1
|
Jennings SG, Dominguez J. Firing Rate Adaptation of the Human Auditory Nerve Optimizes Neural Signal-to-Noise Ratios. J Assoc Res Otolaryngol 2022; 23:365-378. [PMID: 35254540 PMCID: PMC9085988 DOI: 10.1007/s10162-022-00841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 10/18/2022] Open
Abstract
Several physiological mechanisms act on the response of the auditory nerve (AN) during acoustic stimulation, resulting in an adjustment in auditory gain. These mechanisms include-but are not limited to-firing rate adaptation, dynamic range adaptation, the middle ear muscle reflex, and the medial olivocochlear reflex. A potential role of these mechanisms is to improve the neural signal-to-noise ratio (SNR) at the output of the AN in real time. This study tested the hypothesis that neural SNRs, inferred from non-invasive assessment of the human AN, improve over the duration of acoustic stimulation. Cochlear potentials were measured in response to a series of six high-level clicks embedded in a series of six lower-level broadband noise bursts. This paradigm elicited a compound action potential (CAP) in response to each click and to the onset of each noise burst. The ratio of CAP amplitudes elicited by each click and noise burst pair (i.e., neural SNR) was tracked over the six click/noise bursts. The main finding was a rapid (< 24 ms) increase in neural SNR from the first to the second click/noise burst, consistent with a real-time adjustment in the response of the auditory periphery toward improving the SNR of the signal transmitted to the brainstem. Analysis of cochlear microphonic and ear canal sound pressure recordings, as well as the time course for this improvement in neural SNR, supports the conclusion that firing rate adaptation is likely the primary mechanism responsible for improving neural SNR, while dynamic range adaptation, the middle ear muscle reflex, and the medial olivocochlear reflex played a secondary role on the effects observed in this study. Real-time improvements in neural SNR are significant because they may be essential for robust encoding of speech and other relevant stimuli in the presence of background noise.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, UT, 84112, USA.
| | - Juan Dominguez
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Kamerer AM, Chertoff ME. An analytic approach to identifying the sources of the low-frequency round window cochlear response. Hear Res 2019; 375:53-65. [PMID: 30808536 DOI: 10.1016/j.heares.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 01/19/2023]
Abstract
The cochlear microphonic, traditionally thought of as an indication of electrical current flow through hair cells, in conjunction with suppressing high-pass noise or tones, is a promising method of assessing the health of outer hair cells at specific locations along the cochlear partition. We propose that the electrical potential recorded from the round window in gerbils in response to low-frequency tones, which we call cochlear response (CR), contains significant responses from multiple cellular sources, which may expand its diagnostic purview. In this study, CR is measured in the gerbil and modeled to identify its contributing sources. CR was recorded via an electrode placed in the round window niche of sixteen Mongolian gerbils and elicited with a 45 Hz tone burst embedded in 18 high-pass filtered noise conditions to target responses from increasing regions along the cochlear partition. Possible sources were modeled using previously-published hair cell and auditory nerve response data, and then weighted and combined using linear regression to produce a model response that fits closely to the mean CR waveform. The significant contributing sources identified by the model are outer hair cells, inner hair cells, and the auditory nerve. We conclude that the low-frequency CR contains contributions from several cellular sources.
Collapse
Affiliation(s)
- Aryn M Kamerer
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE, USA.
| | - Mark E Chertoff
- Department of Hearing & Speech, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Lee C, Guinan JJ, Rutherford MA, Kaf WA, Kennedy KM, Buchman CA, Salt AN, Lichtenhan JT. Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region. J Neurophysiol 2019; 121:1018-1033. [PMID: 30673362 DOI: 10.1152/jn.00677.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Little is known about the spatial origins of auditory nerve (AN) compound action potentials (CAPs) evoked by moderate to intense sounds. We studied the spatial origins of AN CAPs evoked by 2- to 16-kHz tone bursts at several sound levels by slowly injecting kainic acid solution into the cochlear apex of anesthetized guinea pigs. As the solution flowed from apex to base, it sequentially reduced CAP responses from low- to high-frequency cochlear regions. The times at which CAPs were reduced, combined with the cochlear location traversed by the solution at that time, showed the cochlear origin of the removed CAP component. For low-level tone bursts, the CAP origin along the cochlea was centered at the characteristic frequency (CF). As sound level increased, the CAP center shifted basally for low-frequency tone bursts but apically for high-frequency tone bursts. The apical shift was surprising because it is opposite the shift expected from AN tuning curve and basilar membrane motion asymmetries. For almost all high-level tone bursts, CAP spatial origins extended over 2 octaves along the cochlea. Surprisingly, CAPs evoked by high-level low-frequency (including 2 kHz) tone bursts showed little CAP contribution from CF regions ≤ 2 kHz. Our results can be mostly explained by spectral splatter from the tone-burst rise times, excitation in AN tuning-curve "tails," and asynchronous AN responses to high-level energy ≤ 2 kHz. This is the first time CAP origins have been identified by a spatially specific technique. Our results show the need for revising the interpretation of the cochlear origins of high-level CAPs-ABR wave 1. NEW & NOTEWORTHY Cochlear compound action potentials (CAPs) and auditory brain stem responses (ABRs) are routinely used in laboratories and clinics. They are typically interpreted as arising from the cochlear region tuned to the stimulus frequency. However, as sound level is increased, the cochlear origins of CAPs from tone bursts of all frequencies become very wide and their centers shift toward the most sensitive cochlear region. The standard interpretation of CAPs and ABRs from moderate to intense stimuli needs revision.
Collapse
Affiliation(s)
- C Lee
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - J J Guinan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts
| | - M A Rutherford
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - W A Kaf
- Communication Sciences and Disorders Department, Missouri State University , Springfield, Missouri
| | - K M Kennedy
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri.,Communication Sciences and Disorders Department, Missouri State University , Springfield, Missouri
| | - C A Buchman
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - A N Salt
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - J T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| |
Collapse
|
4
|
Charaziak KK, Siegel JH, Shera CA. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms. J Assoc Res Otolaryngol 2018; 19:401-419. [PMID: 30014309 DOI: 10.1007/s10162-018-0668-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/08/2018] [Indexed: 11/30/2022] Open
Abstract
The cochlear microphonic (CM) results from the vector sum of outer hair cell transduction currents excited by a stimulus. The classical theory of CM generation-that the response measured at the round window is dominated by cellular sources located within the tail region of the basilar membrane (BM) excitation pattern-predicts that CM amplitude and phase vary little with stimulus frequency. Contrary to expectations, CM amplitude and phase-gradient delay measured in response to low-level tones in chinchillas demonstrate a striking, quasiperiodic pattern of spectral ripples, even at frequencies > 5 kHz, where interference with neurophonic potentials is unlikely. The spectral ripples were reduced in the presence of a moderate-level saturating tone at a nearby frequency. When converted to the time domain, only the delayed CM energy was diminished in the presence of the saturator. We hypothesize that the ripples represent an interference pattern produced by CM components with different phase gradients: an early-latency component originating within the tail region of the BM excitation and two delayed components that depend on active cochlear processing near the peak region of the traveling wave. Using time windowing, we show that the early, middle, and late components have delays corresponding to estimated middle-ear transmission, cochlear forward delays, and cochlear round-trip delays, respectively. By extending the classical model of CM generation to include mechanical and electrical irregularities, we propose that middle components are generated through a mechanism of "coherent summation" analogous to the production of reflection-source otoacoustic emissions (OAEs), while the late components arise through a process of internal cochlear reflection related to the generation of stimulus-frequency OAEs. Although early-latency components from the passive tail region typically dominate the round-window CM, at low stimulus levels, substantial contributions from components shaped by active cochlear processing provide a new avenue for improving CM measurements as assays of cochlear health.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Auditory Research Center, Caruso Department of Otolarygnology, University of Southern California, Los Angeles, CA, USA.
| | - Jonathan H Siegel
- Hugh Knowles Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolarygnology, University of Southern California, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Charaziak KK, Shera CA, Siegel JH. Using Cochlear Microphonic Potentials to Localize Peripheral Hearing Loss. Front Neurosci 2017; 11:169. [PMID: 28420953 PMCID: PMC5378797 DOI: 10.3389/fnins.2017.00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
The cochlear microphonic (CM) is created primarily by the receptor currents of outer hair cells (OHCs) and may therefore be useful for identifying cochlear regions with impaired OHCs. However, the CM measured across the frequency range with round-window or ear-canal electrodes lacks place-specificity as it is dominated by cellular sources located most proximal to the recording site (e.g., at the cochlear base). To overcome this limitation, we extract the "residual" CM (rCM), defined as the complex difference between the CM measured with and without an additional tone (saturating tone, ST). If the ST saturates receptor currents near the peak of its excitation pattern, then the rCM should reflect the activity of OHCs in that region. To test this idea, we measured round-window CMs in chinchillas in response to low-level probe tones presented alone or with an ST ranging from 1 to 2.6 times the probe frequency. CMs were measured both before and after inducing a local impairment in cochlear function (a 4-kHz notch-type acoustic trauma). Following the acoustic trauma, little change was observed in the probe-alone CM. In contrast, rCMs were reduced in a frequency-specific manner. When shifts in rCM levels were plotted vs. the ST frequency, they matched well the frequency range of shifts in neural thresholds. These results suggest that rCMs originate near the cochlear place tuned to the ST frequency and thus can be used to assess OHC function in that region. Our interpretation of the data is supported by predictions of a simple phenomenological model of CM generation and two-tone interactions. The model indicates that the sensitivity of rCM to acoustic trauma is governed by changes in cochlear response at the ST tonotopic place rather than at the probe place. The model also suggests that a combination of CM and rCM measurements could be used to assess both the site and etiology of sensory hearing loss in clinical applications.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA.,Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Hugh Knowles Center, Northwestern UniversityEvanston, IL, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Jonathan H Siegel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Hugh Knowles Center, Northwestern UniversityEvanston, IL, USA
| |
Collapse
|
6
|
Eggermont JJ. Ups and Downs in 75 Years of Electrocochleography. Front Syst Neurosci 2017; 11:2. [PMID: 28174524 PMCID: PMC5259695 DOI: 10.3389/fnsys.2017.00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
Before 1964, electrocochleography (ECochG) was a surgical procedure carried out in the operating theatre. Currently, the newest application is also an intra-operative one, often carried out in conjunction with cochlear implant surgery. Starting in 1967, the recording methods became either minimal- or not-invasive, i.e., trans-tympanic (TT) or extra tympanic (ET), and included extensive studies of the arguments pro and con. I will review several valuable applications of ECochG, from a historical point of view, but covering all 75 years if applicable. The main topics will be: (1) comparing human and animal cochlear electrophysiology; (2) the use in objective audiometry involving tone pip stimulation-currently mostly pre cochlear implantation but otherwise replaced by auditory brainstem response (ABR) recordings; (3) attempts to diagnose Ménière's disease and the role of the summating potential (SP); (4) early use in diagnosing vestibular schwannomas-now taken over by ABR screening and MRI confirmation; (5) relating human electrophysiology to the effects of genes as in auditory neuropathy; and (6) intracochlear recording using the cochlear implant electrodes. The last two applications are the most recently added ones. The "historical aspects" of this review article will highlight the founding years prior to 1980 when relevant. A survey of articles on Pubmed shows several ups and downs in the clinical interest as reflected in the publication counts over the last 75 years.
Collapse
Affiliation(s)
- Jos J. Eggermont
- Department of Psychology, University of CalgaryCalgary, AB, Canada
- Department of Physiology and Pharmacology, University of CalgaryCalgary, AB, Canada
| |
Collapse
|
7
|
Kamerer AM, Diaz FJ, Peppi M, Chertoff ME. The potential use of low-frequency tones to locate regions of outer hair cell loss. Hear Res 2016; 342:39-47. [PMID: 27677389 DOI: 10.1016/j.heares.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022]
Abstract
Current methods used to diagnose cochlear hearing loss are limited in their ability to determine the location and extent of anatomical damage to various cochlear structures. In previous experiments, we have used the electrical potential recorded at the round window -the cochlear response (CR) -to predict the location of damage to outer hair cells in the gerbil. In a follow-up experiment, we applied 10 mM ouabain to the round window niche to reduce neural activity in order to quantify the neural contribution to the CR. We concluded that a significant proportion of the CR to a 762 Hz tone originated from phase-locking activity of basal auditory nerve fibers, which could have contaminated our conclusions regarding outer hair cell health. However, at such high concentrations, ouabain may have also affected the responses from outer hair cells, exaggerating the effect we attributed to the auditory nerve. In this study, we lowered the concentration of ouabain to 1 mM and determined the physiologic effects on outer hair cells using distortion-product otoacoustic emissions. As well as quantifying the effects of 1 mM ouabain on the auditory nerve and outer hair cells, we attempted to reduce the neural contribution to the CR by using near-infrasonic stimulus frequencies of 45 and 85 Hz, and hypothesized that these low-frequency stimuli would generate a cumulative amplitude function (CAF) that could reflect damage to hair cells in the apex more accurately than the 762 stimuli. One hour after application of 1 mM ouabain, CR amplitudes significantly increased, but remained unchanged in the presence of high-pass filtered noise conditions, suggesting that basal auditory nerve fibers have a limited contribution to the CR at such low frequencies.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Cochlea/pathology
- Cochlea/physiopathology
- Cochlear Microphonic Potentials/drug effects
- Cochlear Microphonic Potentials/physiology
- Cochlear Nerve/drug effects
- Cochlear Nerve/physiopathology
- Gerbillinae
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiology
- Hearing Loss, Sensorineural/diagnosis
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Otoacoustic Emissions, Spontaneous/drug effects
- Otoacoustic Emissions, Spontaneous/physiology
- Ouabain/administration & dosage
- Round Window, Ear/drug effects
- Round Window, Ear/physiology
- Round Window, Ear/physiopathology
Collapse
Affiliation(s)
- Aryn M Kamerer
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Francisco J Diaz
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | - Mark E Chertoff
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
8
|
Chertoff ME, Kamerer AM, Peppi M, Lichtenhan JT. An analysis of cochlear response harmonics: Contribution of neural excitation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2957-63. [PMID: 26627769 PMCID: PMC4644149 DOI: 10.1121/1.4934556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 05/29/2023]
Abstract
In this report an analysis of cochlear response harmonics is developed to derive a mathematical function to estimate the gross mechanics involved in the in vivo transfer of acoustic sound into neural excitation (f(Tr)). In a simulation it is shown that the harmonic distortion from a nonlinear system can be used to estimate the nonlinearity, supporting the next phase of the experiment: Applying the harmonic analysis to physiologic measurements to derive estimates of the unknown, in vivo f(Tr). From gerbil ears, estimates of f(Tr) were derived from cochlear response measurements made with an electrode at the round window niche from 85 Hz tone bursts. Estimates of f(Tr) before and after inducing auditory neuropathy-loss of auditory nerve responses with preserved hair cell responses from neurotoxic treatment with ouabain-showed that the neural excitation from low-frequency tones contributes to the magnitude of f(Tr) but not the sigmoidal, saturating, nonlinear morphology.
Collapse
Affiliation(s)
- M E Chertoff
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - A M Kamerer
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - M Peppi
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - J T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|