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco, Puerto Madryn, Argentina
| | - Joseph C. Jackson
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - James F. C. Windmill
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
5
|
Roch MA, Lindeneau S, Aurora GS, Frasier KE, Hildebrand JA, Glotin H, Baumann-Pickering S. Using context to train time-domain echolocation click detectors. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:3301. [PMID: 34241092 DOI: 10.1121/10.0004992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
This work demonstrates the effectiveness of using humans in the loop processes for constructing large training sets for machine learning tasks. A corpus of over 57 000 toothed whale echolocation clicks was developed by using a permissive energy-based echolocation detector followed by a machine-assisted quality control process that exploits contextual cues. Subsets of these data were used to train feed forward neural networks that detected over 850 000 echolocation clicks that were validated using the same quality control process. It is shown that this network architecture performs well in a variety of contexts and is evaluated against a withheld data set that was collected nearly five years apart from the development data at a location over 600 km distant. The system was capable of finding echolocation bouts that were missed by human analysts, and the patterns of error in the classifier consist primarily of anthropogenic sources that were not included as counter-training examples. In the absence of such events, typical false positive rates are under ten events per hour even at low thresholds.
Collapse
Affiliation(s)
- Marie A Roch
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-7720, USA
| | - Scott Lindeneau
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-7720, USA
| | - Gurisht Singh Aurora
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-7720, USA
| | - Kaitlin E Frasier
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0205, La Jolla, California 92093, USA
| | - John A Hildebrand
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0205, La Jolla, California 92093, USA
| | - Hervé Glotin
- Université de Toulon, BP 20132, 83957 La Garde Cedex, France
| | - Simone Baumann-Pickering
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0205, La Jolla, California 92093, USA
| |
Collapse
|
6
|
Pedersen MB, Tønnesen P, Malinka CE, Ladegaard M, Johnson M, Aguilar de Soto N, Madsen PT. Echolocation click parameters of short-finned pilot whales (Globicephala macrorhynchus) in the wild. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1923. [PMID: 33765819 DOI: 10.1121/10.0003762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Short-finned pilot whales (Globicephala macrorhynchus) are large, deep-diving predators with diverse foraging strategies, but little is known about their echolocation. To quantify the source properties of short-finned pilot whale clicks, we made 15 deployments off the coast of Tenerife of a deep-water hydrophone array consisting of seven autonomous time-synced hydrophone recorders (SoundTraps), enabling acoustic localization and quantification of click source parameters. Of 8185 recorded pilot whale clicks, 47 were classified as being recorded on-axis, with a mean peak-to-peak source level (SL) of 181 ± 7 dB re 1 μPa, a centroid frequency of 40 ± 4 kHz, and a duration of 57 ± 23 μs. A fit to a piston model yielded an estimated half-power (-3 dB) beam width of 13.7° [95% confidence interval (CI) 13.2°-14.5°] and a mean directivity index (DI) of 22.6 dB (95% CI 22.5-22.9 dB). These measured SLs and DIs are surprisingly low for a deep-diving toothed whale, suggesting we sampled the short-finned pilot whales in a context with little need for operating a long-range biosonar. The substantial spectral overlap with beaked whale clicks emitted in similar deep-water habitats implies that pilot whale clicks may constitute a common source of false detections in beaked whale passive acoustic monitoring efforts.
Collapse
Affiliation(s)
- M B Pedersen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - P Tønnesen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - C E Malinka
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - M Ladegaard
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - M Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark
| | - N Aguilar de Soto
- Biodiversidad, Ecología Marina y Conservación (BIOECOMAC), University of La Laguna, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - P T Madsen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Macaulay JDJ, Malinka CE, Gillespie D, Madsen PT. High resolution three-dimensional beam radiation pattern of harbour porpoise clicks with implications for passive acoustic monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:4175. [PMID: 32611133 DOI: 10.1121/10.0001376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The source properties and radiation patterns of animal vocalisations define, along with propagation and noise conditions, the active space in which these vocalisations can be detected by conspecifics, predators, prey, and by passive acoustic monitoring (PAM). This study reports the 4π (360° horizontal and vertical) beam profile of a free-swimming, trained harbour porpoise measured using a 27-element hydrophone array. The forward echolocation beam is highly directional, as predicted by a piston model, and is consistent with previous measurements. However, at off-axis angles greater than ±30°, the beam attenuates more rapidly than the piston model and no side lobes are present. A diffuse back beam is also present with levels about -30 dB relative to the source level. In PAM, up to 50% of detections can be from portions of the beam profile with distorted click spectra, although this drops substantially for higher detection thresholds. Simulations of the probability of acoustically detecting a harbour porpoise show that a traditional piston model can underestimate the probability of detection compared to the actual three-dimensional radiation pattern documented here. This highlights the importance of empirical 4π measurements of beam profiles of toothed whales, both to improve understanding of toothed whale biology and to inform PAM.
Collapse
Affiliation(s)
- Jamie D J Macaulay
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of Saint Andrews, East Sands, Saint Andrews, Fife, KY16 9LB, United Kingdom
| | - Chloe E Malinka
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Douglas Gillespie
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of Saint Andrews, East Sands, Saint Andrews, Fife, KY16 9LB, United Kingdom
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Götz T, Pacini AF, Nachtigall PE, Janik VM. The startle reflex in echolocating odontocetes: basic physiology and practical implications. ACTA ACUST UNITED AC 2020; 223:223/5/jeb208470. [PMID: 32165452 PMCID: PMC7075047 DOI: 10.1242/jeb.208470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/24/2020] [Indexed: 11/29/2022]
Abstract
The acoustic startle reflex is an oligo-synaptic reflex arc elicited by rapid-onset sounds. Odontocetes evolved a range of specific auditory adaptations to aquatic hearing and echolocation, e.g. the ability to downregulate their auditory sensitivity when emitting clicks. However, it remains unclear whether these adaptations also led to changes of the startle reflex. We investigated reactions to startling sounds in two bottlenose dolphins (Tursiops truncatus) and one false killer whale (Pseudorca crassidens). Animals were exposed to 50 ms, 1/3 octave band noise pulses of varying levels at frequencies of 1, 10, 25 and 32 kHz while positioned in a hoop station. Startle responses were quantified by measuring rapid muscle contractions using a three-dimensional accelerometer attached to the dolphin. Startle magnitude increased exponentially with increasing received levels. Startle thresholds were frequency dependent and ranged from 131 dB at 32 kHz to 153 dB at 1 kHz (re. 1 µPa). Startle thresholds only exceeded masked auditory AEP thresholds of the animals by 47 dB but were ∼82 dB above published behavioural audiograms for these species. We also tested the effect of stimulus rise time on startle magnitude using a broadband noise pulse. Startle responses decreased with increasing rise times from 2 to 100 ms. Models suggested that rise times of 141–220 ms were necessary to completely mitigate startle responses. Our data showed that the startle reflex is conserved in odontocetes and follows similar principles as in terrestrial mammals. These principles should be considered when assessing and mitigating the effects of anthropogenic noise on marine mammals. Summary: The acoustic startle reflex is conserved in echolocating toothed whales and should be considered when predicting marine mammal responses to human-generated underwater noise.
Collapse
Affiliation(s)
- Thomas Götz
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, Fife KY16 8LB, UK
| | - Aude F Pacini
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Paul E Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Vincent M Janik
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
9
|
Integrative bioacoustics discrimination of eight delphinid species in the western South Atlantic Ocean. PLoS One 2019; 14:e0217977. [PMID: 31170251 PMCID: PMC6553770 DOI: 10.1371/journal.pone.0217977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
This study presents an integrative bioacoustics approach to discriminate eight species of odontocetes found on the outer continental shelf and slope of the western South Atlantic Ocean. Spinner, Atlantic spotted, rough-toothed, Risso's, bottlenose, short-beaked common dolphins, killer and long-finned pilot whales were visually confirmed during recordings with a 3-element omnidirectional hydrophone array. Spectral and time parameters of whistles and echolocation clicks were used in a discriminant function analysis and a classification tree model. As a first step, whistles and clicks were analysed separately; a further analysis consisted of both vocalisations jointly classified. All species showed species-specific properties in their vocalisations. Whistles had greater misclassification rates when compared to clicks. The correct classification was enhanced by the joint step, given the 5.8% error in the discriminant function analysis and a misclassification rate of 18.8% in the tree model. In addition, Receiver Operating Characteristic curves resulting from the tree algorithm analysis exhibited better model efficiency for all species in the joint classification. These findings on acoustical discrimination of such abundant and cosmopolitan species contribute to delphinid classification systems.
Collapse
|
10
|
Starkhammar J, Reinhold I, Moore PW, Houser DS, Sandsten M. Detailed analysis of two detected overlaying transient components within the echolocation beam of a bottlenose dolphin (Tursiops truncatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2138. [PMID: 31046343 DOI: 10.1121/1.5096640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Dolphin echolocation clicks measured far off-axis contain two time-separated components. Whether these components overlap and appear as a single signal on axis has received little attention. Here, the scaled reassigned spectrogram analysis was used to examine if bottlenose dolphin (Tursiops truncatus) clicks measured near- or on-axis of the echolocation beam contained overlapping components. Across click trains, the number of overlapping components spatially varied within the echolocation beam. Two overlapping components were found to predominantly occur in the upper portion of the beam, whereas the lower portion of the beam predominantly contained a single component. When components overlapped, the trailing component generally had a higher center frequency and arrived less than 5 μs after the leading component. The spatial relationship of components was consistent with previous findings of two vertically distinct beam lobes with separated frequency content. The two components in the upper portion of the beam possibly result from a single transient click propagating through a geometrically dispersive media; specifically, the slower sound speed of the dolphin melon's core slightly delays the more directional, high frequency energy of the click, whereas the less directional, lower frequency energy propagates through more peripheral but higher sound speed portions of the melon.
Collapse
Affiliation(s)
| | - Isabella Reinhold
- Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Patrick W Moore
- National Marine Mammal Foundation, San Diego, California 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, San Diego, California 92106, USA
| | - Maria Sandsten
- Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Kloepper LN, Branstetter BK. The effect of jamming stimuli on the echolocation behavior of the bottlenose dolphin, Tursiops truncatus. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1341. [PMID: 31067932 DOI: 10.1121/1.5093636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Echolocating bats and odontocetes face the potential challenge of acoustic interference from neighbors, or sonar jamming. To counter this, many bat species have adapted jamming avoidance strategies to improve signal detection, but any such avoidance strategies in dolphins is unknown. This study provides an investigation into whether dolphins modify echolocation behavior during jamming scenarios. Recorded echolocation clicks were projected at different click repetition rates and at different aspect angles relative to two dolphins' heads while each dolphin was performing a target detection task. Changes in the timing, amplitude, and frequency of structure of the dolphin's emitted signals were compared to determine if and how dolphins modify echolocation when faced with potentially interfering conspecific echolocation signals. The results indicate that both dolphins demonstrated different responses when faced with jamming scenarios, which may reflect optimal strategies according to individual auditory perception abilities.
Collapse
Affiliation(s)
- Laura N Kloepper
- Department of Biology, Saint Mary's College, Notre Dame, Indiana 46556, USA
| | - Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| |
Collapse
|
12
|
Reinhold I, Sandsten M, Starkhammar J. Objective detection and time-frequency localization of components within transient signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2368. [PMID: 29716299 DOI: 10.1121/1.5032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An automatic component detection method for overlapping transient pulses in multi-component signals is presented and evaluated. The recently proposed scaled reassignment technique is shown to have the best achievable resolution for closely located Gaussian shaped transient pulses, even in heavy disruptive noise. As a result, the method automatically detects and counts the number of transients, giving the center times and center frequencies of all components with considerable accuracy. The presented method shows great potential for applications in several acoustic research fields, where coinciding Gaussian shaped transients are analyzed. The performance is tested on measured data from a laboratory pulse-echo setup and from a dolphin echolocation signal measured simultaneously at two different locations in the echolocation beam. Since the method requires little user input, it should be easily employed in a variety of research projects.
Collapse
Affiliation(s)
- Isabella Reinhold
- Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Maria Sandsten
- Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|
13
|
Frasier KE, Roch MA, Soldevilla MS, Wiggins SM, Garrison LP, Hildebrand JA. Automated classification of dolphin echolocation click types from the Gulf of Mexico. PLoS Comput Biol 2017; 13:e1005823. [PMID: 29216184 PMCID: PMC5720518 DOI: 10.1371/journal.pcbi.1005823] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso’s dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori. Health of marine mammal populations is often considered an indicator of overall marine ecosystem health and resilience, particularly in highly-impacted regions such as the Gulf of Mexico. Marine mammal populations are difficult to monitor given the many challenges of observing animals at sea (e.g. weather, limited daylight, ocean conditions, and expense). An increasingly common approach is the use of underwater acoustic sensors capable of recording marine mammal calls at remote locations for months at a time. Acoustic sensors generate large datasets in which dolphin echolocation clicks are commonly present. Dolphins are the most diverse family of marine mammals, and distinguishing click characteristics have only been described for a small subset of species. We developed a workflow to automatically identify distinct dolphin click types within large datasets without prior knowledge of their distinguishing features. Our algorithm then recognizes these click types in novel recording data across a range of monitoring locations. Known species-specific click types emerge from the data using this approach, as well as new click types potentially associated with additional species. This technique is a key step toward determining species identification for passive acoustic monitoring of offshore populations of dolphins and other toothed whales under a big data paradigm.
Collapse
Affiliation(s)
- Kaitlin E. Frasier
- Scripps Institution of Oceanography, La Jolla, California, United States of America
- * E-mail:
| | - Marie A. Roch
- San Diego State University, San Diego, California, United States of America
| | - Melissa S. Soldevilla
- NOAA NMFS Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, Miami, Florida, United States of America
| | - Sean M. Wiggins
- Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - Lance P. Garrison
- NOAA NMFS Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, Miami, Florida, United States of America
| | - John A. Hildebrand
- Scripps Institution of Oceanography, La Jolla, California, United States of America
| |
Collapse
|
14
|
Sayigh LS, Wells RS, Janik VM. What's in a voice? Dolphins do not use voice cues for individual recognition. Anim Cogn 2017; 20:1067-1079. [PMID: 28791513 PMCID: PMC5640738 DOI: 10.1007/s10071-017-1123-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 07/14/2017] [Accepted: 07/28/2017] [Indexed: 12/04/2022]
Abstract
Most mammals can accomplish acoustic recognition of other individuals by means of “voice cues,” whereby characteristics of the vocal tract render vocalizations of an individual uniquely identifiable. However, sound production in dolphins takes place in gas-filled nasal sacs that are affected by pressure changes, potentially resulting in a lack of reliable voice cues. It is well known that bottlenose dolphins learn to produce individually distinctive signature whistles for individual recognition, but it is not known whether they may also use voice cues. To investigate this question, we played back non-signature whistles to wild dolphins during brief capture-release events in Sarasota Bay, Florida. We hypothesized that non-signature whistles, which have varied contours that can be shared among individuals, would be recognizable to dolphins only if they contained voice cues. Following established methodology used in two previous sets of playback experiments, we found that dolphins did not respond differentially to non-signature whistles of close relatives versus known unrelated individuals. In contrast, our previous studies showed that in an identical context, dolphins reacted strongly to hearing the signature whistle or even a synthetic version of the signature whistle of a close relative. Thus, we conclude that dolphins likely do not use voice cues to identify individuals. The low reliability of voice cues and the need for individual recognition were likely strong selective forces in the evolution of vocal learning in dolphins.
Collapse
Affiliation(s)
- Laela S Sayigh
- School of Cognitive Science, Hampshire College, Amherst, MA, 01002, USA. .,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | - Vincent M Janik
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, UK
| |
Collapse
|
15
|
Palmer KJ, Brookes K, Rendell L. Categorizing click trains to increase taxonomic precision in echolocation click loggers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:863. [PMID: 28863550 DOI: 10.1121/1.4996000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Passive acoustic monitoring is an efficient way to study acoustically active animals but species identification remains a major challenge. C-PODs are popular logging devices that automatically detect odontocete echolocation clicks. However, the accompanying analysis software does not distinguish between delphinid species. Click train features logged by C-PODs were compared to frequency spectra from adjacently deployed continuous recorders. A generalized additive model was then used to categorize C-POD click trains into three groups: broadband click trains, produced by bottlenose dolphin (Tursiops truncatus) or common dolphin (Delphinus delphis), frequency-banded click trains, produced by Risso's (Grampus griseus) or white beaked dolphins (Lagenorhynchus albirostris), and unknown click trains. Incorrect categorization rates for broadband and frequency banded clicks were 0.02 (SD 0.01), but only 30% of the click trains met the categorization threshold. To increase the proportion of categorized click trains, model predictions were pooled within acoustic encounters and a likelihood ratio threshold was used to categorize encounters. This increased the proportion of the click trains meeting either the broadband or frequency banded categorization threshold to 98%. Predicted species distribution at the 30 study sites matched well to visual sighting records from the region.
Collapse
Affiliation(s)
- K J Palmer
- School of Biology, University of St. Andrews, Sir Harold Mitchell Building, St. Andrews, Fife KY16 9TH, United Kingdom
| | - Kate Brookes
- Marine Laboratory, Marine Scotland Science, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, United Kingdom
| | - Luke Rendell
- School of Biology, University of St. Andrews, Sir Harold Mitchell Building, St. Andrews, Fife KY16 9TH, United Kingdom
| |
Collapse
|
16
|
Ladegaard M, Jensen FH, Beedholm K, da Silva VMF, Madsen PT. Amazon river dolphins (Inia geoffrensis) modify biosonar output level and directivity during prey interception in the wild. J Exp Biol 2017; 220:2654-2665. [DOI: 10.1242/jeb.159913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022]
Abstract
Toothed whales have evolved to live in extremely different habitats and yet they all rely strongly on echolocation for finding and catching prey. Such biosonar based foraging involves distinct phases of searching for, approaching, and capturing prey, where echolocating animals gradually adjust sonar output to actively shape the flow of sensory information. Measuring those outputs in absolute levels requires hydrophone arrays centred on the biosonar beam axis, but this has never been done for wild toothed whales approaching and capturing prey. Rather, field studies make the assumption that toothed whales will adjust their biosonar in the same manner to arrays as they will when approaching prey. To test this assumption, we recorded wild botos (Inia geoffrensis) as they approached and captured dead fish tethered to a hydrophone in front of a star-shaped seven-hydrophone array. We demonstrate that botos gradually decrease interclick intervals and output levels during prey approaches, using stronger adjustment magnitudes than extrapolated from previous boto array data. Prey interceptions are characterised by high click rates, but although botos buzz during prey capture, they do so at lower click rates than marine toothed whales, resulting in a much more gradual transition from approach phase to buzzing. We also demonstrate for the first time that wild toothed whales broaden biosonar beamwidth when closing in on prey, as it is also seen in captive toothed whales and in bats, thus resulting in a larger ensonified volume around the prey, likely aiding prey tracking by decreasing the risk of prey evading ensonification.
Collapse
Affiliation(s)
- Michael Ladegaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | | | - Kristian Beedholm
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | | | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
17
|
Frasier KE, Wiggins SM, Harris D, Marques TA, Thomas L, Hildebrand JA. Delphinid echolocation click detection probability on near-seafloor sensors. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1918. [PMID: 27914405 DOI: 10.1121/1.4962279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The probability of detecting echolocating delphinids on a near-seafloor sensor was estimated using two Monte Carlo simulation methods. One method estimated the probability of detecting a single click (cue counting); the other estimated the probability of detecting a group of delphinids (group counting). Echolocation click beam pattern and source level assumptions strongly influenced detectability predictions by the cue counting model. Group detectability was also influenced by assumptions about group behaviors. Model results were compared to in situ recordings of encounters with Risso's dolphin (Grampus griseus) and presumed pantropical spotted dolphin (Stenella attenuata) from a near-seafloor four-channel tracking sensor deployed in the Gulf of Mexico (25.537°N 84.632°W, depth 1220 m). Horizontal detection range, received level and estimated source level distributions from localized encounters were compared with the model predictions. Agreement between in situ results and model predictions suggests that simulations can be used to estimate detection probabilities when direct distance estimation is not available.
Collapse
Affiliation(s)
- Kaitlin E Frasier
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0205, USA
| | - Sean M Wiggins
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0205, USA
| | - Danielle Harris
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, The Observatory, Buchanan Gardens, Fife KY16 9LZ, United Kingdom
| | - Tiago A Marques
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, The Observatory, Buchanan Gardens, Fife KY16 9LZ, United Kingdom
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, The Observatory, Buchanan Gardens, Fife KY16 9LZ, United Kingdom
| | - John A Hildebrand
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0205, USA
| |
Collapse
|
18
|
Finneran JJ, Mulsow J, Branstetter B, Moore P, Houser DS. Nearfield and farfield measurements of dolphin echolocation beam patterns: No evidence of focusing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1346. [PMID: 27586761 DOI: 10.1121/1.4961015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The potential for bottlenose dolphins to actively focus their biosonar transmissions was examined by measuring emitted clicks in four dolphins using horizontal, planar hydrophone arrays. Two hydrophone configurations were used: a rectangular array with hydrophones 0.2 to 2 m from the dolphins and a polar array with hydrophones 0.5 to 5 m from the dolphins. The biosonar task was a target change detection utilizing physical targets at ranges from 1.3 to 6.3 m with all subjects and "phantom" targets at simulated ranges from 2.5 to 20 m with two subjects. To provide a basis for evaluating the experimental data, sound fields radiated from flat and focused circular pistons were mathematically simulated using transient excitation functions similar to dolphin clicks. The array measurements showed no evidence that the dolphins adaptively focused their click emissions; axial amplitudes and iso-amplitude contours matched the pattern of the simulation results for flat transducers and showed a single region of maximum amplitude, beyond which spherical spreading loss was approximated.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | - Brian Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | - Patrick Moore
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| |
Collapse
|
19
|
Au WWL, Martin SW, Moore PW, Branstetter B, Copeland AM. Dynamics of biosonar signals in free-swimming and stationary dolphins: The role of source levels on the characteristics of the signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:1381-1389. [PMID: 27036275 DOI: 10.1121/1.4944636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The biosonar signals of two free-swimming Atlantic bottlenose dolphins performing a complex sonar search for a bottom target in San Diego Bay were compared with the biosonar signals of a dolphin performing a target discrimination task in a net pen in the same bay. A bite-plate device carried by the free-swimming dolphins supported a hydrophone that extended directly in front of the dolphin. A biosonar measuring tool attached to the bite plate measured the outgoing biosonar signals while the dolphins conducted sonar searches. Each of the free-swimming dolphins used different biosonar search strategy in solving the problem and the dolphins' biosonar signals reflect the difference in strategy. The dolphin in the pen stationed in a hoop while echolocating on a target 6 m away and reported if the indentation on a spherical target was directed toward it. The signals were parameterized by determining the peak-to-peak source levels, source energy flux density, peak frequency, center frequency, root-mean-square (rms) bandwidth, rms duration, and the Q of the signals. Some parameters were similar for the free-swimming and stationary dolphins while some were significantly different, suggesting biosonar signals used by free-swimming animals may be different than signals used by dolphins in a pen.
Collapse
Affiliation(s)
- Whitlow W L Au
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Stephen W Martin
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, California 92106, USA
| | - Patrick W Moore
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, California 92106, USA
| | - Brian Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, California 92106, USA
| | | |
Collapse
|
20
|
Reyes Reyes MV, Iñíguez MA, Hevia M, Hildebrand JA, Melcón ML. Description and clustering of echolocation signals of Commerson's dolphins (Cephalorhynchus commersonii) in Bahía San Julián, Argentina. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2046-2053. [PMID: 26520288 DOI: 10.1121/1.4929899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Commerson's dolphins (Cephalorhynchus commersonii) inhabit coastal waters of Southern South America and Kerguelen Islands. Limited information exists about the acoustic repertoire of this species in the wild. Here, echolocation signals from free-ranging Commerson's dolphins were recorded in Bahía San Julián, Argentina. Signal parameters were calculated and a cluster analysis was made on 3180 regular clicks. Three clusters were obtained based on peak frequency (129, 137, and 173 kHz) and 3 dB bandwidth (8, 6, and 5 kHz). The 428 buzz clicks were analyzed separately. They consisted of clicks emitted with a median inter-click interval of 3.5 ms, peak frequency at 131 kHz, 3 dB bandwidth of 9 kHz, 10 dB bandwidth of 18 kHz, and duration of 56 μs. Buzz clicks were significantly shorter and with a lower peak frequency and a broader bandwidth than most of the regular clicks. This study provided the first description of different echolocation signals, including on- and off-axis signals, recorded from Commerson's dolphins in the wild, most likely as a result of animals at several distances and orientations to the recording device. This information could be useful while doing passive acoustic monitoring.
Collapse
Affiliation(s)
- M Vanesa Reyes Reyes
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Física de Buenos Aires, Centro Nacional de Investigaciones Científicas y Técnicas, Pabellón I, Ciudad Universitaria, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Miguel A Iñíguez
- Fundación Cethus, Gdor Luis Monteverde 3695 (B1636AEM), Olivos, Provincia de Buenos Aires, Argentina
| | - Marta Hevia
- Fundación Cethus, Gdor Luis Monteverde 3695 (B1636AEM), Olivos, Provincia de Buenos Aires, Argentina
| | - John A Hildebrand
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive 0205, La Jolla, California 92093-0205, USA
| | - Mariana L Melcón
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive 0205, La Jolla, California 92093-0205, USA
| |
Collapse
|
21
|
Baumann-Pickering S, Simonis AE, Oleson EM, Baird RW, Roch MA, Wiggins SM. False killer whale and short-finned pilot whale acoustic identification. ENDANGER SPECIES RES 2015. [DOI: 10.3354/esr00685] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
de Freitas M, Jensen FH, Tyne J, Bejder L, Madsen PT. Echolocation parameters of Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the wild. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:3033-41. [PMID: 26093395 DOI: 10.1121/1.4921277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Echolocation is a key sensory modality for toothed whale orientation, navigation, and foraging. However, a more comparative understanding of the biosonar properties of toothed whales is necessary to understand behavioral and evolutionary adaptions. To address this, two free-ranging sympatric delphinid species, Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus), were studied. Biosonar clicks from both species were recorded within the same stretch of coastal habitat in Exmouth Gulf, Western Australia, using a vertical seven element hydrophone array. S. sahulensis used biosonar clicks with a mean source level of 199 ± 3 dB re 1 μPa peak-peak (pp), mean centroid frequency of 106 ± 11 kHz, and emitted at interclick intervals (ICIs) of 79 ± 33 ms. These parameters were similar to click parameters of sympatric T. aduncus, characterized by mean source levels of 204 ± 4 dB re 1 μPa pp, centroid frequency of 112 ± 9 kHz, and ICIs of 73 ± 29 ms. These properties are comparable to those of other similar sized delphinids and suggest that biosonar parameters are independent of sympatric delphinids and possibly driven by body size. The dynamic biosonar behavior of these delphinids may have, consequently, allowed for adaptations to local environments through high levels of control over sonar beam properties.
Collapse
Affiliation(s)
- Mafalda de Freitas
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C.F. Moellers Alle 3, DK-8000 Aarhus C, Denmark
| | - Frants H Jensen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Julian Tyne
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| | - Lars Bejder
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C.F. Moellers Alle 3, DK-8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Madhusudhana S, Gavrilov A, Erbe C. Automatic detection of echolocation clicks based on a Gabor model of their waveform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:3077-3086. [PMID: 26093399 DOI: 10.1121/1.4921609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Prior research has shown that echolocation clicks of several species of terrestrial and marine fauna can be modelled as Gabor-like functions. Here, a system is proposed for the automatic detection of a variety of such signals. By means of mathematical formulation, it is shown that the output of the Teager-Kaiser Energy Operator (TKEO) applied to Gabor-like signals can be approximated by a Gaussian function. Based on the inferences, a detection algorithm involving the post-processing of the TKEO outputs is presented. The ratio of the outputs of two moving-average filters, a Gaussian and a rectangular filter, is shown to be an effective detection parameter. Detector performance is assessed using synthetic and real (taken from MobySound database) recordings. The detection method is shown to work readily with a variety of echolocation clicks and in various recording scenarios. The system exhibits low computational complexity and operates several times faster than real-time. Performance comparisons are made to other publicly available detectors including pamguard.
Collapse
Affiliation(s)
- Shyam Madhusudhana
- Centre for Marine Science and Technology, Curtin University, Perth, Western Australia, Australia
| | - Alexander Gavrilov
- Centre for Marine Science and Technology, Curtin University, Perth, Western Australia, Australia
| | - Christine Erbe
- Centre for Marine Science and Technology, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Wisniewska DM, Ratcliffe JM, Beedholm K, Christensen CB, Johnson M, Koblitz JC, Wahlberg M, Madsen PT. Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena). eLife 2015; 4:e05651. [PMID: 25793440 PMCID: PMC4413254 DOI: 10.7554/elife.05651] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/19/2015] [Indexed: 12/03/2022] Open
Abstract
Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking. DOI:http://dx.doi.org/10.7554/eLife.05651.001 Bats and toothed whales such as porpoises have independently evolved the same solution for hunting prey when it is hard to see. Bats hunt in the dark with little light to allow them to see the insects they chase. Porpoises hunt in murky water where different ocean environments can quickly obscure fish from view. So, both bats and porpoises evolved to emit a beam of sound and then track their prey based on the echoes of that sound bouncing off the prey and other objects. This process is called echolocation. A narrow beam of sound can help a porpoise or bat track distant prey. But as either animal closes in on its prey such a narrow sound beam can be a disadvantage because prey can easily escape to one side. Scientists recently found that bats can widen their sound beam as they close in on prey by changing the frequency—or pitch—of the signal they emit or by adjusting how they open their mouth. Porpoises, by contrast, create their echolocation clicks by forcing air through a structure in their blowhole called the phonic lips. The sound is transmitted through a fatty structure on the front of their head known as the melon, which gives these animals their characteristic round-headed look, before being transmitted into the sea. Porpoises would also likely benefit from widening their echolocation beam as they approach prey, but it was not clear if and how they could do this. Wisniewska et al. used 48 tightly spaced underwater microphones to record the clicks emitted by three captive porpoises as they approached a target or a fish. This revealed that in the last stage of their approach, the porpoises could triple the area their sound beam covered, giving them a ‘wide angle view’ as they closed in. This widening of the sound beam occurred during a very rapid series of echolocation signals called a buzz, which porpoises and bats perform at the end of a pursuit. Unlike bats, porpoises are able to continue to change the width of their sound beam throughout the buzz. Wisniewska et al. also present a video that shows that the shape of the porpoise's melon changes rapidly during a buzz, which may explain the widening beam. Furthermore, images obtained using a technique called magnetic resonance imaging (MRI) revealed that a porpoise has a network of facial muscles that are capable of producing these beam-widening melon distortions. As both bats and porpoises have evolved the capability to adjust the width of their sound beam, this ability is likely to be crucial for hunting effectively using echolocation. DOI:http://dx.doi.org/10.7554/eLife.05651.002
Collapse
Affiliation(s)
| | - John M Ratcliffe
- Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Beedholm
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | - Mark Johnson
- Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Jens C Koblitz
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | - Magnus Wahlberg
- Sound and Behaviour Group, Institute of Biology, University of Southern Denmark, Odense, Denmark
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Finneran JJ, Branstetter BK, Houser DS, Moore PW, Mulsow J, Martin C, Perisho S. High-resolution measurement of a bottlenose dolphin's (Tursiops truncatus) biosonar transmission beam pattern in the horizontal plane. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:2025-2038. [PMID: 25324101 DOI: 10.1121/1.4895682] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Previous measurements of toothed whale echolocation transmission beam patterns have utilized few hydrophones and have therefore been limited to fine angular resolution only near the principal axis or poor resolution over larger azimuthal ranges. In this study, a circular, horizontal planar array of 35 hydrophones was used to measure a dolphin's transmission beam pattern with 5° to 10° resolution at azimuths from -150° to +150°. Beam patterns and directivity indices were calculated from both the peak-peak sound pressure and the energy flux density. The emitted pulse became smaller in amplitude and progressively distorted as it was recorded farther off the principal axis. Beyond ±30° to 40°, the off-axis signal consisted of two distinct pulses whose difference in time of arrival increased with the absolute value of the azimuthal angle. A simple model suggests that the second pulse is best explained as a reflection from internal structures in the dolphin's head, and does not implicate the use of a second sound source. Click energy was also more directional at the higher source levels utilized at longer ranges, where the center frequency was elevated compared to that of the lower amplitude clicks used at shorter range.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152
| | - Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106
| | - Patrick W Moore
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106
| | - Cameron Martin
- Naval Research Enterprise Internship Program (NREIP), 1818 N Street Northwest, Suite 600, Washington, DC 20036
| | - Shaun Perisho
- Department of Psychology, University of Southern Mississippi, 118 College Drive, #5025, Hattiesburg, Mississippi 39406
| |
Collapse
|
26
|
Au WWL, Giorli G, Chen J, Copeland A, Lammers MO, Richlen M, Jarvis S, Morrissey R, Moretti D. Presence and seasonal variation of deep diving foraging odontocetes around Kauai, Hawaii using remote autonomous acoustic recorders. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:521-530. [PMID: 24437792 DOI: 10.1121/1.4836575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ecological acoustic recorders (EARs) were moored off the bottom in relatively deep depths (609-710 m) at five locations around the island of Kauai. Initially, the EARs had an analog-to-digital sample rate of 64 kHz with 30-s recordings every 5 min. After the second deployment the sampling rate was increased to 80 kHz in order to better record beaked whale biosonar signals. The results of the 80 kHz recording are discussed in this manuscript and are the results of three deployments over a year's period (January 2010 to January 2011). Five categories of the biosonar signal detection of deep diving odontocetes were created, short-finned pilot whales, sperm whales, beaked whales, Risso's dolphins, and unknown dolphins. During any given day, at least one species of these deep diving odontocetes were detected. On many days, several species were detected. The biosonar signals of short-finned pilot whales were detected the most often with approximately 30% of all the signals, followed by beaked and sperm whales approximately 22% and 21% of all clicks, respectively. The seasonal patterns were not very strong except in the SW location with distinct peak in detection during the months of April-June 2010 period.
Collapse
Affiliation(s)
- Whitlow W L Au
- Hawaii Institute of Marine Biology, P.O. Box 1106, Kailua, Hawaii 96734
| | - Giacomo Giorli
- Hawaii Institute of Marine Biology, P.O. Box 1106, Kailua, Hawaii 96734
| | - Jessica Chen
- Hawaii Institute of Marine Biology, P.O. Box 1106, Kailua, Hawaii 96734
| | - Adrienne Copeland
- Hawaii Institute of Marine Biology, P.O. Box 1106, Kailua, Hawaii 96734
| | - Marc O Lammers
- Hawaii Institute of Marine Biology, P.O. Box 1106, Kailua, Hawaii 96734
| | - Michael Richlen
- Hawaii Institute of Marine Biology, P.O. Box 1106, Kailua, Hawaii 96734
| | - Susan Jarvis
- Naval Undersea Warfare Center, Newport, Rhode Island 02841
| | | | - David Moretti
- Naval Undersea Warfare Center, Newport, Rhode Island 02841
| |
Collapse
|
27
|
Cranford TW, Trijoulet V, Smith CR, Krysl P. Validation of a vibroacoustic finite element model using bottlenose dolphin simulations: the dolphin biosonar beam is focused in stages. BIOACOUSTICS 2013. [DOI: 10.1080/09524622.2013.843061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Madsen PT, Lammers M, Wisniewska D, Beedholm K. Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side. J Exp Biol 2013; 216:4091-102. [DOI: 10.1242/jeb.091306] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Toothed whales produce sound in their nasal complex by pneumatic actuation of phonic lip pairs within the blowhole. It has been hypothesized that dual actuation of the phonic lip pairs can generate two pulses that merge to form a single echolocation click with a higher source level, broader bandwidth and larger potential for beam steering than if produced by a single pair of phonic lips. Here, we test that hypothesis by measuring the sound production of five echolocating delphinids using hydrophones around the animals and imbedded in on-animal suction cups. We show that the studied animals click with their right pair of phonic lips and whistle with their left pair. We demonstrate that, with just a single pair of phonic lips, they can change the click energy levels over five orders of magnitude, change the click centroid frequencies over more than two octaves, and modulate the sound radiation from the melon for beam steering. We conclude that all of the click dynamics ascribed to dual actuation of two phonic lip pairs can be achieved with actuation of just the right pair of phonic lips, and we propose that the large dynamic range of source outputs is achieved by highly controlled modulation of the pneumatic driving pressure, the tension of the phonic lip labia and the conformation of the fatty melon and associated air sacs.
Collapse
Affiliation(s)
- Peter T. Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Marc Lammers
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, Kailua, HI 96734, USA
| | - Danuta Wisniewska
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Kristian Beedholm
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
29
|
Baumann-Pickering S, Yack TM, Barlow J, Wiggins SM, Hildebrand JA. Baird's beaked whale echolocation signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:4321-4331. [PMID: 23742381 DOI: 10.1121/1.4804316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Echolocation signals from Baird's beaked whales were recorded during visual and acoustic shipboard surveys of cetaceans in the California Current ecosystem and with autonomous, long-term recorders in the Southern California Bight. The preliminary measurement of the visually validated Baird's beaked whale echolocation signals from towed array data were used as a basis for identifying Baird's signals in the autonomous recorder data. Two distinct signal types were found, one being a beaked whale-like frequency modulated (FM) pulse, the other being a dolphin-like broadband click. The median FM inter-pulse interval was 230 ms. Both signal types showed a consistent multi-peak structure in their spectra with peaks at ~9, 16, 25, and 40 kHz. Depending on signal type, as well as recording aspect and distance to the hydrophone, these peaks varied in relative amplitude. The description of Baird's echolocation signals will allow for studies of their distribution and abundance using towed array data without associated visual sightings and from autonomous seafloor hydrophones.
Collapse
Affiliation(s)
- Simone Baumann-Pickering
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0205, La Jolla, California 92093, USA.
| | | | | | | | | |
Collapse
|