1
|
Fan Y, Gifford RH. Objective measure of binaural processing: Acoustic change complex in response to interaural phase differences. Hear Res 2024; 448:109020. [PMID: 38763034 DOI: 10.1016/j.heares.2024.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Combining cochlear implants with binaural acoustic hearing via preserved hearing in the implanted ear(s) is commonly referred to as combined electric and acoustic stimulation (EAS). EAS fittings can provide patients with significant benefit for speech recognition in complex noise, perceived listening difficulty, and horizontal-plane localization as compared to traditional bimodal hearing conditions with contralateral and monaural acoustic hearing. However, EAS benefit varies across patients and the degree of benefit is not reliably related to the underlying audiogram. Previous research has indicated that EAS benefit for speech recognition in complex listening scenarios and localization is significantly correlated with the patients' binaural cue sensitivity, namely interaural time differences (ITD). In the context of pure tones, interaural phase differences (IPD) and ITD can be understood as two perspectives on the same phenomenon. Through simple mathematical conversion, one can be transformed into the other, illustrating their inherent interrelation for spatial hearing abilities. However, assessing binaural cue sensitivity is not part of a clinical assessment battery as psychophysical tasks are time consuming, require training to achieve performance asymptote, and specialized programming and software all of which render this clinically unfeasible. In this study, we investigated the possibility of using an objective measure of binaural cue sensitivity by the acoustic change complex (ACC) via imposition of an IPD of varying degrees at stimulus midpoint. Ten adult listeners with normal hearing were assessed on tasks of behavioral and objective binaural cue sensitivity for carrier frequencies of 250 and 1000 Hz. Results suggest that 1) ACC amplitude increases with IPD; 2) ACC-based IPD sensitivity for 250 Hz is significantly correlated with behavioral ITD sensitivity; 3) Participants were more sensitive to IPDs at 250 Hz as compared to 1000 Hz. Thus, this objective measure of IPD sensitivity may hold clinical application for pre- and post-operative assessment for individuals meeting candidacy indications for cochlear implantation with low-frequency acoustic hearing preservation as this relatively quick and objective measure may provide clinicians with information identifying patients most likely to derive benefit from EAS technology.
Collapse
Affiliation(s)
- Yibo Fan
- Department of Hearing and Speech Sciences, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - René H Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Camarena A, Goldsworthy RL. Characterizing the relationship between modulation sensitivity and pitch resolution in cochlear implant users. Hear Res 2024; 448:109026. [PMID: 38776706 DOI: 10.1016/j.heares.2024.109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Cochlear implants are medical devices that have restored hearing to approximately one million people around the world. Outcomes are impressive and most recipients attain excellent speech comprehension in quiet without relying on lip-reading cues, but pitch resolution is poor compared to normal hearing. Amplitude modulation of electrical stimulation is a primary cue for pitch perception in cochlear implant users. The experiments described in this article focus on the relationship between sensitivity to amplitude modulations and pitch resolution based on changes in the frequency of amplitude modulations. In the first experiment, modulation sensitivity and pitch resolution were measured in adults with no known hearing loss and in cochlear implant users with sounds presented to and processed by their clinical devices. Stimuli were amplitude-modulated sinusoids and amplitude-modulated narrow-band noises. Modulation detection and modulation frequency discrimination were measured for modulation frequencies centered on 110, 220, and 440 Hz. Pitch resolution based on changes in modulation frequency was measured for modulation depths of 25 %, 50 %, 100 %, and for a half-waved rectified modulator. Results revealed a strong linear relationship between modulation sensitivity and pitch resolution for cochlear implant users and peers with no known hearing loss. In the second experiment, cochlear implant users took part in analogous procedures of modulation sensitivity and pitch resolution but bypassing clinical sound processing using single-electrode stimulation. Results indicated that modulation sensitivity and pitch resolution was better conveyed by single-electrode stimulation than by clinical processors. Results at 440 Hz were worse, but also not well conveyed by clinical sound processing, so it remains unclear whether the 300 Hz perceptual limit described in the literature is a technological or biological limitation. These results highlight modulation depth and sensitivity as critical factors for pitch resolution in cochlear implant users and characterize the relationship that should inform the design of modulation enhancement algorithms for cochlear implants.
Collapse
Affiliation(s)
- Andres Camarena
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Raymond L Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.
| |
Collapse
|
3
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope sensitivity: Within- and across-ear envelope comparisons in listeners with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3294. [PMID: 36586876 PMCID: PMC9731674 DOI: 10.1121/10.0016365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For listeners with bilateral cochlear implants (BiCIs), patient-specific differences in the interface between cochlear implant (CI) electrodes and the auditory nerve can lead to degraded temporal envelope information, compromising the ability to distinguish between targets of interest and background noise. It is unclear how comparisons of degraded temporal envelope information across spectral channels (i.e., electrodes) affect the ability to detect differences in the temporal envelope, specifically amplitude modulation (AM) rate. In this study, two pulse trains were presented simultaneously via pairs of electrodes in different places of stimulation, within and/or across ears, with identical or differing AM rates. Results from 11 adults with BiCIs indicated that sensitivity to differences in AM rate was greatest when stimuli were paired between different places of stimulation in the same ear. Sensitivity from pairs of electrodes was predicted by the poorer electrode in the pair or the difference in fidelity between both electrodes in the pair. These findings suggest that electrodes yielding poorer temporal fidelity act as a bottleneck to comparisons of temporal information across frequency and ears, limiting access to the cues used to segregate sounds, which has important implications for device programming and optimizing patient outcomes with CIs.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
5
|
Hu H, Klug J, Dietz M. Simulation of ITD-Dependent Single-Neuron Responses Under Electrical Stimulation and with Amplitude-Modulated Acoustic Stimuli. J Assoc Res Otolaryngol 2022; 23:535-550. [PMID: 35334001 PMCID: PMC9437183 DOI: 10.1007/s10162-021-00823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Interaural time difference (ITD) sensitivity with cochlear implant stimulation is remarkably similar to envelope ITD sensitivity using conventional acoustic stimulation. This holds true for human perception, as well as for neural response rates recorded in the inferior colliculus of several mammalian species. We hypothesize that robust excitatory-inhibitory (EI) interaction is the dominant mechanism. Therefore, we connected the same single EI-model neuron to either a model of the normal acoustic auditory periphery or to a model of the electrically stimulated auditory nerve. The model captured most features of the experimentally obtained response properties with electric stimulation, such as the shape of rate-ITD functions, the dependence on stimulation level, and the pulse rate or modulation-frequency dependence. Rate-ITD functions with high-rate, amplitude-modulated electric stimuli were very similar to their acoustic counterparts. Responses obtained with unmodulated electric pulse trains most resembled acoustic filtered clicks. The fairly rapid decline of ITD sensitivity at rates above 300 pulses or cycles per second is correctly simulated by the 3.1-ms time constant of the inhibitory post-synaptic conductance. As the model accounts for these basic properties, it is expected to help in understanding and quantifying the binaural hearing abilities with electric stimulation when integrated in bigger simulation frameworks.
Collapse
Affiliation(s)
- Hongmei Hu
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany.
| | - Jonas Klug
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
6
|
Lertpoompunya A, Ozmeral EJ, Higgins NC, Eddins AC, Eddins DA. Large group differences in binaural sensitivity are represented in preattentive responses from auditory cortex. J Neurophysiol 2022; 127:660-672. [PMID: 35108112 PMCID: PMC8896993 DOI: 10.1152/jn.00360.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Correlated sounds presented to two ears are perceived as compact and centrally lateralized, whereas decorrelation between ears leads to intracranial image widening. Though most listeners have fine resolution for perceptual changes in interaural correlation (IAC), some investigators have reported large variability in IAC thresholds, and some normal-hearing listeners even exhibit seemingly debilitating IAC thresholds. It is unknown whether or not this variability across individuals and outlier manifestations are a product of task difficulty, poor training, or a neural deficit in the binaural auditory system. The purpose of this study was first to identify listeners with normal and abnormal IAC resolution, second to evaluate the neural responses elicited by IAC changes, and third to use a well-established model of binaural processing to determine a potential explanation for observed individual variability. Nineteen subjects were enrolled in the study, eight of whom were identified as poor performers in the IAC-threshold task. Global scalp responses (N1 and P2 amplitudes of an auditory change complex) in the individuals with poor IAC behavioral thresholds were significantly smaller than for listeners with better IAC resolution. Source-localized evoked responses confirmed this group effect in multiple subdivisions of the auditory cortex, including Heschl's gyrus, planum temporale, and the temporal sulcus. In combination with binaural modeling results, this study provides objective electrophysiological evidence of a binaural processing deficit linked to internal noise, that corresponds to very poor IAC thresholds in listeners that otherwise have normal audiometric profiles and lack spatial hearing complaints.NEW & NOTEWORTHY Group differences in the perception of interaural correlation (IAC) were observed in human adults with normal audiometric sensitivity. These differences were reflected in cortical-evoked activity measured via electroencephalography (EEG). For some participants, weak representation of the binaural cue at the cortical level in preattentive N1-P2 cortical responses may be indicative of a potential processing deficit. Such a deficit may be related to a poorly understood condition known as hidden hearing loss.
Collapse
Affiliation(s)
- Angkana Lertpoompunya
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
- Department of Communication Sciences and Disorders, Mahidol University, Bangkok, Thailand
| | - Erol J Ozmeral
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - Nathan C Higgins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - Ann C Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
- Department of Communication Sciences and Disorders, Mahidol University, Bangkok, Thailand
| | - David A Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
- Department of Communication Sciences and Disorders, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Goldsworthy RL, Bissmeyer SRS, Camarena A. Advantages of Pulse Rate Compared to Modulation Frequency for Temporal Pitch Perception in Cochlear Implant Users. J Assoc Res Otolaryngol 2022; 23:137-150. [PMID: 34981263 PMCID: PMC8782986 DOI: 10.1007/s10162-021-00828-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 12/01/2021] [Indexed: 02/03/2023] Open
Abstract
Most cochlear implants encode the fundamental frequency of periodic sounds by amplitude modulation of constant-rate pulsatile stimulation. Pitch perception provided by such stimulation strategies is markedly poor. Two experiments are reported here that consider potential advantages of pulse rate compared to modulation frequency for providing stimulation timing cues for pitch. The first experiment examines beat frequency distortion that occurs when modulating constant-rate pulsatile stimulation. This distortion has been reported on previously, but the results presented here indicate that distortion occurs for higher stimulation rates than previously reported. The second experiment examines pitch resolution as provided by pulse rate compared to modulation frequency. The results indicate that pitch discrimination is better with pulse rate than with modulation frequency. The advantage was large for rates near what has been suggested as the upper limit of temporal pitch perception conveyed by cochlear implants. The results are relevant to sound processing design for cochlear implants particularly for algorithms that encode fundamental frequency into deep envelope modulations or into precisely timed pulsatile stimulation.
Collapse
Affiliation(s)
- Raymond L Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Susan R S Bissmeyer
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Andres Camarena
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Brughera A, Ballestero JA, McAlpine D. Sensitivity to Envelope Interaural Time Differences: Modeling Auditory Modulation Filtering. J Assoc Res Otolaryngol 2022; 23:35-57. [PMID: 34741225 PMCID: PMC8782955 DOI: 10.1007/s10162-021-00816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/30/2021] [Indexed: 02/03/2023] Open
Abstract
For amplitude-modulated sound, the envelope interaural time difference (ITDENV) is a potential cue for sound-source location. ITDENV is encoded in the lateral superior olive (LSO) of the auditory brainstem, by excitatory-inhibitory (EI) neurons receiving ipsilateral excitation and contralateral inhibition. Between human listeners, sensitivity to ITDENV varies considerably, but ultimately decreases with increasing stimulus carrier frequency, and decreases more strongly with increasing modulation rate. Mechanisms underlying the variation in behavioral sensitivity remain unclear. Here, with increasing carrier frequency (4-10 kHz), as we phenomenologically model the associated decrease in ITDENV sensitivity using arbitrarily fewer neurons consistent across populations, we computationally model the variable sensitivity across human listeners and modulation rates (32-800 Hz) as the decreasing range of membrane frequency responses in LSO neurons. Transposed tones stimulate a bilateral auditory-periphery model, driving model EI neurons where electrical membrane impedance filters the frequency content of inputs driven by amplitude-modulated sound, evoking modulation filtering. Calculated from Fisher information in spike-rate functions of ITDENV, for model EI neuronal populations distinctly reflecting the LSO range in membrane frequency responses, just-noticeable differences in ITDENV collectively reproduce the largest variation in ITDENV sensitivity across human listeners. These slow to fast model populations each generally match the best human ITDENV sensitivity at a progressively higher modulation rate, by membrane-filtering and spike-generation properties producing realistically less than Poisson variance. Non-resonant model EI neurons are also sensitive to interaural intensity differences. With peripheral filters centered between carrier frequency and modulation sideband, fast resonant model EI neurons extend ITDENV sensitivity above 500-Hz modulation.
Collapse
Affiliation(s)
- Andrew Brughera
- grid.1004.50000 0001 2158 5405Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales Australia ,grid.189504.10000 0004 1936 7558Department of Biomedical Engineering, Boston University, Boston, MA USA
| | - Jimena A. Ballestero
- Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - David McAlpine
- grid.1004.50000 0001 2158 5405Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales Australia
| |
Collapse
|
9
|
Ludwig AA, Meuret S, Battmer RD, Schönwiesner M, Fuchs M, Ernst A. Sound Localization in Single-Sided Deaf Participants Provided With a Cochlear Implant. Front Psychol 2021; 12:753339. [PMID: 34744930 PMCID: PMC8566543 DOI: 10.3389/fpsyg.2021.753339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Spatial hearing is crucial in real life but deteriorates in participants with severe sensorineural hearing loss or single-sided deafness. This ability can potentially be improved with a unilateral cochlear implant (CI). The present study investigated measures of sound localization in participants with single-sided deafness provided with a CI. Sound localization was measured separately at eight loudspeaker positions (4°, 30°, 60°, and 90°) on the CI side and on the normal-hearing side. Low- and high-frequency noise bursts were used in the tests to investigate possible differences in the processing of interaural time and level differences. Data were compared to normal-hearing adults aged between 20 and 83. In addition, the benefit of the CI in speech understanding in noise was compared to the localization ability. Fifteen out of 18 participants were able to localize signals on the CI side and on the normal-hearing side, although performance was highly variable across participants. Three participants always pointed to the normal-hearing side, irrespective of the location of the signal. The comparison with control data showed that participants had particular difficulties localizing sounds at frontal locations and on the CI side. In contrast to most previous results, participants were able to localize low-frequency signals, although they localized high-frequency signals more accurately. Speech understanding in noise was better with the CI compared to testing without CI, but only at a position where the CI also improved sound localization. Our data suggest that a CI can, to a large extent, restore localization in participants with single-sided deafness. Difficulties may remain at frontal locations and on the CI side. However, speech understanding in noise improves when wearing the CI. The treatment with a CI in these participants might provide real-world benefits, such as improved orientation in traffic and speech understanding in difficult listening situations.
Collapse
Affiliation(s)
- Alexandra Annemarie Ludwig
- Section of Phoniatrics and Audiology, Department of Otorhinolaryngology, University Hospital of Leipzig, Leipzig, Germany.,Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Sylvia Meuret
- Section of Phoniatrics and Audiology, Department of Otorhinolaryngology, University Hospital of Leipzig, Leipzig, Germany
| | - Rolf-Dieter Battmer
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany.,Hearing Therapy Center Potsdam, Potsdam, Germany
| | | | - Michael Fuchs
- Section of Phoniatrics and Audiology, Department of Otorhinolaryngology, University Hospital of Leipzig, Leipzig, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany.,Hospital of the University of Berlin, Charité Medical School, Berlin, Germany
| |
Collapse
|
10
|
Goldsworthy RL, Camarena A, Bissmeyer SRS. Pitch perception is more robust to interference and better resolved when provided by pulse rate than by modulation frequency of cochlear implant stimulation. Hear Res 2021; 409:108319. [PMID: 34340020 PMCID: PMC9343238 DOI: 10.1016/j.heares.2021.108319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023]
Abstract
Cochlear implants are medical devices that have been used to restore hearing to more than half a million people worldwide. Most recipients achieve high levels of speech comprehension through these devices, but speech comprehension in background noise and music appreciation in general are markedly poor compared to normal hearing. A key aspect of hearing that is notably diminished in cochlear implant outcomes is the sense of pitch provided by these devices. Pitch perception is an important factor affecting speech comprehension in background noise and is critical for music perception. The present article summarizes two experiments that examine the robustness and resolution of pitch perception as provided by cochlear implant stimulation timing. The driving hypothesis is that pitch conveyed by stimulation timing cues is more robust and better resolved when provided by variable pulse rates than by modulation frequency of constant-rate stimulation. Experiment 1 examines the robustness for hearing a large, one-octave, pitch difference in the presence of interfering electrical stimulation. With robustness to interference characterized for an otherwise easily discernible pitch difference, Experiment 2 examines the resolution of discrimination thresholds in the presence of interference as conveyed by modulation frequency or by pulse rate. These experiments test for an advantage of stimulation with precise temporal cues. The results indicate that pitch provided by pulse rate is both more robust to interference and is better resolved compared to when provided by modulation frequency. These results should inform the development of new sound processing strategies for cochlear implants designed to encode fundamental frequency of sounds into precise temporal stimulation.
Collapse
Affiliation(s)
- Raymond L Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Andres Camarena
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Susan R S Bissmeyer
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Bernstein LR, Trahiotis C. Binaural detection as a joint function of masker bandwidth, masker interaural correlation, and interaural time delay: Empirical data and modeling. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3481. [PMID: 33379873 DOI: 10.1121/10.0002869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Empirical data are reported demonstrating how binaural detection is affected by joint variation of masker bandwidth, masker interaural correlation, and interaural time delay (ITD) of both masker and tonal signal. Most of the data were obtained with stimuli centered at 500 Hz; supplemental measures were obtained with stimuli centered at 4 kHz. The results indicate that as the interaural correlation of the masker (ρ) is decreased there is (1) an overall increase in threshold signal-to-noise ratio (S/N) and (2) a progressively smaller effect on threshold S/N as ITD is increased. All of the data were accounted for quite accurately using the same quantitative, interaural cross-correlation-based model that was recently shown to account for binaural detection and discrimination data obtained in previous experiments. Importantly, the new data were predicted and explained using values of model parameters that were identical or very close to those found to predict accurately the earlier data. The success of the enterprise attests to the robustness of the approach and the generality of the model's ability to make accurate predictions of binaural performance over a wide range of historically important stimulus conditions.
Collapse
Affiliation(s)
- Leslie R Bernstein
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Constantine Trahiotis
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
12
|
Anderson SR, Easter K, Goupell MJ. Effects of rate and age in processing interaural time and level differences in normal-hearing and bilateral cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3232. [PMID: 31795662 PMCID: PMC6948219 DOI: 10.1121/1.5130384] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implants (BICIs) provide improved sound localization and speech understanding in noise compared to unilateral CIs. However, normal-hearing (NH) listeners demonstrate superior binaural processing abilities compared to BICI listeners. This investigation sought to understand differences between NH and BICI listeners' processing of interaural time differences (ITDs) and interaural level differences (ILDs) as a function of fine-structure and envelope rate using an intracranial lateralization task. The NH listeners were presented band-limited acoustical pulse trains and sinusoidally amplitude-modulated tones using headphones, and the BICI listeners were presented single-electrode electrical pulse trains using direct stimulation. Lateralization range increased as fine-structure rate increased for ILDs in BICI listeners. Lateralization range decreased for rates above 100 Hz for fine-structure ITDs, but decreased for rates lower or higher than 100 Hz for envelope ITDs in both groups. Lateralization ranges for ITDs were smaller for BICI listeners on average. After controlling for age, older listeners showed smaller lateralization ranges and BICI listeners had a more rapid decline for ITD sensitivity at 300 pulses per second. This work suggests that age confounds comparisons between NH and BICI listeners in temporal processing tasks and that some NH-BICI binaural processing differences persist even when age differences are adequately addressed.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Kyle Easter
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
13
|
Goupell MJ, Fong S, Stakhovskaya O. The effect of envelope modulations on binaural processing. Hear Res 2019; 379:117-127. [PMID: 31154164 DOI: 10.1016/j.heares.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
An experiment was performed with 10 young normal-hearing listeners that attempted to determine if envelope modulations affected binaural processing in bandlimited pulse trains. Listeners detected an interaurally out-of-phase carrier pulse train in the presence of different amplitude modulations. The peaks of the pulses were constant (called "flat" or F), followed envelope modulations from an interaurally correlated 50-Hz bandwidth noise (called CM), or followed modulations from an interaurally uncorrelated noise (called UM). The pulse rate was varied from 50 to 500 pulses per second (pps) and the center frequency (CF) was 4 or 8 kHz. It was hypothesized that CM would cause no change or an increase in performance compared to F; UM would cause a decrease because of the blurring of the binaural detection cue. There was a small but significant decrease from F to CM (inconsistent with the hypothesis) and a further decrease from CM to UM (consistent with the hypothesis). Critically, there was a significant envelope by rate interaction caused by a decrease from F to CM for the 200-300 pps rates. The data can be explained by a subject-based factor, where some listeners experienced interaural envelope decorrelation when the sound was encoded by the auditory system that reduced performance when the modulations were present. Since the decrease in performance between F and CM conditions was small, it seems that most young normal-hearing listeners have very similar encoding of modulated stimuli across the ears. This type of task, when further optimized, may be able to assess if hearing-impaired populations experience interaural decorrelation from encoding modulated stimuli and therefore could help better understand the limited spatial hearing in populations like cochlear-implant users.
Collapse
Affiliation(s)
- Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Stephen Fong
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Olga Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
14
|
Todd AE, Goupell MJ, Litovsky RY. Binaural unmasking with temporal envelope and fine structure in listeners with cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2982. [PMID: 31153315 PMCID: PMC6525004 DOI: 10.1121/1.5102158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
For normal-hearing (NH) listeners, interaural information in both temporal envelope and temporal fine structure contribute to binaural unmasking of target signals in background noise; however, in many conditions low-frequency interaural information in temporal fine structure produces greater binaural unmasking. For bilateral cochlear-implant (CI) listeners, interaural information in temporal envelope contributes to binaural unmasking; however, the effect of encoding temporal fine structure information in electrical pulse timing (PT) is not fully understood. In this study, diotic and dichotic signal detection thresholds were measured in CI listeners using bilaterally synchronized single-electrode stimulation for conditions in which the temporal envelope was presented without temporal fine structure encoded (constant-rate pulses) or with temporal fine structure encoded (pulses timed to peaks of the temporal fine structure). CI listeners showed greater binaural unmasking at 125 pps with temporal fine structure encoded than without. There was no significant effect of encoding temporal fine structure at 250 pps. A similar pattern of performance was shown by NH listeners presented with acoustic pulse trains designed to simulate CI stimulation. The results suggest a trade-off across low rates between interaural information obtained from temporal envelope and that obtained from temporal fine structure encoded in PT.
Collapse
Affiliation(s)
- Ann E Todd
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland at College Park, College Park, Maryland 20742, USA
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
15
|
Bernstein LR, Trahiotis C. No more than "slight" hearing loss and degradations in binaural processing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2094. [PMID: 31046341 DOI: 10.1121/1.5096652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Listeners having, at most, "slight" hearing loss may exhibit substantial deficits in binaural detection [Bernstein and Trahiotis. (2016). J. Acoust. Soc. Am. 140, 3540-3548; (2018). J. Acoust. Soc. Am. 144, 292-307]. This study assessed whether such listeners also exhibit deficits discriminating interaural temporal disparities (ITDs) or interaural intensitive disparities (IIDs) and whether any deficits observed in those discrimination tasks would be accounted for by the interaural cross-correlation based model that successfully accounts for binaural detection. Thresholds were measured for detection of tones masked by noise in the NoSπ configuration and discrimination of ITD or IID. Gaussian noises (100 Hz-wide), served as maskers in the detection task and as reference and target stimuli in the discrimination tasks. Stimuli were centered at 500 Hz or 4 kHz. The latter were transpositions of stimuli centered at 125 Hz. Results demonstrate that listeners having, at most, slight hearing loss and who exhibit deficits in binaural detection, also exhibit deficits in ITD- and IID-discrimination. Coupled with appropriate decision variables, the cross-correlation-based model that accounts for elevated binaural detection thresholds among such listeners also accounted for their elevated ITD- and IID-thresholds. The deficits in all three tasks appear to stem from increased levels of stimulus-dependent, additive internal noise.
Collapse
Affiliation(s)
- Leslie R Bernstein
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Constantine Trahiotis
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
16
|
Bernstein LR, Trahiotis C. Effects of interaural delay, center frequency, and no more than "slight" hearing loss on precision of binaural processing: Empirical data and quantitative modeling. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:292. [PMID: 30075692 DOI: 10.1121/1.5046515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
This study assessed how precision of binaural processing is affected by center frequency (CF), interaural temporal disparity (ITD), and listeners' hearing status. Tonal signals and 100-Hz-wide Gaussian noise maskers were employed at CFs ranging between 250 and 8000 Hz, in octave steps. In addition, for CFs of 2000, 4000, and 8000 Hz, transposed maskers and signals were employed. All listeners had no greater than "slight" hearing losses (i.e., no thresholds greater than 25 dB HL). Across all CFs and ITDs tested, binaural detection thresholds were elevated for listeners whose absolute thresholds at 4 kHz exceeded 7.5 dB HL. That outcome is consistent with results from Bernstein and Trahiotis [(2016). J. Acoust. Soc. Am. 140, 3540-3548]. Quantitative predictions of binaural detection thresholds derived via a comprehensive interaural correlation-based model of binaural processing were highly accurate across the entire set of data. The modeling results suggest that elevated thresholds from listeners having small hearing losses stem from elevated levels of stimulus-dependent, additive internal noise. They do not appear to stem from increased levels of noise within the central binaural comparator or from reduced sensitivity to changes in interaural correlation produced by the addition of the signal to the masker.
Collapse
Affiliation(s)
- Leslie R Bernstein
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Constantine Trahiotis
- Departments of Neuroscience and Surgery (Otolaryngology), University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
17
|
Dietz M, Lestang JH, Majdak P, Stern RM, Marquardt T, Ewert SD, Hartmann WM, Goodman DFM. A framework for testing and comparing binaural models. Hear Res 2017; 360:92-106. [PMID: 29208336 DOI: 10.1016/j.heares.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/03/2017] [Accepted: 11/24/2017] [Indexed: 11/19/2022]
Abstract
Auditory research has a rich history of combining experimental evidence with computational simulations of auditory processing in order to deepen our theoretical understanding of how sound is processed in the ears and in the brain. Despite significant progress in the amount of detail and breadth covered by auditory models, for many components of the auditory pathway there are still different model approaches that are often not equivalent but rather in conflict with each other. Similarly, some experimental studies yield conflicting results which has led to controversies. This can be best resolved by a systematic comparison of multiple experimental data sets and model approaches. Binaural processing is a prominent example of how the development of quantitative theories can advance our understanding of the phenomena, but there remain several unresolved questions for which competing model approaches exist. This article discusses a number of current unresolved or disputed issues in binaural modelling, as well as some of the significant challenges in comparing binaural models with each other and with the experimental data. We introduce an auditory model framework, which we believe can become a useful infrastructure for resolving some of the current controversies. It operates models over the same paradigms that are used experimentally. The core of the proposed framework is an interface that connects three components irrespective of their underlying programming language: The experiment software, an auditory pathway model, and task-dependent decision stages called artificial observers that provide the same output format as the test subject.
Collapse
Affiliation(s)
- Mathias Dietz
- National Centre for Audiology, Western University, London, ON, Canada.
| | - Jean-Hugues Lestang
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Piotr Majdak
- Institut für Schallforschung, Österreichische Akademie der Wissenschaften, Wien, Austria
| | | | | | - Stephan D Ewert
- Medizinische Physik, Universität Oldenburg, Oldenburg, Germany
| | | | - Dan F M Goodman
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Laback B, Dietz M, Joris P. Temporal effects in interaural and sequential level difference perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:3267. [PMID: 29195428 DOI: 10.1121/1.5009563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Temporal effects in interaural level difference (ILD) perception are not well understood. While it is often assumed that ILD sensitivity is independent of the temporal stimulus properties, a reduction of ILD sensitivity for stimuli with a high modulation rate has been reported (known under the term binaural adaptation). Experiment 1 compared ILD thresholds and sequential-level-difference (SLD) thresholds using 300-ms bandpass-filtered pulse trains (centered at 4 kHz) with rates of 100, 400, and 800 pulses per second (pps). In contrast to the SLD thresholds, ILD thresholds were elevated at 800 pps, consistent with literature data that had previously been attributed to binaural adaptation. Experiment 2 showed better ILD sensitivity for pulse trains than for pure tones, suggesting that amplitude modulation enhances ILD sensitivity. The present ILD data and binaural adaptation data from the literature were predicted by a model combining well-established auditory periphery front-ends with an interaural comparison stage. The model also accounted for other published ILD data, including target ILD thresholds in diotic forward and backward fringes and ILD thresholds with different amounts of interaural correlation. Overall, a variety of temporal effects in ILD perception, including binaural adaptation, appear to be largely attributable to monaural peripheral auditory processing.
Collapse
Affiliation(s)
- Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, Vienna, A-1040, Austria
| | - Mathias Dietz
- Medizinische Physik, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg, 26111, Germany
| | - Philip Joris
- Laboratory of Auditory Neurophysiology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
19
|
Yost WA. Sound source localization identification accuracy: Envelope dependencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:173. [PMID: 28764438 PMCID: PMC5509470 DOI: 10.1121/1.4990656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Sound source localization accuracy as measured in an identification procedure in a front azimuth sound field was studied for click trains, modulated noises, and a modulated tonal carrier. Sound source localization accuracy was determined as a function of the number of clicks in a 64 Hz click train and click rate for a 500 ms duration click train. The clicks were either broadband or high-pass filtered. Sound source localization accuracy was also measured for a single broadband filtered click and compared to a similar broadband filtered, short-duration noise. Sound source localization accuracy was determined as a function of sinusoidal amplitude modulation and the "transposed" process of modulation of filtered noises and a 4 kHz tone. Different rates (16 to 512 Hz) of modulation (including unmodulated conditions) were used. Providing modulation for filtered click stimuli, filtered noises, and the 4 kHz tone had, at most, a very small effect on sound source localization accuracy. These data suggest that amplitude modulation, while providing information about interaural time differences in headphone studies, does not have much influence on sound source localization accuracy in a sound field.
Collapse
Affiliation(s)
- William A Yost
- Speech and Hearing Science, Arizona State University, P.O. Box 870102, Tempe, Arizona 85287, USA
| |
Collapse
|
20
|
Monaghan JJM, Bleeck S, McAlpine D. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates. Trends Hear 2015; 19:2331216515619331. [PMID: 26721926 PMCID: PMC4871209 DOI: 10.1177/2331216515619331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor-to the point of discrimination thresholds being unattainable-compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners' sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered.
Collapse
Affiliation(s)
| | - Stefan Bleeck
- Institute of Sound and Vibration Research, University of Southampton, UK
| | | |
Collapse
|
21
|
Stecker GC. Temporal weighting functions for interaural time and level differences. IV. Effects of carrier frequency. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:3221. [PMID: 25480069 PMCID: PMC4257961 DOI: 10.1121/1.4900827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 05/29/2023]
Abstract
Temporal variation in listeners' sensitivity to interaural time and level differences (ITD and ILD, respectively) was measured for sounds of different carrier frequency using the temporal weighting function (TWF) paradigm [Stecker and Hafter (2002) J. Acoust. Soc. Am. 112,1046-1057]. Listeners made lateralization judgments following brief trains of filtered impulses (Gabor clicks) presented over headphones with overall ITD and/or ILD ranging from ±500 μs ITD and/or ±5 dB ILD across trials. Individual clicks within each train varied by an additional ±100 μs ITD or ±2 dB ILD to allow TWF calculation by multiple regression. In separate conditions, TWFs were measured for carrier frequencies of 1, 2, 4, and 8 kHz. Consistent with past studies, TWFs demonstrated high weight on the first click for stimuli with short interclick interval (ICI = 2 ms), but flatter weighting for longer ICI (5-10 ms). Some conditions additionally demonstrated greater weight for clicks near the offset than near the middle of the train. Results support a primary role of the auditory periphery in emphasizing onset and offset cues in rapidly modulated low-frequency sounds. For slower modulations, sensitivity to ongoing high-frequency ILD and low-frequency ITD cues appears subject to recency effects consistent with the effects of leaky temporal integration of binaural information.
Collapse
Affiliation(s)
- G Christopher Stecker
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, Tennessee 37232
| |
Collapse
|