1
|
Manley GA. Otoacoustic Emissions in Non-Mammals. Audiol Res 2022; 12:260-272. [PMID: 35645197 PMCID: PMC9149831 DOI: 10.3390/audiolres12030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Otoacoustic emissions (OAE) that were sound-induced, current-induced, or spontaneous have been measured in non-mammalian land vertebrates, including in amphibians, reptiles, and birds. There are no forms of emissions known from mammals that have not also been observed in non-mammals. In each group and species, the emission frequencies clearly lie in the range known to be processed by the hair cells of the respective hearing organs. With some notable exceptions, the patterns underlying the measured spectra, input-output functions, suppression threshold curves, etc., show strong similarities to OAE measured in mammals. These profound similarities are presumably traceable to the fact that emissions are produced by active hair-cell mechanisms that are themselves dependent upon comparable nonlinear cellular processes. The differences observed—for example, in the width of spontaneous emission peaks and delay times in interactions between peaks—should provide insights into how hair-cell activity is coupled within the organ and thus partially routed out into the middle ear.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Department of Neuroscience, Faculty of Medicine, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Thipmaungprom Y, Prawanta E, Leelasiriwong W, Thammachoti P, Roongthumskul Y. Intermodulation distortions from an array of active nonlinear oscillators. CHAOS (WOODBURY, N.Y.) 2021; 31:123106. [PMID: 34972317 DOI: 10.1063/5.0063678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Coupling is critical in nonlinear dynamical systems. It affects the stabilities of individual oscillators as well as the characteristics of their response to external forces. In the auditory system, the mechanical coupling between sensory hair cells has been proposed as a mechanism that enhances the inner ear's sensitivity and frequency discrimination. While extensive studies investigate the effects of coupling on the detection of a sinusoidal signal, the role of coupling underlying the response to a complex tone remains elusive. In this study, we measured the acoustic intermodulation distortions (IMDs) produced by the inner ears of two frog species stimulated simultaneously by two pure tones. The distortion intensity level displayed multiple peaks across stimulus frequencies, in contrast to the generic response from a single nonlinear oscillator. The multiple-peaked pattern was altered upon varying the stimulus intensity or an application of a perturbation tone near the distortion frequency. Numerical results of IMDs from a chain of coupled active nonlinear oscillators driven by two sinusoidal forces reveal the effects of coupling on the variation profile of the distortion amplitude. When the multiple-peaked pattern is observed, the chain's motion at the distortion frequency displays both a progressive wave and a standing wave. The latter arises due to coupling and is responsible for the multiple-peaked pattern. Our results illustrate the significance of mechanical coupling between active hair cells in the generation of auditory distortions, as a mechanism underlying the formation of in vivo standing waves of distortion signals.
Collapse
Affiliation(s)
- Yanathip Thipmaungprom
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekkanat Prawanta
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisit Leelasiriwong
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Thammachoti
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yuttana Roongthumskul
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Wit HP, Manley GA, van Dijk P. Modeling the characteristics of spontaneous otoacoustic emissions in lizards. Hear Res 2019; 385:107840. [PMID: 31760263 DOI: 10.1016/j.heares.2019.107840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/19/2022]
Abstract
Lizard auditory papillae have proven to be an attractive object for modelling the production of spontaneous otoacoustic emissions (SOAE). Here we use an established model (Vilfan and Duke, 2008) and extend it by exploring the effect of varying the number of oscillating elements, the strength of the parameters that describe the coupling between oscillators, the strength of the oscillators, and additive noise. The most remarkable result is that the actual number of oscillating elements hardly influences the spectral pattern, explaining why spectra from very different papillar dimensions are similar. Furthermore, the spacing between spectral peaks primarily depends on the reactive coupling between the oscillator elements. This is consistent with observed differences between lizard species with respect to tectorial covering of hair cells and SOAE peak spacings. Thus, the model provides a basic understanding of the variation in SOAE properties across lizard species.
Collapse
Affiliation(s)
- Hero P Wit
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, the Netherlands; University of Groningen, Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), Groningen, the Netherlands.
| | - Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Center Neuroscience, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - P van Dijk
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, the Netherlands; University of Groningen, Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), Groningen, the Netherlands
| |
Collapse
|
4
|
Roongthumskul Y, Ó Maoiléidigh D, Hudspeth AJ. Bilateral Spontaneous Otoacoustic Emissions Show Coupling between Active Oscillators in the Two Ears. Biophys J 2019; 116:2023-2034. [PMID: 31010667 PMCID: PMC6531668 DOI: 10.1016/j.bpj.2019.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 11/03/2022] Open
Abstract
Spontaneous otoacoustic emissions (SOAEs) are weak sounds that emanate from the ears of tetrapods in the absence of acoustic stimulation. These emissions are an epiphenomenon of the inner ear's active process, which enhances the auditory system's sensitivity to weak sounds, but their mechanism of production remains a matter of debate. We recorded SOAEs simultaneously from the two ears of the tokay gecko and found that binaural emissions could be strongly correlated: some emissions occurred at the same frequency in both ears and were highly synchronized. Suppression of the emissions in one ear often changed the amplitude or shifted the frequency of emissions in the other. Decreasing the frequency of emissions from one ear by lowering its temperature usually reduced the frequency of the contralateral emissions. To understand the relationship between binaural SOAEs, we developed a mathematical model of the eardrums as noisy nonlinear oscillators coupled by the air within an animal's mouth. By according with the model, the results indicate that some SOAEs are generated bilaterally through acoustic coupling across the oral cavity. The model predicts that sound localization through the acoustic coupling between ears is influenced by the active processes of both ears.
Collapse
Affiliation(s)
- Yuttana Roongthumskul
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York
| | - Dáibhid Ó Maoiléidigh
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - A J Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York.
| |
Collapse
|
5
|
Manley GA, Wartini A, Schwabedissen G, Siegl E. Spontaneous otoacoustic emissions in teiid lizards. Hear Res 2018; 363:98-108. [PMID: 29551307 DOI: 10.1016/j.heares.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/21/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022]
Abstract
SOAE from the last major lizard family not yet systematically investigated, the teiids, were collected from the genera Callopistes, Tupinambis and Cnemidophorus. Although their papillae show characteristics of the family Teiidae, the papillae differ both in their size and in the arrangement of uni- and bi-directional hair-cell areas. Among these three genera, Callopistes showed few (2 or 3) SOAE peaks, whereas the other two genera showed more (up to 6 per ear). In the absence of knowledge of the tonotopic maps, however, it was not possible to clearly relate the spectral patterns to the differences in papillar anatomy, suggesting that the determinants of these patterns may be more subtle than anticipated.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Centre Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; Lehrstuhl für Zoologie, Technische Universität München, 85354 Freising-Weihenstephan, Germany.
| | - Andrea Wartini
- Lehrstuhl für Zoologie, Technische Universität München, 85354 Freising-Weihenstephan, Germany.
| | - Gabriele Schwabedissen
- Lehrstuhl für Zoologie, Technische Universität München, 85354 Freising-Weihenstephan, Germany.
| | - Elke Siegl
- Lehrstuhl für Zoologie, Technische Universität München, 85354 Freising-Weihenstephan, Germany.
| |
Collapse
|
6
|
Dewey JB, Dhar S. A common microstructure in behavioral hearing thresholds and stimulus-frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:3069. [PMID: 29195446 PMCID: PMC5693793 DOI: 10.1121/1.5009562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Behavioral hearing thresholds and otoacoustic emission (OAE) spectra often exhibit quasiperiodic fluctuations with frequency. For behavioral and OAE responses to single tones-the latter referred to as stimulus-frequency otoacoustic emissions (SFOAEs)-this microstructure has been attributed to intracochlear reflections of SFOAE energy between its region of generation and the middle ear boundary. However, the relationship between behavioral and SFOAE microstructures, as well as their presumed dependence on the properties of the SFOAE-generation mechanism, have yet to be adequately examined. To address this, behavioral thresholds and SFOAEs evoked by near-threshold tones were compared in 12 normal-hearing female subjects. The microstructures observed in thresholds and both SFOAE amplitudes and delays were found to be strikingly similar. SFOAE phase accumulated an integer number of cycles between the frequencies of microstructure maxima, consistent with a dependence of microstructure periodicity on SFOAE propagation delays. Additionally, microstructure depth was correlated with SFOAE magnitude in a manner resembling that predicted by the intracochlear reflection framework, after assuming reasonable values of parameters related to middle ear transmission. Further exploration of this framework may yield more precise estimates of such parameters and provide insight into their frequency dependence.
Collapse
Affiliation(s)
- James B Dewey
- Roxelyn & Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, 2240 Campus Drive, Evanston, Illinois 60208, USA
| | - Sumitrajit Dhar
- Roxelyn & Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, 2240 Campus Drive, Evanston, Illinois 60208, USA
| |
Collapse
|
7
|
Bell A, Wit HP. The vibrating reed frequency meter: digital investigation of an early cochlear model. PeerJ 2015; 3:e1333. [PMID: 26623180 PMCID: PMC4662588 DOI: 10.7717/peerj.1333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/28/2015] [Indexed: 01/11/2023] Open
Abstract
The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.
Collapse
Affiliation(s)
- Andrew Bell
- John Curtin School of Medical Research, Australian National University , Canberra , Australia
| | - Hero P Wit
- Department of Otolaryngology/Head and Neck Surgery, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
8
|
Bergevin C, Manley GA, Köppl C. Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Proc Natl Acad Sci U S A 2015; 112:3362-7. [PMID: 25737537 PMCID: PMC4371923 DOI: 10.1073/pnas.1418569112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Otoacoustic emissions (OAEs) are faint sounds generated by healthy inner ears that provide a window into the study of auditory mechanics. All vertebrate classes exhibit OAEs to varying degrees, yet the biophysical origins are still not well understood. Here, we analyzed both spontaneous (SOAE) and stimulus-frequency (SFOAE) otoacoustic emissions from a bird (barn owl, Tyto alba) and a lizard (green anole, Anolis carolinensis). These species possess highly disparate macromorphologies of the inner ear relative to each other and to mammals, thereby allowing for novel insights into the biomechanical mechanisms underlying OAE generation. All ears exhibited robust OAE activity, and our chief observation was that SFOAE phase accumulation between adjacent SOAE peak frequencies clustered about an integral number of cycles. Being highly similar to published results from human ears, we argue that these data indicate a common underlying generator mechanism of OAEs across all vertebrates, despite the absence of morphological features thought essential to mammalian cochlear mechanics. We suggest that otoacoustic emissions originate from phase coherence in a system of coupled oscillators, which is consistent with the notion of "coherent reflection" but does not explicitly require a mammalian-type traveling wave. Furthermore, comparison between SFOAE delays and auditory nerve fiber responses for the barn owl strengthens the notion that most OAE delay can be attributed to tuning.
Collapse
Affiliation(s)
- Christopher Bergevin
- Department of Physics & Astronomy and Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada; and
| | - Geoffrey A Manley
- Cluster of Excellence "Hearing4all," Research Center Neurosensory Science, and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all," Research Center Neurosensory Science, and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|