1
|
Kou Z, Lowerison MR, You Q, Wang Y, Song P, Oelze ML. High-Resolution Power Doppler Using Null Subtraction Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3060-3071. [PMID: 38557625 PMCID: PMC11439488 DOI: 10.1109/tmi.2024.3383768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To improve the spatial resolution of power Doppler (PD) imaging, we explored null subtraction imaging (NSI) as an alternative beamforming technique to delay-and-sum (DAS). NSI is a nonlinear beamforming approach that uses three different apodizations on receive and incoherently sums the beamformed envelopes. NSI uses a null in the beam pattern to improve the lateral resolution, which we apply here for improving PD spatial resolution both with and without contrast microbubbles. In this study, we used NSI with three types of singular value decomposition (SVD)-based clutter filters and noise equalization to generate high-resolution PD images. An element sensitivity correction scheme was also proposed as a crucial component of NSI-based PD imaging. First, a microbubble trace experiment was performed to evaluate the resolution improvement of NSI-based PD over traditional DAS-based PD. Then, both contrast-enhanced and contrast free ultrasound PD images were generated from the scan of a rat brain. The cross-sectional profile of the microbubble traces and microvessels were plotted. FWHM was also estimated to provide a quantitative metric. Furthermore, iso-frequency curves were calculated to provide a resolution evaluation metric over the global field of view. Up to six-fold resolution improvement was demonstrated by the FWHM estimate and four-fold resolution improvement was demonstrated by the iso-frequency curve from the NSI-based PD microvessel images compared to microvessel images generated by traditional DAS-based beamforming. A resolvability of [Formula: see text] was measured from the NSI-based PD microvessel image. The computational cost of NSI-based PD was only increased by 40 percent over the DAS-based PD.
Collapse
|
2
|
Jiang L, Chu H, Yu J, Su X, Liu J, Wu H, Wang F, Zong Y, Wan M. Clutter filtering of angular domain data for contrast-free ultrafast microvascular imaging. Phys Med Biol 2023; 69:015006. [PMID: 38041871 DOI: 10.1088/1361-6560/ad11a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 12/04/2023]
Abstract
Objective. Contrast-free microvascular imaging is clinically valuable for the assessment of physiological status and the early diagnosis of diseases. Effective clutter filtering is essential for microvascular visualization without contrast enhancement. Singular value decomposition (SVD)-based spatiotemporal filter has been widely used to suppress clutter. However, clinical real-time imaging relies on short ensembles (dozens of frames), which limits the implementation of SVD filtering due to the large error of eigen-correlated estimations and high dependence on optimal threshold when used in such ensembles.Approach. To address the above challenges of imaging in short ensembles, two optimized filters of angular domain data are proposed in this paper: grouped angle SVD (GA-SVD) and angular-coherence-based higher-order SVD (AC-HOSVD). GA-SVD applies SVD to the concatenation of all angular data to improve clutter rejection performance in short ensembles, while AC-HOSVD applies HOSVD to the angular data tensor and utilizes angular coherence in addition to spatial and temporal features for filtering. Feasible threshold selection strategies in each feature space are provided. The clutter rejection performance of the proposed filters and SVD was evaluated with Doppler phantom andin vivostudies at different cases. Moreover, the robustness of the filters was explored under wrong singular value threshold estimation, and their computational complexity was studied.Main results. Qualitative and quantitative results indicated that GA-SVD and AC-HOSVD can effectively improve clutter rejection performance in short ensembles, especially AC-HOSVD. Notably, the proposed methods using 20 frames had similar image quality to SVD using 100 frames.In vivostudies showed that compared to SVD, GA-SVD increased the signal-to-noise-ratio (SNR) by 6.03 dB on average, and AC-HOSVD increased the SNR by 8.93 dB on average. Furthermore, AC-HOSVD remained better power Doppler image quality under non-optimal thresholds, followed by GA-SVD.Significance. The proposed filters can greatly enhance contrast-free microvascular visualization in short ensembles and have potential for different clinical translations due to the performance differences.
Collapse
Affiliation(s)
- Liyuan Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hanbing Chu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianjun Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiao Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jiacheng Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Haitao Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Feiqian Wang
- Ultrasound Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
3
|
Wang X, Bamber JC, Esquivel-Sirvent R, Ormachea J, Sidhu PS, Thomenius KE, Schoen S, Rosenzweig S, Pierce TT. Ultrasonic Sound Speed Estimation for Liver Fat Quantification: A Review by the AIUM-RSNA QIBA Pulse-Echo Quantitative Ultrasound Initiative. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2327-2335. [PMID: 37550173 DOI: 10.1016/j.ultrasmedbio.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant cause of diffuse liver disease, morbidity and mortality worldwide. Early and accurate diagnosis of NALFD is critical to identify patients at risk of disease progression. Liver biopsy is the current gold standard for diagnosis and prognosis. However, a non-invasive diagnostic tool is desired because of the high cost and risk of complications of tissue sampling. Medical ultrasound is a safe, inexpensive and widely available imaging tool for diagnosing NAFLD. Emerging sonographic tools to quantitatively estimate hepatic fat fraction, such as tissue sound speed estimation, are likely to improve diagnostic accuracy, precision and reproducibility compared with existing qualitative and semi-quantitative techniques. Various pulse-echo ultrasound speed of sound estimation methodologies have been investigated, and some have been recently commercialized. We review state-of-the-art in vivo speed of sound estimation techniques, including their advantages, limitations, technical sources of variability, biological confounders and existing commercial implementations. We report the expected range of hepatic speed of sound as a function of liver steatosis and fibrosis that may be encountered in clinical practice. Ongoing efforts seek to quantify sound speed measurement accuracy and precision to inform threshold development around meaningful differences in fat fraction and between sequential measurements.
Collapse
Affiliation(s)
- Xiaohong Wang
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey C Bamber
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Paul S Sidhu
- Department of Radiology, King's College Hospital, London, UK
| | - Kai E Thomenius
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | - Scott Schoen
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA
| | | | - Theodore T Pierce
- Center for Ultrasound Research and Translation, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Ali R, Brevett T, Zhuang L, Bendjador H, Podkowa AS, Hsieh SS, Simson W, Sanabria SJ, Herickhoff CD, Dahl JJ. Aberration correction in diagnostic ultrasound: A review of the prior field and current directions. Z Med Phys 2023; 33:267-291. [PMID: 36849295 PMCID: PMC10517407 DOI: 10.1016/j.zemedi.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 02/27/2023]
Abstract
Medical ultrasound images are reconstructed with simplifying assumptions on wave propagation, with one of the most prominent assumptions being that the imaging medium is composed of a constant sound speed. When the assumption of a constant sound speed are violated, which is true in most in vivoor clinical imaging scenarios, distortion of the transmitted and received ultrasound wavefronts appear and degrade the image quality. This distortion is known as aberration, and the techniques used to correct for the distortion are known as aberration correction techniques. Several models have been proposed to understand and correct for aberration. In this review paper, aberration and aberration correction are explored from the early models and correction techniques, including the near-field phase screen model and its associated correction techniques such as nearest-neighbor cross-correlation, to more recent models and correction techniques that incorporate spatially varying aberration and diffractive effects, such as models and techniques that rely on the estimation of the sound speed distribution in the imaging medium. In addition to historical models, future directions of ultrasound aberration correction are proposed.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Thurston Brevett
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Louise Zhuang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hanna Bendjador
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony S Podkowa
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott S Hsieh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Walter Simson
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergio J Sanabria
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; University of Deusto/ Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Carl D Herickhoff
- Department of Biomedical Engineering, University of Memphis, TN, USA
| | - Jeremy J Dahl
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Huang L, Wang Y, Wang R, Wei X, He Q, Zheng C, Peng H, Luo J. High-Quality Ultrafast Power Doppler Imaging Based on Spatial Angular Coherence Factor. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:378-392. [PMID: 37028058 DOI: 10.1109/tuffc.2023.3253257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The morphological and hemodynamic changes of microvessels are demonstrated to be related to the diseased conditions in tissues. Ultrafast power Doppler imaging (uPDI) is a novel modality with a significantly increased Doppler sensitivity, benefiting from the ultrahigh frame rate plane-wave imaging (PWI) and advanced clutter filtering. However, unfocused plane-wave transmission often leads to a low imaging quality, which degrades the subsequent microvascular visualization in power Doppler imaging. Coherence factor (CF)-based adaptive beamformers have been widely studied in conventional B-mode imaging. In this study, we propose a spatial and angular coherence factor (SACF) beamformer for improved uPDI (SACF-uPDI) by calculating the spatial CF across apertures and the angular CF across transmit angles, respectively. To identify the superiority of SACF-uPDI, simulations, in vivo contrast-enhanced rat kidney, and in vivo contrast-free human neonatal brain studies were conducted. Results demonstrate that SACF-uPDI can effectively enhance contrast and resolution and suppress background noise simultaneously, compared with conventional uPDI methods based on delay-and-sum (DAS) (DAS-uPDI) and CF (CF-uPDI). In the simulations, SACF-uPDI can improve the lateral and axial resolutions compared with those of DAS-uPDI, from 176 to [Formula: see text] of lateral resolution, and from 111 to [Formula: see text] of axial resolution. In the in vivo contrast-enhanced experiments, SACF achieves 15.14- and 5.6-dB higher contrast-to-noise ratio (CNR), 15.25- and 3.68-dB lower noise power, and 240- and 15- [Formula: see text] narrower full-width at half-maximum (FWHM) than DAS-uPDI and CF-uPDI, respectively. In the in vivo contrast-free experiments, SACF achieves 6.11- and 1.09-dB higher CNR, 11.93- and 4.01-dB lower noise power, and 528- and 160- [Formula: see text] narrower FWHM than DAS-uPDI and CF-uPDI, respectively. In conclusion, the proposed SACF-uPDI method can efficiently improve the microvascular imaging quality and has the potential to facilitate clinical applications.
Collapse
|
6
|
Foiret J, Cai X, Bendjador H, Park EY, Kamaya A, Ferrara KW. Improving plane wave ultrasound imaging through real-time beamformation across multiple arrays. Sci Rep 2022; 12:13386. [PMID: 35927389 PMCID: PMC9352764 DOI: 10.1038/s41598-022-16961-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Ultrasound imaging is a widely used diagnostic tool but has limitations in the imaging of deep lesions or obese patients where the large depth to aperture size ratio (f-number) reduces image quality. Reducing the f-number can improve image quality, and in this work, we combined three commercial arrays to create a large imaging aperture of 100 mm and 384 elements. To maintain the frame rate given the large number of elements, plane wave imaging was implemented with all three arrays transmitting a coherent wavefront. On wire targets at a depth of 100 mm, the lateral resolution is significantly improved; the lateral resolution was 1.27 mm with one array (1/3 of the aperture) and 0.37 mm with the full aperture. After creating virtual receiving elements to fill the inter-array gaps, an autoregressive filter reduced the grating lobes originating from the inter-array gaps by - 5.2 dB. On a calibrated commercial phantom, the extended field-of-view and improved spatial resolution were verified. The large aperture facilitates aberration correction using a singular value decomposition-based beamformer. Finally, after approval of the Stanford Institutional Review Board, the three-array configuration was applied in imaging the liver of a volunteer, validating the potential for enhanced resolution.
Collapse
Affiliation(s)
| | - Xiran Cai
- Stanford University, Palo Alto, CA, USA
| | | | | | | | | |
Collapse
|
7
|
Long J, Trahey G, Bottenus N. Spatial Coherence in Medical Ultrasound: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:975-996. [PMID: 35282988 PMCID: PMC9067166 DOI: 10.1016/j.ultrasmedbio.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
Traditional pulse-echo ultrasound imaging heavily relies on the discernment of signals based on their relative magnitudes but is limited in its ability to mitigate sources of image degradation, the most prevalent of which is acoustic clutter. Advances in computing power and data storage have made it possible for echo data to be alternatively analyzed through the lens of spatial coherence, a measure of the similarity of these signals received across an array. Spatial coherence is not currently explicitly calculated on diagnostic ultrasound scanners but a large number of studies indicate that it can be employed to describe image quality, to adaptively select system parameters and to improve imaging and target detection. With the additional insights provided by spatial coherence, it is poised to play a significant role in the future of medical ultrasound. This review details the theory of spatial coherence in pulse-echo ultrasound and key advances made over the last few decades since its introduction in the 1980s.
Collapse
Affiliation(s)
- James Long
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Gregg Trahey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nick Bottenus
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
8
|
Lee HK, Greenleaf JF, Urban MW. A New Plane Wave Compounding Scheme Using Phase Compensation for Motion Detection. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:702-710. [PMID: 34914585 PMCID: PMC8867602 DOI: 10.1109/tuffc.2021.3136127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plane wave (PW) transmission has enabled multiple new applications, such as shear wave elastography, ultrafast Doppler imaging, and functional ultrasound imaging. PW compounding (PWC), which coherently sums the echo signals from multiple PW transmits with different angles, is widely used to improve B-mode image quality. When the motion between two speckle images is estimated, PWC suffers from an inherent displacement estimation error. This is derived theoretically and experimentally demonstrated in this work. We show that the phase difference between the acquired data with PW emissions with different angles is related to this error. When the absolute value of the phase difference is larger than π /2, the displacement estimation error occurs. A new scheme, named initial-phase-compensated PWC (IPCPWC), is proposed, which compensates the phase of echo signals from each PW transmit and maintains the absolute value of the phase difference smaller than π /2. The increased signal-to-noise ratio and reduced jitter of IPCPWC in motion data are demonstrated using tissue mimicking phantoms compared with PWC.
Collapse
|
9
|
Li YL, Hyun D, Ducey-Wysling J, Durot I, D'Hondt A, Patel BN, Dahl JJ. Real-Time In Vivo Imaging of Human Liver Vasculature Using Coherent Flow Power Doppler: A Pilot Clinical Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3027-3041. [PMID: 34003748 PMCID: PMC8515835 DOI: 10.1109/tuffc.2021.3081438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Power Doppler (PD) is a commonly used technique for flow detection and vessel visualization in radiology clinics. Despite its broad set of applications, PD suffers from multiple noise sources and artifacts, such as thermal noise, clutter, and flash artifacts. In addition, a tradeoff exists between acquisition time and Doppler image quality. These limit the ability of clinical PD imaging in deep-lying and small-vessel detection and visualization, particularly among patients with high body mass indices (BMIs). To improve the Doppler vessel detection, we have previously proposed coherent flow PD (CFPD) imaging and demonstrated its performance on porcine vasculature. In this article, we report on a pilot clinical study of CFPD imaging on healthy human volunteers and patients with high BMI to assess the clinical feasibility of the technique in liver imaging. In this study, we built a real-time CFPD imaging system using a graphical processing unit (GPU)-based software beamformer and a CFPD processing module. Using the real-time CFPD imaging system, the liver vasculature of 15 healthy volunteers with normal BMI below 25 and 15 patients with BMI greater than 25 was imaged. Both PD and CFPD image streams were produced simultaneously. The generalized contrast-to-noise ratio (gCNR) of the PD and CFPD images was measured to provide the quantitative evaluation of image quality and vessel detectability. Comparison of PD and CFPD image shows that gCNR is improved by 35% in healthy volunteers and 28% in high BMI patients with CFPD compared to PD. Example images are provided to show that the improvement in the Doppler image gCNR leads to greater detection of small vessels in the liver. In addition, we show that CFPD can suppress in vivo reverberation clutter in clinical imaging.
Collapse
|
10
|
Ozgun KA, Byram BC. Multidimensional Clutter Filtering of Aperture Domain Data for Improved Blood Flow Sensitivity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2645-2656. [PMID: 33852387 PMCID: PMC8345228 DOI: 10.1109/tuffc.2021.3073292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Singular value decomposition (SVD) is a valuable factorization technique used in clutter rejection filtering for power Doppler imaging. Conventionally, SVD is applied to a Casorati matrix of radio frequency data, which enables filtering based on spatial or temporal characteristics. In this article, we propose a clutter filtering method that uses a higher order SVD (HOSVD) applied to a tensor of aperture data, e.g., delayed channel data. We discuss temporal, spatial, and aperture domain features that can be leveraged in filtering and demonstrate that this multidimensional approach improves sensitivity toward blood flow. Further, we show that HOSVD remains more robust to short ensemble lengths than conventional SVD filtering. Validation of this technique is shown using Field II simulations and in vivo data.
Collapse
|
11
|
Huang C, Song P, Trzasko JD, Gong P, Lok UW, Tang S, Manduca A, Chen S. Simultaneous Noise Suppression and Incoherent Artifact Reduction in Ultrafast Ultrasound Vascular Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2075-2085. [PMID: 33513103 PMCID: PMC8154644 DOI: 10.1109/tuffc.2021.3055498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound vascular imaging based on ultrafast plane wave imaging and singular value decomposition (SVD) clutter filtering has demonstrated superior sensitivity in blood flow detection. However, ultrafast ultrasound vascular imaging is susceptible to electronic noise due to the weak penetration of unfocused waves, leading to a lower signal-to-noise ratio (SNR) at larger depths. In addition, incoherent clutter artifacts originating from strong and moving tissue scatterers that cannot be completely removed create a strong mask on top of the blood signal that obscures the vessels. Herein, a method that can simultaneously suppress the background noise and incoherent artifacts is proposed. The method divides the tilted plane or diverging waves into two subgroups. Coherent spatial compounding is performed within each subgroup, resulting in two compounded data sets. An SVD-based clutter filter is applied to each data set, followed by a correlation between the two data sets to produce a vascular image. Uncorrelated noise and incoherent artifacts can be effectively suppressed with the correlation process, while the coherent blood signal can be preserved. The method was evaluated in wire-target simulations and phantom, in which around 7-10-dB SNR improvement was shown. Consistent results were found in a flow channel phantom with improved SNR by the proposed method (39.9 ± 0.2 dB) against conventional power Doppler (29.1 ± 0.6 dB). Last, we demonstrated the effectiveness of the method combined with block-wise SVD clutter filtering in a human liver, breast tumor, and inflammatory bowel disease data sets. The improved blood flow visualization may facilitate more reliable small vessel imaging for a wide range of clinical applications, such as cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Jakovljevic M, Yoon BC, Abou-Elkacem L, Hyun D, Li Y, Rubesova E, Dahl JJ. Blood Flow Imaging in the Neonatal Brain Using Angular Coherence Power Doppler. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:92-106. [PMID: 32746214 PMCID: PMC7864118 DOI: 10.1109/tuffc.2020.3010341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Using ultrasound to image small vessels in the neonatal brain can be difficult in the presence of strong clutter from the surrounding tissue and with a neonate motion during the scan. We propose a coherence-based beamforming method, namely the short-lag angular coherence (SLAC) beamforming that suppresses incoherent noise and motion artifacts in Ultrafast data, and we demonstrate its applicability to improve detection of blood flow in the neonatal brain. Instead of estimating spatial coherence across the receive elements, SLAC utilizes the principle of acoustic reciprocity to estimate angular coherence from the beamsummed signals from different plane-wave transmits, which makes it computationally efficient and amenable to advanced beamforming techniques, such as f-k migration. The SLAC images of a simulated speckle phantom show similar edge resolution and texture size as the matching B-mode images, and reduced random noise in the background. We apply SLAC power Doppler (PD) to free-hand imaging of neonatal brain vasculature with long Doppler ensembles and show that: 1) it improves visualization of small vessels in the cortex compared to conventional PD and 2) it can be used for tracking of blood flow in the brain over time, meaning it could potentially improve the quality of free-hand functional ultrasound.
Collapse
|
13
|
Bendjador H, Deffieux T, Tanter M. The SVD Beamformer: Physical Principles and Application to Ultrafast Adaptive Ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3100-3112. [PMID: 32286965 DOI: 10.1109/tmi.2020.2986830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A shift of paradigm is currently underway in biomedical ultrasound thanks to plane or diverging waves coherent compounding for faster imaging. One remaining challenge consists in handling phase and amplitude aberrations induced during the ultrasonic propagation through complex layers. Unlike conventional line-per-line imaging, ultrafast ultrasound provides backscattering information from the whole imaged area for each transmission. Here, we take benefit from this feature and propose an efficient approach to perform fast aberration correction. Our method is based on the Singular Value Decomposition (SVD) of an ultrafast compound matrix containing backscattered data for several plane wave transmissions. First, we explain the physical signification of SVD and associated singular vectors within the ultrafast matrix formalism. We theoretically demonstrate that the separation of spatial and angular variables, rendered by SVD on ultrafast data, provides an elegant and straightforward way to optimize the angular coherence of backscattered data. In heterogeneous media, we demonstrate that the first spatial and angular singular vectors retrieve respectively the non-aberrated image of a region of interest, and the phase and amplitude of its aberration law. Numerical, in vitro and in vivo results prove the efficiency of the image correction, but also the accuracy of the aberrator determination. Based on spatial and angular coherence, we introduce a complete methodology for adaptive beamforming of ultrafast data, performed on successive isoplanatism patches undergoing SVD beamforming. The simplicity of this method paves the way to real-time adaptive ultrafast ultrasound imaging and provides a theoretical framework for future quantitative ultrasound applications.
Collapse
|
14
|
Morgan MR, Bottenus N, Trahey GE, Walker WF. Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1166-1177. [PMID: 31940530 PMCID: PMC7337595 DOI: 10.1109/tuffc.2020.2966116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coherence-based imaging methods suffer from reduced image quality outside the depth of field for focused ultrasound transmissions. Synthetic aperture methods can extend the depth of field by coherently compounding time-delayed echo data from multiple transmit events. Recently, our group has presented the Multi-covariate Imaging of Sub-resolution Targets (MIST), an estimation-based method to image the statistical properties of diffuse targets. MIST has demonstrated improved image quality over conventional delay-and-sum, but like many coherence-based imaging methods, suffers from limited depth of field artifacts. This article applies synthetic aperture focusing to MIST, which is evaluated using focused, plane-wave, and diverging-wave transmit geometries. Synthetic aperture MIST is evaluated in simulation, phantom, and in vivo applications, demonstrating consistent improvements in contrast-to-noise ratio (CNR) over conventional dynamic receive MIST outside the transmit depth of field, with approximately equivalent results between synthetic transmit geometries. In vivo synthetic aperture MIST images demonstrated 16.8 dB and 16.6% improvements in contrast and CNR, respectively, over dynamic receive MIST images, as well as 17.4 dB and 32.3% improvements over synthetic aperture B-Mode. MIST performance is characterized in the space of plane-wave imaging, where the total plane-wave count is reduced through coarse angular sampling or total angular span. Simulation and experimental results indicate wide applicability of MIST to synthetic aperture imaging methods.
Collapse
|
15
|
A United Sign Coherence Factor Beamformer for Coherent Plane-Wave Compounding with Improved Contrast. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we present a united sign coherence factor beamformer for coherent plane-wave compounding (CPWC). CPWC is capable of reaching an image quality comparable to the conventional B-mode with a much higher frame rate. Conventional coherence factor (CF) based beamformers for CPWC are based on one-dimensional (1D) frameworks, either in the spatial coherence dimension or angular coherence dimension. Both 1D frameworks do not take into account the coherence information of the dimensions of each other. In order to take full advantage of the radio-frequency (RF) data, this paper proposes a united framework containing both spatial and angular information for CPWC. A united sign coherence factor beamformer (uSCF), which combines the conventional sign coherence factor (SCF) and the united framework, is introduced in the paper as well. The proposed beamformer is compared with the conventional 1D SCF beamformers (spatial and angular dimension beamformers) using simulation, phantom and in vivo studies. In the in vivo images, the proposed method improves the contrast ratio (CR) and generalized contrast-to-noise ratio (gCNR) by 197% and 20% over CPWC. Compared with other 1D methods, uSCF also shows an improved contrast and lateral resolution on all datasets.
Collapse
|
16
|
Zheng C, Wang H, Xu X, Peng H, Chen Q. An adaptive imaging method for ultrasound coherent plane-wave compounding based on the subarray zero-cross factor. ULTRASONICS 2020; 100:105978. [PMID: 31479963 DOI: 10.1016/j.ultras.2019.105978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Coherent plane-wave compounding (CPWC) has the ability to generate high quality image using the backscattered signals from plane wave emitting at different steer angles. To improve the image quality of CPWC, adaptive weighting techniques have been introduced in the compounding procedure. This paper proposes subarray zeros-cross factor (SZF) for CPWC, and it is used as an adaptive weighting factor to improve image quality. The SZF is calculated based on polarity of plane-wave imaging results with adjacent steering angle to estimate the coherence of plane wave emitting events. It is effective to suppress noise and maintain background speckle pattern. Simulations and experiments were conducted to evaluate the performance of the proposed method. Results demonstrate that the SZF can achieve better performance on contrast ratio (CR) and resolution than traditional CPWC. For simulated cysts, a maximal CR improvement of 125.4% is achieved. For experimental cysts, the maximal CR improvement is 197.9%. Compared with coherence factor (CF) and generalized coherence factor (GCF), SZF can obtain improvements in contrast-to-noise ratio and speckle signal-to-noise ratio at near field and increase CR at far field. In addition, when subarray length L is in the range of [10,12], SZF can obtain satisfying comprehensive performance.
Collapse
Affiliation(s)
- Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Wang
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Xu
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Qiang Chen
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Wang Y, Zheng C, Peng H. Dynamic coherence factor based on the standard deviation for coherent plane-wave compounding. Comput Biol Med 2019; 108:249-262. [DOI: 10.1016/j.compbiomed.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/29/2022]
|