1
|
Capshaw G, Diebold CA, Sterbing SJ, Lauer AM, Moss CF. Echolocating bats show species-specific variation in susceptibility to acoustic forward masking. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:511-523. [PMID: 39013168 PMCID: PMC11254387 DOI: 10.1121/10.0026624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Echolocating bats rely on precise auditory temporal processing to detect echoes generated by calls that may be emitted at rates reaching 150-200 Hz. High call rates can introduce forward masking perceptual effects that interfere with echo detection; however, bats may have evolved specializations to prevent repetition suppression of auditory responses and facilitate detection of sounds separated by brief intervals. Recovery of the auditory brainstem response (ABR) was assessed in two species that differ in the temporal characteristics of their echolocation behaviors: Eptesicus fuscus, which uses high call rates to capture prey, and Carollia perspicillata, which uses lower call rates to avoid obstacles and forage for fruit. We observed significant species differences in the effects of forward masking on ABR wave 1, in which E. fuscus maintained comparable ABR wave 1 amplitudes when stimulated at intervals of <3 ms, whereas post-stimulus recovery in C. perspicillata required 12 ms. When the intensity of the second stimulus was reduced by 20-30 dB relative to the first, however, C. perspicillata showed greater recovery of wave 1 amplitudes. The results demonstrate that species differences in temporal resolution are established at early levels of the auditory pathway and that these differences reflect auditory processing requirements of species-specific echolocation behaviors.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Susanne J Sterbing
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Ladegaard M, Mulsow J, Houser DS, Jensen FH, Johnson M, Madsen PT, Finneran JJ. Dolphin echolocation behaviour during active long-range target approaches. ACTA ACUST UNITED AC 2019; 222:jeb.189217. [PMID: 30478155 DOI: 10.1242/jeb.189217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/22/2018] [Indexed: 11/20/2022]
Abstract
Echolocating toothed whales generally adjust click intensity and rate according to target range to ensure that echoes from targets of interest arrive before a subsequent click is produced, presumably facilitating range estimation from the delay between clicks and returning echoes. However, this click-echo-click paradigm for the dolphin biosonar is mostly based on experiments with stationary animals echolocating fixed targets at ranges below ∼120 m. Therefore, we trained two bottlenose dolphins instrumented with a sound recording tag to approach a target from ranges up to 400 m and either touch the target (subject TRO) or detect a target orientation change (subject SAY). We show that free-swimming dolphins dynamically increase interclick interval (ICI) out to target ranges of ∼100 m. TRO consistently kept ICIs above the two-way travel time (TWTT) for target ranges shorter than ∼100 m, whereas SAY switched between clicking at ICIs above and below the TWTT for target ranges down to ∼25 m. Source levels changed on average by 17log10(target range), but with considerable variation for individual slopes (4.1 standard deviations for by-trial random effects), demonstrating that dolphins do not adopt a fixed automatic gain control matched to target range. At target ranges exceeding ∼100 m, both dolphins frequently switched to click packet production in which interpacket intervals exceeded the TWTT, but ICIs were shorter than the TWTT. We conclude that the click-echo-click paradigm is not a fixed echolocation strategy in dolphins, and we demonstrate the first use of click packets for free-swimming dolphins when solving an echolocation task.
Collapse
Affiliation(s)
- Michael Ladegaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | | | - Mark Johnson
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark.,Sea Mammal Research Unit, St Andrews KY16 8LB, UK
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, CA 92152, USA
| |
Collapse
|
3
|
Smotherman M, Bakshi K. Forward masking enhances the auditory brainstem response in the free-tailed bat, Tadarida brasiliensis, during a critical time window for sonar reception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL19. [PMID: 30710968 DOI: 10.1121/1.5087278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Forward masking is a widespread auditory phenomenon in which the response to one sound transiently reduces the response to a succeeding sound. This study used auditory brainstem responses to measure temporal masking effects in the free-tailed bat, Tadarida brasiliensis. A digital subtraction protocol was used to isolate responses to the second of a pair of pulses varying in interval, revealing a suppression phase lasting <4 ms followed by an enhancement phase lasting 4-15 ms during which the ABR waveform was amplified up to 100%. The results suggest echolocating bats possess adaptations for enhancing sonar receiver gain shortly after pulse emission.
Collapse
Affiliation(s)
- Michael Smotherman
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3258, ,
| | - Kushal Bakshi
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3258, ,
| |
Collapse
|
4
|
Sysueva EV, Nechaev DI, Popov VV, Tarakanov MB, Supin AY. Influence of background noise on auditory evoked responses to rippled-spectrum signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3146. [PMID: 29857770 DOI: 10.1121/1.5039616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The resolution of spectral patterns in adaptation background noise was investigated in a beluga whale, Delphinapterus leucas, using the evoked-potential technique. The resolution of spectral patterns was investigated using rippled-spectrum test stimuli of various levels and ripple densities and recording the rhythmic evoked responses (the rate following response, RFR) to ripple phase reversals. In baseline (no adaptation background noise) experiments, the highest RFR magnitude was observed at signal sound pressure levels (SPLs) of 100-110 dB re 1 μPa; at SPLs both below the optimum (down to 80 dB re 1 μPa) and above the optimum (up to 140 dB re 1 μPa), the RFR magnitude decreased. For high signal levels (above 110 dB re 1 μPa), low-level adaptation background noise (from -10 to -20 dB re signal level) increased RFR magnitude compared to baseline. This effect is considered to be a result of the optimization of the sensation level of the high-SPL signals due to decreasing hearing sensitivity caused by the adaptation background noise.
Collapse
Affiliation(s)
- Evgeniya V Sysueva
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky prospect, Moscow 119071, Russia
| | - Dmitry I Nechaev
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky prospect, Moscow 119071, Russia
| | - Vladimir V Popov
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky prospect, Moscow 119071, Russia
| | - Mikhail B Tarakanov
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky prospect, Moscow 119071, Russia
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky prospect, Moscow 119071, Russia
| |
Collapse
|
5
|
Finneran JJ, Mulsow J, Jones R, Houser DS, Accomando AW, Ridgway SH. Non-auditory, electrophysiological potentials preceding dolphin biosonar click production. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:271-283. [PMID: 29222726 PMCID: PMC5816092 DOI: 10.1007/s00359-017-1234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/03/2022]
Abstract
The auditory brainstem response to a dolphin’s own emitted biosonar click can be measured by averaging epochs of the instantaneous electroencephalogram (EEG) that are time-locked to the emitted click. In this study, averaged EEGs were measured using surface electrodes placed on the head in six different configurations while dolphins performed an echolocation task. Simultaneously, biosonar click emissions were measured using contact hydrophones on the melon and a hydrophone in the farfield. The averaged EEGs revealed an electrophysiological potential (the pre-auditory wave, PAW) that preceded the production of each biosonar click. The largest PAW amplitudes occurred with the non-inverting electrode just right of the midline—the apparent side of biosonar click generation—and posterior of the blowhole. Although the source of the PAW is unknown, the temporal and spatial properties rule out an auditory source. The PAW may be a neural or myogenic potential associated with click production; however, it is not known if muscles within the dolphin nasal system can be actuated at the high rates reported for dolphin click production, or if sufficiently coordinated and fast motor endplates of nasal muscles exist to produce a PAW detectable with surface electrodes.
Collapse
|
6
|
Finneran JJ, Mulsow J, Houser DS, Schlundt CE. Neural representation of the self-heard biosonar click in bottlenose dolphins (Tursiops truncatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:3379. [PMID: 28599518 PMCID: PMC5438311 DOI: 10.1121/1.4983191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The neural representation of the dolphin broadband biosonar click was investigated by measuring auditory brainstem responses (ABRs) to "self-heard" clicks masked with noise bursts having various high-pass cutoff frequencies. Narrowband ABRs were obtained by sequentially subtracting responses obtained with noise having lower high-pass cutoff frequencies from those obtained with noise having higher cutoff frequencies. For comparison to the biosonar data, ABRs were also measured in a passive listening experiment, where external clicks and masking noise were presented to the dolphins and narrowband ABRs were again derived using the subtractive high-pass noise technique. The results showed little change in the peak latencies of the ABR to the self-heard click from 28 to 113 kHz; i.e., the high-frequency neural responses to the self-heard click were delayed relative to those of an external, spectrally "pink" click. The neural representation of the self-heard click is thus highly synchronous across the echolocation frequencies and does not strongly resemble that of a frequency modulated downsweep (i.e., decreasing-frequency chirp). Longer ABR latencies at higher frequencies are hypothesized to arise from spectral differences between self-heard clicks and external clicks, forward masking from previously emitted biosonar clicks, or neural inhibition accompanying the emission of clicks.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- National Marine Mammal Foundation; 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation; 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Carolyn E Schlundt
- Harris Corporation, 4045 Hancock Street #210, San Diego, California 92110, USA
| |
Collapse
|