1
|
Van Herck S, Economou M, Bempt FV, Ghesquière P, Vandermosten M, Wouters J. Pulsatile modulation greatly enhances neural synchronization at syllable rate in children. Neuroimage 2023:120223. [PMID: 37315772 DOI: 10.1016/j.neuroimage.2023.120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023] Open
Abstract
Neural processing of the speech envelope is of crucial importance for speech perception and comprehension. This envelope processing is often investigated by measuring neural synchronization to sinusoidal amplitude-modulated stimuli at different modulation frequencies. However, it has been argued that these stimuli lack ecological validity. Pulsatile amplitude-modulated stimuli, on the other hand, are suggested to be more ecologically valid and efficient, and have increased potential to uncover the neural mechanisms behind some developmental disorders such a dyslexia. Nonetheless, pulsatile stimuli have not yet been investigated in pre-reading and beginning reading children, which is a crucial age for developmental reading research. We performed a longitudinal study to examine the potential of pulsatile stimuli in this age range. Fifty-two typically reading children were tested at three time points from the middle of their last year of kindergarten (5 years old) to the end of first grade (7 years old). Using electroencephalography, we measured neural synchronization to syllable rate and phoneme rate sinusoidal and pulsatile amplitude-modulated stimuli. Our results revealed that the pulsatile stimuli significantly enhance neural synchronization at syllable rate, compared to the sinusoidal stimuli. Additionally, the pulsatile stimuli at syllable rate elicited a different hemispheric specialization, more closely resembling natural speech envelope tracking. We postulate that using the pulsatile stimuli greatly increases EEG data acquisition efficiency compared to the common sinusoidal amplitude-modulated stimuli in research in younger children and in developmental reading research.
Collapse
Affiliation(s)
- Shauni Van Herck
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium.
| | - Maria Economou
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Femke Vanden Bempt
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | | | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| |
Collapse
|
2
|
Van Herck S, Economou M, Vanden Bempt F, Glatz T, Ghesquière P, Vandermosten M, Wouters J. Neural synchronization and intervention in pre-readers who later on develop dyslexia. Eur J Neurosci 2023; 57:547-567. [PMID: 36518008 PMCID: PMC10108076 DOI: 10.1111/ejn.15894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
A growing number of studies has investigated temporal processing deficits in dyslexia. These studies largely focus on neural synchronization to speech. However, the importance of rise times for neural synchronization is often overlooked. Furthermore, targeted interventions, phonics-based and auditory, are being developed, but little is known about their impact. The current study investigated the impact of a 12-week tablet-based intervention. Children at risk for dyslexia received phonics-based training, either with (n = 31) or without (n = 31) auditory training, or engaged in active control training (n = 29). Additionally, neural synchronization and processing of rise times was longitudinally investigated in children with dyslexia (n = 26) and typical readers (n = 52) from pre-reading (5 years) to beginning reading age (7 years). The three time points in the longitudinal study correspond to intervention pre-test, post-test and consolidation, approximately 1 year after completing the intervention. At each time point neural synchronization was measured to sinusoidal stimuli and pulsatile stimuli with shortened rise times at syllable (4 Hz) and phoneme rates (20 Hz). Our results revealed no impact on neural synchronization at syllable and phoneme rate of the phonics-based and auditory training. However, we did reveal atypical hemispheric specialization at both syllable and phoneme rates in children with dyslexia. This was detected even before the onset of reading acquisition, pointing towards a possible causal rather than consequential mechanism in dyslexia. This study contributes to our understanding of the temporal processing deficits underlying the development of dyslexia, but also shows that the development of targeted interventions is still a work in progress.
Collapse
Affiliation(s)
- Shauni Van Herck
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Maria Economou
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Leuven Child & Youth Institute (L‐C&Y)KU LeuvenLeuvenBelgium
| | - Femke Vanden Bempt
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Leuven Child & Youth Institute (L‐C&Y)KU LeuvenLeuvenBelgium
| | - Toivo Glatz
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Institute of Public HealthCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Leuven Child & Youth Institute (L‐C&Y)KU LeuvenLeuvenBelgium
| | - Maaike Vandermosten
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Leuven Child & Youth Institute (L‐C&Y)KU LeuvenLeuvenBelgium
| | - Jan Wouters
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| |
Collapse
|
3
|
Chalas N, Daube C, Kluger DS, Abbasi O, Nitsch R, Gross J. Speech onsets and sustained speech contribute differentially to delta and theta speech tracking in auditory cortex. Cereb Cortex 2023; 33:6273-6281. [PMID: 36627246 DOI: 10.1093/cercor/bhac502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023] Open
Abstract
When we attentively listen to an individual's speech, our brain activity dynamically aligns to the incoming acoustic input at multiple timescales. Although this systematic alignment between ongoing brain activity and speech in auditory brain areas is well established, the acoustic events that drive this phase-locking are not fully understood. Here, we use magnetoencephalographic recordings of 24 human participants (12 females) while they were listening to a 1 h story. We show that whereas speech-brain coupling is associated with sustained acoustic fluctuations in the speech envelope in the theta-frequency range (4-7 Hz), speech tracking in the low-frequency delta (below 1 Hz) was strongest around onsets of speech, like the beginning of a sentence. Crucially, delta tracking in bilateral auditory areas was not sustained after onsets, proposing a delta tracking during continuous speech perception that is driven by speech onsets. We conclude that both onsets and sustained components of speech contribute differentially to speech tracking in delta- and theta-frequency bands, orchestrating sampling of continuous speech. Thus, our results suggest a temporal dissociation of acoustically driven oscillatory activity in auditory areas during speech tracking, providing valuable implications for orchestration of speech tracking at multiple time scales.
Collapse
Affiliation(s)
- Nikos Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149 Münster, Germany.,Institute for Translational Neuroscience, University of Münster, Albert-Schweitzer-Campus 1, Geb. A9a, Münster, Germany
| | - Christoph Daube
- Centre for Cognitive Neuroimaging, University of Glasgow, 56-64 Hillhead Street, G12 8QB, Glasgow, United Kingdom
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149 Münster, Germany
| | - Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| | - Robert Nitsch
- Institute for Translational Neuroscience, University of Münster, Albert-Schweitzer-Campus 1, Geb. A9a, Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149 Münster, Germany
| |
Collapse
|
4
|
Baltzell LS, Cardosi D, Swaminathan J, Best V. Binaural consequences of speech envelope enhancement. JASA EXPRESS LETTERS 2022; 2:114401. [PMID: 36456369 PMCID: PMC9667908 DOI: 10.1121/10.0015155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The potential binaural consequences of two envelope-based speech enhancement strategies (broadband compression and expansion) were examined. Sensitivity to interaural time differences imposed on four single-word stimuli was measured in listeners with normal hearing and sensorineural hearing loss. While there were no consistent effects of compression or expansion across all words, some potentially interesting word-specific effects were observed.
Collapse
Affiliation(s)
- Lucas S Baltzell
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts 02215, USA , , ,
| | - Daniel Cardosi
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts 02215, USA , , ,
| | - Jayaganesh Swaminathan
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts 02215, USA , , ,
| | - Virginia Best
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts 02215, USA , , ,
| |
Collapse
|
5
|
Vanden Bempt F, Van Herck S, Economou M, Vanderauwera J, Vandermosten M, Wouters J, Ghesquière P. Speech perception deficits and the effect of envelope-enhanced story listening combined with phonics intervention in pre-readers at risk for dyslexia. Front Psychol 2022; 13:1021767. [PMID: 36389538 PMCID: PMC9650384 DOI: 10.3389/fpsyg.2022.1021767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Developmental dyslexia is considered to be most effectively addressed with preventive phonics-based interventions, including grapheme-phoneme coupling and blending exercises. These intervention types require intact speech perception abilities, given their large focus on exercises with auditorily presented phonemes. Yet some children with (a risk for) dyslexia experience problems in this domain due to a poorer sensitivity to rise times, i.e., rhythmic acoustic cues present in the speech envelope. As a result, the often subtle speech perception problems could potentially constrain an optimal response to phonics-based interventions in at-risk children. The current study therefore aimed (1) to extend existing research by examining the presence of potential speech perception deficits in pre-readers at cognitive risk for dyslexia when compared to typically developing peers and (2) to explore the added value of a preventive auditory intervention for at-risk pre-readers, targeting rise time sensitivity, on speech perception and other reading-related skills. To obtain the first research objective, we longitudinally compared speech-in-noise perception between 28 5-year-old pre-readers with and 30 peers without a cognitive risk for dyslexia during the second half of the third year of kindergarten. The second research objective was addressed by exploring growth in speech perception and other reading-related skills in an independent sample of 62 at-risk 5-year-old pre-readers who all combined a 12-week preventive phonics-based intervention (GraphoGame-Flemish) with an auditory story listening intervention. In half of the sample, story recordings contained artificially enhanced rise times (GG-FL_EE group, n = 31), while in the other half, stories remained unprocessed (GG-FL_NE group, n = 31; Clinical Trial Number S60962-https://www.uzleuven.be/nl/clinical-trial-center). Results revealed a slower speech-in-noise perception growth in the at-risk compared to the non-at-risk group, due to an emerged deficit at the end of kindergarten. Concerning the auditory intervention effects, both intervention groups showed equal growth in speech-in-noise perception and other reading-related skills, suggesting no boost of envelope-enhanced story listening on top of the effect of combining GraphoGame-Flemish with listening to unprocessed stories. These findings thus provide evidence for a link between speech perception problems and dyslexia, yet do not support the potential of the auditory intervention in its current form.
Collapse
Affiliation(s)
- Femke Vanden Bempt
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Shauni Van Herck
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maria Economou
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jolijn Vanderauwera
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Maaike Vandermosten
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Drakopoulos F, Vasilkov V, Osses Vecchi A, Wartenberg T, Verhulst S. Model-based hearing-enhancement strategies for cochlear synaptopathy pathologies. Hear Res 2022; 424:108569. [DOI: 10.1016/j.heares.2022.108569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
|
7
|
Liu XP, Wang X. Distinct neuronal types contribute to hybrid temporal encoding strategies in primate auditory cortex. PLoS Biol 2022; 20:e3001642. [PMID: 35613218 PMCID: PMC9132345 DOI: 10.1371/journal.pbio.3001642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Studies of the encoding of sensory stimuli by the brain often consider recorded neurons as a pool of identical units. Here, we report divergence in stimulus-encoding properties between subpopulations of cortical neurons that are classified based on spike timing and waveform features. Neurons in auditory cortex of the awake marmoset (Callithrix jacchus) encode temporal information with either stimulus-synchronized or nonsynchronized responses. When we classified single-unit recordings using either a criteria-based or an unsupervised classification method into regular-spiking, fast-spiking, and bursting units, a subset of intrinsically bursting neurons formed the most highly synchronized group, with strong phase-locking to sinusoidal amplitude modulation (SAM) that extended well above 20 Hz. In contrast with other unit types, these bursting neurons fired primarily on the rising phase of SAM or the onset of unmodulated stimuli, and preferred rapid stimulus onset rates. Such differentiating behavior has been previously reported in bursting neuron models and may reflect specializations for detection of acoustic edges. These units responded to natural stimuli (vocalizations) with brief and precise spiking at particular time points that could be decoded with high temporal stringency. Regular-spiking units better reflected the shape of slow modulations and responded more selectively to vocalizations with overall firing rate increases. Population decoding using time-binned neural activity found that decoding behavior differed substantially between regular-spiking and bursting units. A relatively small pool of bursting units was sufficient to identify the stimulus with high accuracy in a manner that relied on the temporal pattern of responses. These unit type differences may contribute to parallel and complementary neural codes. Neurons in auditory cortex show highly diverse responses to sounds. This study suggests that neuronal type inferred from baseline firing properties accounts for much of this diversity, with a subpopulation of bursting units being specialized for precise temporal encoding.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (X-PL); (XW)
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (X-PL); (XW)
| |
Collapse
|
8
|
Vanden Bempt F, Economou M, Dehairs W, Vandermosten M, Wouters J, Ghesquière P, Vanderauwera J. Feasibility, Enjoyment, and Language Comprehension Impact of a Tablet- and GameFlow-Based Story-Listening Game for Kindergarteners: Methodological and Mixed Methods Study. JMIR Serious Games 2022; 10:e34698. [PMID: 35319480 PMCID: PMC8987971 DOI: 10.2196/34698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Enjoyment plays a key role in the success and feasibility of serious gaming interventions. Unenjoyable games will not be played, and in the case of serious gaming, learning will not occur. Therefore, a so-called GameFlow model has been developed, which intends to guide (serious) game developers in the process of creating and evaluating enjoyment in digital (serious) games. Regarding language learning, a variety of serious games targeting specific language components exist in the market, albeit often without available assessments of enjoyment or feasibility. OBJECTIVE This study evaluates the enjoyment and feasibility of a tablet-based, serious story-listening game for kindergarteners, developed based on the principles of the GameFlow model. This study also preliminarily explores the possibility of using the game to foster language comprehension. METHODS Within the framework of a broader preventive reading intervention, 91 kindergarteners aged 5 years with a cognitive risk for dyslexia were asked to play the story game for 12 weeks, 6 days per week, either combined with a tablet-based phonics intervention or control games. The story game involved listening to and rating stories and responding to content-related questions. Game enjoyment was assessed through postintervention questionnaires, a GameFlow-based evaluation, and in-game story rating data. Feasibility was determined based on in-game general question response accuracy (QRA), reflecting the difficulty level, attrition rate, and final game exposure and training duration. Moreover, to investigate whether game enjoyment and difficulty influenced feasibility, final game exposure and training duration were predicted based on the in-game initial story ratings and initial QRA. Possible growth in language comprehension was explored by analyzing in-game QRA as a function of the game phase and baseline language skills. RESULTS Eventually, data from 82 participants were analyzed. The questionnaire and in-game data suggested an overall enjoyable game experience. However, the GameFlow-based evaluation implied room for game design improvement. The general QRA confirmed a well-adapted level of difficulty for the target sample. Moreover, despite the overall attrition rate of 39% (32/82), 90% (74/82) of the participants still completed 80% of the game, albeit with a large variation in training days. Higher initial QRA significantly increased game exposure (β=.35; P<.001), and lower initial story ratings significantly slackened the training duration (β=-0.16; P=.003). In-game QRA was positively predicted by game phase (β=1.44; P=.004), baseline listening comprehension (β=1.56; P=.002), and vocabulary (β=.16; P=.01), with larger QRA growth over game phases in children with lower baseline listening comprehension skills (β=-0.08; P=.04). CONCLUSIONS Generally, the story game seemed enjoyable and feasible. However, the GameFlow model evaluation and predictive relationships imply room for further game design improvements. Furthermore, our results cautiously suggest the potential of the game to foster language comprehension; however, future randomized controlled trials should further elucidate the impact on language comprehension.
Collapse
Affiliation(s)
- Femke Vanden Bempt
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maria Economou
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ward Dehairs
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maaike Vandermosten
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Jolijn Vanderauwera
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Goldsworthy RL, Bissmeyer SRS, Swaminathan J. Audibility emphasis of low-level sounds improves consonant identification while preserving vowel identification for cochlear implant users. SPEECH COMMUNICATION 2022; 137:52-59. [PMID: 35937542 PMCID: PMC9351334 DOI: 10.1016/j.specom.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Consonant perception is challenging for listeners with hearing loss, and transmission of speech over communication channels further deteriorates the acoustics of consonants. Part of the challenge arises from the short-term low energy spectro-temporal profile of consonants (for example, relative to vowels). We hypothesized that an audibility enhancement approach aimed at boosting the energy of low-level sounds would improve identification of consonants without diminishing vowel identification. We tested this hypothesis with 11 cochlear implant users, who completed an online listening experiment remotely using the media device and implant settings that they most commonly use when making video calls. Loudness growth and detection thresholds were measured for pure tone stimuli to characterize the relative loudness of test conditions. Consonant and vowel identification were measured in quiet and in speech-shaped noise for progressively difficult signal-to-noise ratios (+12, +6, 0, -6 dB SNR). These conditions were tested with and without an audibility-emphasis algorithm designed to enhance consonant identification at the source. The results show that the algorithm improves consonant identification in noise for cochlear implant users without diminishing vowel identification. We conclude that low-level emphasis of audio can improve speech recognition for cochlear implant users in the case of video calls or other telecommunications where the target speech can be preprocessed separately from environmental noise.
Collapse
Affiliation(s)
- Raymond L Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Susan R S Bissmeyer
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Jayaganesh Swaminathan
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, Massachusetts, United States of America
- Department of Audiology, University of the Pacific, San Francisco, California, United States of America
| |
Collapse
|
10
|
Huang EHH, Wu CM, Lin HC. Combination and Comparison of Sound Coding Strategies Using Cochlear Implant Simulation With Mandarin Speech. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2407-2416. [PMID: 34767509 DOI: 10.1109/tnsre.2021.3128064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three cochlear implant (CI) sound coding strategies were combined in the same signal processing path and compared for speech intelligibility with vocoded Mandarin sentences. The three CI coding strategies, biologically-inspired hearing aid algorithm (BioAid), envelope enhancement (EE), and fundamental frequency modulation (F0mod), were combined with the advanced combination encoder (ACE) strategy. Hence, four singular coding strategies and four combinational coding strategies were derived. Mandarin sentences with speech-shape noise were processed using these coding strategies. Speech understanding of vocoded Mandarin sentences was evaluated using short-time objective intelligibility (STOI) and subjective sentence recognition tests with normal-hearing listeners. For signal-to-noise ratios at 5 dB or above, the EE strategy had slightly higher average scores in both STOI and listening tests compared to ACE. The addition of EE to BioAid slightly increased the mean scores for BioAid+EE, which was the combination strategy with the highest scores in both objective and subjective speech intelligibility. The benefits of BioAid, F0mod, and the four combinational coding strategies were not observed in CI simulation. The findings of this study may be useful for the future design of coding strategies and related studies with Mandarin.
Collapse
|
11
|
Van Herck S, Vanden Bempt F, Economou M, Vanderauwera J, Glatz T, Dieudonné B, Vandermosten M, Ghesquière P, Wouters J. Ahead of maturation: Enhanced speech envelope training boosts rise time discrimination in pre-readers at cognitive risk for dyslexia. Dev Sci 2021; 25:e13186. [PMID: 34743382 DOI: 10.1111/desc.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Dyslexia has frequently been related to atypical auditory temporal processing and speech perception. Results of studies emphasizing speech onset cues and reinforcing the temporal structure of the speech envelope, that is, envelope enhancement (EE), demonstrated reduced speech perception deficits in individuals with dyslexia. The use of this strategy as auditory intervention might thus reduce some of the deficits related to dyslexia. Importantly, reading-skill interventions are most effective when they are provided during kindergarten and first grade. Hence, we provided a tablet-based 12-week auditory and phonics-based intervention to pre-readers at cognitive risk for dyslexia and investigated the effect on auditory temporal processing with a rise time discrimination (RTD) task. Ninety-one pre-readers at cognitive risk for dyslexia (aged 5-6) were assigned to two groups receiving a phonics-based intervention and playing a story listening game either with (n = 31) or without (n = 31) EE or a third group playing control games and listening to non-enhanced stories (n = 29). RTD was measured directly before, directly after and 1 year after the intervention. While the groups listening to non-enhanced stories mainly improved after the intervention during first grade, the group listening to enhanced stories improved during the intervention in kindergarten and subsequently remained stable during first grade. Hence, an EE intervention improves auditory processing skills important for the development of phonological skills. This occurred before the onset of reading instruction, preceding the maturational improvement of these skills, hence potentially giving at risk children a head start when learning to read.
Collapse
Affiliation(s)
- Shauni Van Herck
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, Leuven, Belgium
| | - Femke Vanden Bempt
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, Leuven, Belgium
| | - Maria Economou
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, Leuven, Belgium
| | - Jolijn Vanderauwera
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, Leuven, Belgium.,Université Catholique de Louvain, Psychological Sciences Research Institute, Louvain-la-Neuve, Belgium.,Université Catholique de Louvain, Institute of Neuroscience, Louvain-la-Neuve, Belgium
| | - Toivo Glatz
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Public Health, Charitéplatz 1, Berlin, Germany
| | - Benjamin Dieudonné
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maaike Vandermosten
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Baltzell LS, Best V. High-resolution temporal weighting of interaural time differences in speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:1311. [PMID: 34470281 PMCID: PMC8561715 DOI: 10.1121/10.0005934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have shown that for high-rate click trains and low-frequency pure tones, interaural time differences (ITDs) at the onset of stimulus contribute most strongly to the overall lateralization percept (receive the largest perceptual weight). Previous studies have also shown that when these stimuli are modulated, ITDs during the rising portion of the modulation cycle receive increased perceptual weight. Baltzell, Cho, Swaminathan, and Best [(2020). J. Acoust. Soc. Am. 147, 3883-3894] measured perceptual weights for a pair of spoken words ("two" and "eight"), and found that word-initial phonemes receive larger weight than word-final phonemes, suggesting a "word-onset dominance" for speech. Generalizability of this conclusion was limited by a coarse temporal resolution and limited stimulus set. In the present study, temporal weighting functions (TWFs) were measured for four spoken words ("two," "eight," "six," and "nine"). Stimuli were partitioned into 30-ms bins, ITDs were applied independently to each bin, and lateralization judgements were obtained. TWFs were derived using a hierarchical regression model. Results suggest that "word-initial" onset dominance does not generalize across words and that TWFs depend in part on acoustic changes throughout the stimulus. Two model-based predictions were generated to account for observed TWFs, but neither could fully account for the perceptual data.
Collapse
Affiliation(s)
- Lucas S Baltzell
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Virginia Best
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
13
|
Van Hirtum T, Ghesquière P, Wouters J. A Bridge over Troubled Listening: Improving Speech-in-Noise Perception by Children with Dyslexia. J Assoc Res Otolaryngol 2021; 22:465-480. [PMID: 33861393 DOI: 10.1007/s10162-021-00793-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022] Open
Abstract
Developmental dyslexia is most commonly associated with phonological processing difficulties. However, children with dyslexia may experience poor speech-in-noise perception as well. Although there is an ongoing debate whether a speech perception deficit is inherent to dyslexia or acts as an aggravating risk factor compromising learning to read indirectly, improving speech perception might boost reading-related skills and reading acquisition. In the current study, we evaluated advanced speech technology as applied in auditory prostheses, to promote and eventually normalize speech perception of school-aged children with dyslexia, i.e., envelope enhancement (EE). The EE strategy automatically detects and emphasizes onset cues and consequently reinforces the temporal structure of the speech envelope. Our results confirmed speech-in-noise perception difficulties by children with dyslexia. However, we found that exaggerating temporal "landmarks" of the speech envelope (i.e., amplitude rise time and modulations)-by using EE-passively and instantaneously improved speech perception in noise for children with dyslexia. Moreover, the benefit derived from EE was large enough to completely bridge the initial gap between children with dyslexia and their typical reading peers. Taken together, the beneficial outcome of EE suggests an important contribution of the temporal structure of the envelope to speech perception in noise difficulties in dyslexia, providing an interesting foundation for future intervention studies based on auditory and speech rhythm training.
Collapse
Affiliation(s)
- Tilde Van Hirtum
- Department of Neurosciences, Research Group Experimental ORL, KU Leuven University of Leuven, Leuven, Belgium. .,Faculty of Psychology and Educational Sciences, Parenting and Special Education Research Unit, KU Leuven University of Leuven, Leuven, Belgium.
| | - Pol Ghesquière
- Faculty of Psychology and Educational Sciences, Parenting and Special Education Research Unit, KU Leuven University of Leuven, Leuven, Belgium
| | - Jan Wouters
- Department of Neurosciences, Research Group Experimental ORL, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Abstract
Speech processing in the human brain is grounded in non-specific auditory processing in the general mammalian brain, but relies on human-specific adaptations for processing speech and language. For this reason, many recent neurophysiological investigations of speech processing have turned to the human brain, with an emphasis on continuous speech. Substantial progress has been made using the phenomenon of "neural speech tracking", in which neurophysiological responses time-lock to the rhythm of auditory (and other) features in continuous speech. One broad category of investigations concerns the extent to which speech tracking measures are related to speech intelligibility, which has clinical applications in addition to its scientific importance. Recent investigations have also focused on disentangling different neural processes that contribute to speech tracking. The two lines of research are closely related, since processing stages throughout auditory cortex contribute to speech comprehension, in addition to subcortical processing and higher order and attentional processes.
Collapse
Affiliation(s)
- Christian Brodbeck
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, U.S.A
| | - Jonathan Z. Simon
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, U.S.A
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, U.S.A
- Department of Biology, University of Maryland, College Park, Maryland 20742, U.S.A
| |
Collapse
|
15
|
Brodbeck C, Jiao A, Hong LE, Simon JZ. Neural speech restoration at the cocktail party: Auditory cortex recovers masked speech of both attended and ignored speakers. PLoS Biol 2020; 18:e3000883. [PMID: 33091003 PMCID: PMC7644085 DOI: 10.1371/journal.pbio.3000883] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 11/05/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023] Open
Abstract
Humans are remarkably skilled at listening to one speaker out of an acoustic mixture of several speech sources. Two speakers are easily segregated, even without binaural cues, but the neural mechanisms underlying this ability are not well understood. One possibility is that early cortical processing performs a spectrotemporal decomposition of the acoustic mixture, allowing the attended speech to be reconstructed via optimally weighted recombinations that discount spectrotemporal regions where sources heavily overlap. Using human magnetoencephalography (MEG) responses to a 2-talker mixture, we show evidence for an alternative possibility, in which early, active segregation occurs even for strongly spectrotemporally overlapping regions. Early (approximately 70-millisecond) responses to nonoverlapping spectrotemporal features are seen for both talkers. When competing talkers’ spectrotemporal features mask each other, the individual representations persist, but they occur with an approximately 20-millisecond delay. This suggests that the auditory cortex recovers acoustic features that are masked in the mixture, even if they occurred in the ignored speech. The existence of such noise-robust cortical representations, of features present in attended as well as ignored speech, suggests an active cortical stream segregation process, which could explain a range of behavioral effects of ignored background speech. How do humans focus on one speaker when several are talking? MEG responses to a continuous two-talker mixture suggest that, even though listeners attend only to one of the talkers, their auditory cortex tracks acoustic features from both speakers. This occurs even when those features are locally masked by the other speaker.
Collapse
Affiliation(s)
- Christian Brodbeck
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| | - Alex Jiao
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan Z. Simon
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
16
|
Kressner AA, May T, Dau T. Effect of Noise Reduction Gain Errors on Simulated Cochlear Implant Speech Intelligibility. Trends Hear 2019; 23:2331216519825930. [PMID: 30755108 PMCID: PMC6378641 DOI: 10.1177/2331216519825930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been suggested that the most important factor for obtaining high speech intelligibility in noise with cochlear implant (CI) recipients is to preserve the low-frequency amplitude modulations of speech across time and frequency by, for example, minimizing the amount of noise in the gaps between speech segments. In contrast, it has also been argued that the transient parts of the speech signal, such as speech onsets, provide the most important information for speech intelligibility. The present study investigated the relative impact of these two factors on the potential benefit of noise reduction for CI recipients by systematically introducing noise estimation errors within speech segments, speech gaps, and the transitions between them. The introduction of these noise estimation errors directly induces errors in the noise reduction gains within each of these regions. Speech intelligibility in both stationary and modulated noise was then measured using a CI simulation tested on normal-hearing listeners. The results suggest that minimizing noise in the speech gaps can improve intelligibility, at least in modulated noise. However, significantly larger improvements were obtained when both the noise in the gaps was minimized and the speech transients were preserved. These results imply that the ability to identify the boundaries between speech segments and speech gaps may be one of the most important factors for a noise reduction algorithm because knowing the boundaries makes it possible to minimize the noise in the gaps as well as enhance the low-frequency amplitude modulations of the speech.
Collapse
Affiliation(s)
- Abigail A Kressner
- 1 Hearing Systems, Department of Health Technology, Technical University of Denmark, Denmark
| | - Tobias May
- 1 Hearing Systems, Department of Health Technology, Technical University of Denmark, Denmark
| | - Torsten Dau
- 1 Hearing Systems, Department of Health Technology, Technical University of Denmark, Denmark
| |
Collapse
|
17
|
Speech Envelope Enhancement Instantaneously Effaces Atypical Speech Perception in Dyslexia. Ear Hear 2019; 40:1242-1252. [DOI: 10.1097/aud.0000000000000706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Wilsch A, Neuling T, Obleser J, Herrmann CS. Transcranial alternating current stimulation with speech envelopes modulates speech comprehension. Neuroimage 2018; 172:766-774. [PMID: 29355765 DOI: 10.1016/j.neuroimage.2018.01.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 02/03/2023] Open
Abstract
Cortical entrainment of the auditory cortex to the broadband temporal envelope of a speech signal is crucial for speech comprehension. Entrainment results in phases of high and low neural excitability, which structure and decode the incoming speech signal. Entrainment to speech is strongest in the theta frequency range (4-8 Hz), the average frequency of the speech envelope. If a speech signal is degraded, entrainment to the speech envelope is weaker and speech intelligibility declines. Besides perceptually evoked cortical entrainment, transcranial alternating current stimulation (tACS) entrains neural oscillations by applying an electric signal to the brain. Accordingly, tACS-induced entrainment in auditory cortex has been shown to improve auditory perception. The aim of the current study was to modulate speech intelligibility externally by means of tACS such that the electric current corresponds to the envelope of the presented speech stream (i.e., envelope-tACS). Participants performed the Oldenburg sentence test with sentences presented in noise in combination with envelope-tACS. Critically, tACS was induced at time lags of 0-250 ms in 50-ms steps relative to sentence onset (auditory stimuli were simultaneous to or preceded tACS). We performed single-subject sinusoidal, linear, and quadratic fits to the sentence comprehension performance across the time lags. We could show that the sinusoidal fit described the modulation of sentence comprehension best. Importantly, the average frequency of the sinusoidal fit was 5.12 Hz, corresponding to the peaks of the amplitude spectrum of the stimulated envelopes. This finding was supported by a significant 5-Hz peak in the average power spectrum of individual performance time series. Altogether, envelope-tACS modulates intelligibility of speech in noise, presumably by enhancing and disrupting (time lag with in- or out-of-phase stimulation, respectively) cortical entrainment to the speech envelope in auditory cortex.
Collapse
Affiliation(s)
- Anna Wilsch
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Toralf Neuling
- Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, 26129 Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany.
| |
Collapse
|
19
|
Clark NR, Lecluyse W, Jürgens T. Analysis of compressive properties of the BioAid hearing aid algorithm. Int J Audiol 2017; 57:S130-S138. [PMID: 28942716 DOI: 10.1080/14992027.2017.1378931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This technical paper describes a biologically inspired hearing aid algorithm based on a computer model of the peripheral auditory system simulating basilar membrane compression, reflexive efferent feedback and its resulting properties. DESIGN Two evaluations were conducted on the core part of the algorithm, which is an instantaneous compression sandwiched between the attenuation and envelope extraction processes of a relatively slow feedback compressor. STUDY SAMPLE The algorithm's input/output (I/O) function was analysed for different stationary (ambient) sound levels, and the algorithm's response to transient sinusoidal tone complexes was analysed and contrasted to that of a reference dynamic compressor. RESULTS The algorithm's emergent properties are: (1) the I/O function adapts to the average sound level such that processing is linear for levels close to the ambient sound level and (2) onsets of transient signals are marked across time and frequency. CONCLUSION Adaptive linearisation and onset marking, as inherent compressive features of the algorithm, provide potentially beneficial features to hearing-impaired listeners with a relatively simple circuit. The algorithm offers a new, biological perspective on hearing aid amplification.
Collapse
Affiliation(s)
| | - Wendy Lecluyse
- b Department of Children, Young People and Education , University Campus Suffolk , Ipswich , UK , and
| | - Tim Jürgens
- c Medizinische Physik, Forschungszentrum Neurosensorik, and Cluster of Excellence "Hearing4all" , Carl-von-Ossietzky Universität Oldenburg , Oldenburg , Germany
| |
Collapse
|
20
|
Speech onset enhancement improves intelligibility in adverse listening conditions for cochlear implant users. Hear Res 2016; 342:13-22. [DOI: 10.1016/j.heares.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 09/07/2016] [Indexed: 11/17/2022]
|
21
|
Azadpour M, Smith RL. Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing. Hear Res 2016; 342:48-57. [PMID: 27697486 DOI: 10.1016/j.heares.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Cochlear implants (CIs) bypass some of the mechanisms that underlie normal neural behavior as occurs in acoustic hearing. One such neural mechanism is short-term adaptation, which has been proposed to have a significant role in speech perception. Acoustically-evoked neural adaptation has been mainly attributed to the depletion of neurotransmitter in the hair-cell to auditory-nerve synapse and is therefore not fully present in CI stimulation. This study evaluated a signal processing method that integrated a physiological model of hair-cell adaptation into CI speech processing. The linear high-pass adaptation process expanded the range of rapid variations of the electrical signal generated by the clinical processing strategy. Speech perception performance with the adaptation-based processing was compared to that of the clinical strategy in seven CI users. While there was large variability across subjects, the new processing improved sentence recognition and consonant identification scores in quiet in all the tested subjects with an average improvement of 8% and 6% respectively. Consonant recognition scores in babble noise were improved at the higher signal-to-noise ratios tested (10 and 6 dB) only. Information transfer analysis of consonant features showed significant improvements for manner and place of articulation features, but not for voicing. Enhancement of within-channel envelope cues was confirmed by consonant recognition results obtained with single-channel strategies that presented the overall amplitude envelope of the signal on a single active electrode. Adaptation-inspired envelope enhancement techniques can potentially improve perception of important speech features by CI users.
Collapse
Affiliation(s)
- Mahan Azadpour
- Institute for Sensory Research, Department of Biomedical and Chemical Engineering, Syracuse University, 621 Skytop Road, Syracuse, NY 13244, United States.
| | - Robert L Smith
- Institute for Sensory Research, Department of Biomedical and Chemical Engineering, Syracuse University, 621 Skytop Road, Syracuse, NY 13244, United States.
| |
Collapse
|
22
|
Monaghan JJM, Seeber BU. A method to enhance the use of interaural time differences for cochlear implants in reverberant environments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1116. [PMID: 27586742 PMCID: PMC5708523 DOI: 10.1121/1.4960572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of normal-hearing (NH) listeners to exploit interaural time difference (ITD) cues conveyed in the modulated envelopes of high-frequency sounds is poor compared to ITD cues transmitted in the temporal fine structure at low frequencies. Sensitivity to envelope ITDs is further degraded when envelopes become less steep, when modulation depth is reduced, and when envelopes become less similar between the ears, common factors when listening in reverberant environments. The vulnerability of envelope ITDs is particularly problematic for cochlear implant (CI) users, as they rely on information conveyed by slowly varying amplitude envelopes. Here, an approach to improve access to envelope ITDs for CIs is described in which, rather than attempting to reduce reverberation, the perceptual saliency of cues relating to the source is increased by selectively sharpening peaks in the amplitude envelope judged to contain reliable ITDs. Performance of the algorithm with room reverberation was assessed through simulating listening with bilateral CIs in headphone experiments with NH listeners. Relative to simulated standard CI processing, stimuli processed with the algorithm generated lower ITD discrimination thresholds and increased extents of laterality. Depending on parameterization, intelligibility was unchanged or somewhat reduced. The algorithm has the potential to improve spatial listening with CIs.
Collapse
Affiliation(s)
- Jessica J M Monaghan
- Medical Research Council Institute of Hearing Research, Nottingham, United Kingdom
| | - Bernhard U Seeber
- Medical Research Council Institute of Hearing Research, Nottingham, United Kingdom
| |
Collapse
|
23
|
Rallapalli VH, Alexander JM. Neural-scaled entropy predicts the effects of nonlinear frequency compression on speech perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3061-72. [PMID: 26627780 PMCID: PMC4654735 DOI: 10.1121/1.4934731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
The Neural-Scaled Entropy (NSE) model quantifies information in the speech signal that has been altered beyond simple gain adjustments by sensorineural hearing loss (SNHL) and various signal processing. An extension of Cochlear-Scaled Entropy (CSE) [Stilp, Kiefte, Alexander, and Kluender (2010). J. Acoust. Soc. Am. 128(4), 2112-2126], NSE quantifies information as the change in 1-ms neural firing patterns across frequency. To evaluate the model, data from a study that examined nonlinear frequency compression (NFC) in listeners with SNHL were used because NFC can recode the same input information in multiple ways in the output, resulting in different outcomes for different speech classes. Overall, predictions were more accurate for NSE than CSE. The NSE model accurately described the observed degradation in recognition, and lack thereof, for consonants in a vowel-consonant-vowel context that had been processed in different ways by NFC. While NSE accurately predicted recognition of vowel stimuli processed with NFC, it underestimated them relative to a low-pass control condition without NFC. In addition, without modifications, it could not predict the observed improvement in recognition for word final /s/ and /z/. Findings suggest that model modifications that include information from slower modulations might improve predictions across a wider variety of conditions.
Collapse
Affiliation(s)
- Varsha H Rallapalli
- Department of Speech, Language and Hearing Sciences, Purdue University, 715 Clinic Drive, Lyles-Porter Hall, West Lafayette, Indiana 47907, USA
| | - Joshua M Alexander
- Department of Speech, Language and Hearing Sciences, Purdue University, 715 Clinic Drive, Lyles-Porter Hall, West Lafayette, Indiana 47907, USA
| |
Collapse
|