1
|
Buchholz S, Schnupp JWH, Arndt S, Rosskothen-Kuhl N. Interaural level difference sensitivity in neonatally deafened rats fitted with bilateral cochlear implants. Sci Rep 2024; 14:30515. [PMID: 39681610 DOI: 10.1038/s41598-024-82978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Bilateral cochlear implant (CI) patients exhibit significant limitations in spatial hearing. Their ability to process interaural time differences (ITDs) is often impaired, while their ability to process interaural level differences (ILDs) remains comparatively good. Clinical studies aiming to identify the causes of these limitations are often plagued by confounds and ethical limitations. Recent behavioral work suggests that rats may be a good animal model for studying binaural hearing under neuroprosthetic stimulation, as rats develop excellent ITD sensitivity when provided with suitable CI stimulation. However, their ability to use ILDs has not yet been characterized. Objective of this study is to address this knowledge gap. Neontally deafened rats were bilaterally fitted with CIs, and trained to lateralize binaural stimuli according to ILD. Their behavioral ILD thresholds were measured at pulse rates from 50 to 2400 pps. CI rats exhibited high sensitivity to ILDs with thresholds of a few dB at all tested pulse rates. We conclude that early deafened rats develop good sensitivity, not only to ITDs but also to ILDs, if provided with appropriate CI stimulation. Their generally good performance, in line with expectations from other mammalian species, validates rats as an excellent model for research on binaural auditory prostheses.
Collapse
Affiliation(s)
- Sarah Buchholz
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany
| | - Jan W H Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
- Gerald Choa Neuroscience Institute, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR
- Department of Otolaryngology, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR
- School of Biomedical Sciences, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR
| | - Susan Arndt
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany.
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Gulli A, Fontana F, Aruffo A, Orzan E, Muzzi E. Previous binaural experience supports compensatory strategies in hearing-impaired children's auditory horizontal localization. PLoS One 2024; 19:e0312073. [PMID: 39637020 PMCID: PMC11620673 DOI: 10.1371/journal.pone.0312073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigates auditory localization in children with a diagnosis of hearing impairment rehabilitated with bilateral cochlear implants or hearing aids. Localization accuracy in the anterior horizontal field and its distribution along the angular position of the source were analyzed. Participants performed a localization task in a virtual environment where they could move their heads freely and were asked to point to an invisible sound source. The source was rendered using a loudspeaker set arranged as a semi-circular array in the horizontal plane. The participants' head positions were tracked while their hands pointed to the auditory target; the preferred listening position and the onset of active strategies involving head movement were extracted. A significant correlation was found between age and localization accuracy and age and head movement in children with bilateral hearing aids. Investigating conditions where no, one, or both hearing devices were turned off, it was found that asymmetrical hearing caused the largest errors. Under this specific condition, head movement was used erratically by children with bilateral cochlear implants who focused on postures maximizing sound intensity at the more sensitive ear. Conversely, those with a consolidated binaural hearing experience could use dynamic cues even if one hearing aid was turned off. This finding may have implications for the clinical evaluation and rehabilitation of individuals with hearing impairments.
Collapse
Affiliation(s)
- Andrea Gulli
- Department of Engineering and Management, University of Padua, Padua, Italy
| | - Federico Fontana
- HCI Lab, Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Alessandro Aruffo
- Otorhinolaryngology and Audiology, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Eva Orzan
- Otorhinolaryngology and Audiology, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Enrico Muzzi
- Otorhinolaryngology and Audiology, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
3
|
Rosskothen-Kuhl N, Green S, Jakob TF. Does age protect against loss of tonotopy after acute deafness in adulthood? Front Cell Neurosci 2024; 18:1424773. [PMID: 39583181 PMCID: PMC11581902 DOI: 10.3389/fncel.2024.1424773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/08/2024] [Indexed: 11/26/2024] Open
Abstract
The mammalian auditory system develops a topographical representation of sound frequencies along its pathways, also called tonotopy. In contrast, sensory deprivation during early development results in no or only rudimentary tonotopic organization. This study addresses two questions: (1) How robust is the central tonotopy when hearing fails in adulthood? (2) What role does age play at time of deafness? To address these questions, we deafened young and old adult rats with previously normal hearing. One month after deafening, both groups were unilaterally supplied with cochlear implants and electrically stimulated for 2 h. The central auditory neurons, which were activated as a result of the local electrical intracochlear stimulation, were visualized using Fos staining. While the auditory system of young rats lost the tonotopic organization throughout the brainstem, the auditory system of the older rats mainly sustained its tonotopy. It can be proposed that plasticity prevails in the central auditory system of young adult rats, while network stability prevails in the brains of aging rats. Consequently, age may be an important factor in protecting a hearing-experienced adult auditory system from a rapid loss of tonotopy when suffering from acute hearing loss. Furthermore, the study provides compelling evidence that acute deafness in young adult patients should be diagnosed as early as possible to prevent maladaptation of the central auditory system and thus achieve the optimal hearing outcome with a hearing prosthesis.
Collapse
Affiliation(s)
- Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Biology, Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Sarah Green
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Till F. Jakob
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
- Department of Otorhinolaryngology, Faculty of Medicine, Medical Center – University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Reiss LAJ, Goupell MJ. Binaural fusion: Complexities in definition and measurement. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2395-2408. [PMID: 39392352 PMCID: PMC11470809 DOI: 10.1121/10.0030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Despite the growing interest in studying binaural fusion, there is little consensus over its definition or how it is best measured. This review seeks to describe the complexities of binaural fusion, highlight measurement challenges, provide guidelines for rigorous perceptual measurements, and provide a working definition that encompasses this information. First, it is argued that binaural fusion may be multidimensional and might occur in one domain but not others, such as fusion in the spatial but not the spectral domain or vice versa. Second, binaural fusion may occur on a continuous scale rather than on a binary one. Third, binaural fusion responses are highly idiosyncratic, which could be a result of methodology, such as the specific experimental instructions, suggesting a need to explicitly report the instructions given. Fourth, it is possible that direct ("Did you hear one sound or two?") and indirect ("Where did the sound come from?" or "What was the pitch of the sound?") measurements of fusion will produce different results. In conclusion, explicit consideration of these attributes and reporting of methodology are needed for rigorous interpretation and comparison across studies and listener populations.
Collapse
Affiliation(s)
- Lina A J Reiss
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
5
|
Alemu RZ, Gorodensky J, Gill S, Cushing SL, Papsin BC, Gordon KA. Binaural responses to a speech syllable are altered in children with hearing loss: Evidence from the frequency-following response. Hear Res 2024; 450:109068. [PMID: 38936172 DOI: 10.1016/j.heares.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND & RATIONALE In prior work using non-speech stimuli, children with hearing loss show impaired perception of binaural cues and no significant change in cortical responses to bilateral versus unilateral stimulation. Aims of the present study were to: 1) identify bilateral responses to envelope and spectral components of a speech syllable using the frequency-following response (FFR), 2) determine if abnormalities in the bilateral FFR occur in children with hearing loss, and 3) assess functional consequences of abnormal bilateral FFR responses on perception of binaural timing cues. METHODS A single-syllable speech stimulus (/dα/) was presented to each ear individually and bilaterally. Participants were 9 children with normal hearing (MAge = 12.1 ± 2.5 years) and 6 children with bilateral hearing loss who were experienced bilateral hearing aid users (MAge = 14.0 ± 2.6 years). FFR temporal and spectral peak amplitudes were compared between listening conditions and groups using linear mixed model regression analyses. Behavioral sensitivity to binaural cues were measured by lateralization responses as coming from the right or left side of the head. RESULTS Both temporal and spectral peaks in FFR responses increased in amplitude in the bilateral compared to unilateral listening conditions in children with normal hearing. These measures of "bilateral advantage" were reduced in the group of children with bilateral hearing loss and associated with decreased sensitivity to interaural timing differences. CONCLUSION This study is the first to show that bilateral responses in both temporal and spectral domains can be measured in children using the FFR and is altered in children with hearing loss with consequences to binaural hearing.
Collapse
Affiliation(s)
- R Z Alemu
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - J Gorodensky
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Gill
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
| | - S L Cushing
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - B C Papsin
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - K A Gordon
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Alemu RZ, Papsin BC, Harrison RV, Blakeman A, Gordon KA. Head and Eye Movements Reveal Compensatory Strategies for Acute Binaural Deficits During Sound Localization. Trends Hear 2024; 28:23312165231217910. [PMID: 38297817 PMCID: PMC10832417 DOI: 10.1177/23312165231217910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 02/02/2024] Open
Abstract
The present study aimed to define use of head and eye movements during sound localization in children and adults to: (1) assess effects of stationary versus moving sound and (2) define effects of binaural cues degraded through acute monaural ear plugging. Thirty-three youth (MAge = 12.9 years) and seventeen adults (MAge = 24.6 years) with typical hearing were recruited and asked to localize white noise anywhere within a horizontal arc from -60° (left) to +60° (right) azimuth in two conditions (typical binaural and right ear plugged). In each trial, sound was presented at an initial stationary position (L1) and then while moving at ∼4°/s until reaching a second position (L2). Sound moved in five conditions (±40°, ±20°, or 0°). Participants adjusted a laser pointer to indicate L1 and L2 positions. Unrestricted head and eye movements were collected with gyroscopic sensors on the head and eye-tracking glasses, respectively. Results confirmed that accurate sound localization of both stationary and moving sound is disrupted by acute monaural ear plugging. Eye movements preceded head movements for sound localization in normal binaural listening and head movements were larger than eye movements during monaural plugging. Head movements favored the unplugged left ear when stationary sounds were presented in the right hemifield and during sound motion in both hemifields regardless of the movement direction. Disrupted binaural cues have greater effects on localization of moving than stationary sound. Head movements reveal preferential use of the better-hearing ear and relatively stable eye positions likely reflect normal vestibular-ocular reflexes.
Collapse
Affiliation(s)
- Robel Z. Alemu
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, The University of Toronto, Toronto, ON, Canada
| | - Blake C. Papsin
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, The University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Research Institute, Toronto, ON, Canada
| | - Robert V. Harrison
- Institute of Medical Science, The University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Research Institute, Toronto, ON, Canada
| | - Al Blakeman
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karen A. Gordon
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, The University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Research Institute, Toronto, ON, Canada
- Department of Communication Disorders, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
7
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Buck AN, Buchholz S, Schnupp JW, Rosskothen-Kuhl N. Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps. Sci Rep 2023; 13:3785. [PMID: 36882473 PMCID: PMC9992369 DOI: 10.1038/s41598-023-30569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates ≥ 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above ~ 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at > 300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs.
Collapse
Affiliation(s)
- Alexa N Buck
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.,Plasticity of Central Auditory Circuits, Institut de l'Audition, Institut Pasteur, Paris, France
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany
| | - Jan W Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. .,Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany. .,Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Gordon KA, Alemu R, Papsin BC, Negandhi J, Cushing SL. Effects of Age at Implantation on Outcomes of Cochlear Implantation in Children with Short Durations of Single-Sided Deafness. Otol Neurotol 2023; 44:233-240. [PMID: 36728258 PMCID: PMC9924958 DOI: 10.1097/mao.0000000000003811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Children with single-sided deafness (SSD) show reduced language and academic development and report hearing challenges. We aim to improve outcomes in children with SSD by providing bilateral hearing through cochlear implantation of the deaf ear with minimal delay. STUDY DESIGN Prospective cohort study of 57 children with SSD provided with cochlear implant (CI) between May 13, 2013, and June 25, 2021. SETTING Tertiary children's hospital. PARTICIPANTS Children with early onset (n = 40) or later onset of SSD (n = 17) received CIs at ages 2.47 ± 1.58 years (early onset group) and 11.67 ± 3.91 years (late onset group) (mean ± SD). Duration of unilateral deafness was limited (mean ± SD = 1.93 ± 1.56 yr). INTERVENTION Cochlear implantation of the deaf ear. MAIN OUTCOMES/MEASURES Evaluations of device use (data logging) and hearing (speech perception, effects of spatial release from masking on speech detection, localization of stationary and moving sound, self-reported hearing questionnaires). RESULTS Results indicated that daily device use is variable (mean ± SD = 5.60 ± 2.97, range = 0.0-14.7 h/d) with particular challenges during extended COVID-19 lockdowns, including school closures (daily use reduced by mean 1.73 h). Speech perception with the CI alone improved (mean ± SD = 65.7 ± 26.4 RAU) but, in the late onset group, remained poorer than in the normal hearing ear. Measures of spatial release from masking also showed asymmetric hearing in the late onset group ( t13 = 5.14, p = 0.001). Localization of both stationary and moving sound was poor (mean ± SD error = 34.6° ± 16.7°) but slightly improved on the deaf side with CI use ( F1,36 = 3.95, p = 0.05). Decreased sound localization significantly correlated with poorer self-reported hearing. CONCLUSIONS AND RELEVANCE Benefits of CI in children with limited durations of SSD may be more restricted for older children/adolescents. Spatial hearing challenges remain. Efforts to increase CI acceptance and consistent use are needed.
Collapse
Affiliation(s)
- Karen A. Gordon
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto
- Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children
- Department of Communication Disorders, The Hospital for Sick Children
| | - Robel Alemu
- Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children
| | - Blake C. Papsin
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto
- Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children
- Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jaina Negandhi
- Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children
| | - Sharon L. Cushing
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto
- Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children
- Department of Otolaryngology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
10
|
Thakkar T, Kan A, Litovsky RY. Lateralization of interaural time differences with mixed rates of stimulation in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1912. [PMID: 37002065 PMCID: PMC10036141 DOI: 10.1121/10.0017603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
While listeners with bilateral cochlear implants (BiCIs) are able to access information in both ears, they still struggle to perform well on spatial hearing tasks when compared to normal hearing listeners. This performance gap could be attributed to the high stimulation rates used for speech representation in clinical processors. Prior work has shown that spatial cues, such as interaural time differences (ITDs), are best conveyed at low rates. Further, BiCI listeners are sensitive to ITDs with a mixture of high and low rates. However, it remains unclear whether mixed-rate stimuli are perceived as unitary percepts and spatially mapped to intracranial locations. Here, electrical pulse trains were presented on five, interaurally pitch-matched electrode pairs using research processors, at either uniformly high rates, low rates, or mixed rates. Eight post-lingually deafened adults were tested on perceived intracranial lateralization of ITDs ranging from 50 to 1600 μs. Extent of lateralization depended on the location of low-rate stimulation along the electrode array: greatest in the low- and mixed-rate configurations, and smallest in the high-rate configuration. All but one listener perceived a unitary auditory object. These findings suggest that a mixed-rate processing strategy can result in good lateralization and convey a unitary auditory object with ITDs.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
11
|
Neonatal Deafening Selectively Degrades the Sensitivity to Interaural Time Differences of Electrical Stimuli in Low-Frequency Pathways in Rats. eNeuro 2023; 10:ENEURO.0437-22.2022. [PMID: 36609304 PMCID: PMC9850913 DOI: 10.1523/eneuro.0437-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
We examined the effect of neonatal deafening on frequency-specific pathways for processing of interaural time differences (ITDs) in cochlear-implant stimuli. Animal studies have demonstrated differences in neural ITD sensitivity in the inferior colliculus (IC) depending on the intracochlear location of intracochlear stimulating electrodes. We used neonatally deafened (ND) rats of both sexes and recorded the responses of single neurons in the IC to electrical stimuli with ITDs delivered to the apical or basal cochlea and compared them with acutely deafened (AD) rats of both sexes with normal hearing (NH) during development. We found that neonatal deafness significantly impacted the ITD sensitivity and the ITD tuning patterns restricted to apically driven IC neurons. In ND rats, the ITD sensitivity of apically driven neurons is reduced to values similar to basally driven neurons. The prevalence of ITD-sensitive apical neurons with a peak-shaped ITD tuning curve, which may reflect predominant input from the medial superior olivary (MSO) complex, in ND rats was diminished compared with that in AD rats (67%, AD vs 40%, ND). Conversely, monotonic-type responses rarely occurred in AD rats (14%) but were approximately equally as prevalent as peak-type tuning curves in ND rats (42%). Nevertheless, in ND rats, the ITD at the maximum slope of the ITD tuning curve was still more concentrated within the physiological ITD range in apically driven than in basally driven neurons. These results indicate that the development of high ITD sensitivity processed by low-frequency pathways depends on normal auditory experience and associated biases in ITD tuning strategies.
Collapse
|
12
|
Computed-Tomography Estimates of Interaural Mismatch in Insertion Depth and Scalar Location in Bilateral Cochlear-Implant Users. Otol Neurotol 2022; 43:666-675. [PMID: 35761459 DOI: 10.1097/mao.0000000000003538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HYPOTHESIS Bilateral cochlear-implant (BI-CI) users will have a range of interaural insertion-depth mismatch because of different array placement or characteristics. Mismatch will be larger for electrodes located near the apex or outside scala tympani, or for arrays that are a mix of precurved and straight types. BACKGROUND Brainstem superior olivary-complex neurons are exquisitely sensitive to interaural-difference cues for sound localization. Because these neurons rely on interaurally place-of-stimulation-matched inputs, interaural insertion-depth or scalar-location differences for BI-CI users could cause interaural place-of-stimulation mismatch that impairs binaural abilities. METHODS Insertion depths and scalar locations were calculated from temporal-bone computed-tomography scans for 107 BI-CI users (27 Advanced Bionics, 62 Cochlear, 18 MED-EL). RESULTS Median interaural insertion-depth mismatch was 23.4 degrees or 1.3 mm. Mismatch in the estimated clinically relevant range expected to impair binaural processing (>75 degrees or 3 mm) occurred for 13 to 19% of electrode pairs overall, and for at least three electrode pairs for 23 to 37% of subjects. There was a significant three-way interaction between insertion depth, scalar location, and array type. Interaural insertion-depth mismatch was largest for apical electrodes, for electrode pairs in two different scala, and for arrays that were both-precurved. CONCLUSION Average BI-CI interaural insertion-depth mismatch was small; however, large interaural insertion-depth mismatch-with the potential to degrade spatial hearing-occurred frequently enough to warrant attention. For new BICI users, improved surgical techniques to avoid interaural insertion-depth and scalar mismatch are recommended. For existing BI-CI users with interaural insertion-depth mismatch, interaural alignment of clinical frequency tables might reduce negative spatial-hearing consequences.
Collapse
|
13
|
Anderson SR, Jocewicz R, Kan A, Zhu J, Tzeng S, Litovsky RY. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. PLoS One 2022; 17:e0263516. [PMID: 35134072 PMCID: PMC8824335 DOI: 10.1371/journal.pone.0263516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to determine a sound’s location is critical in everyday life. However, sound source localization is severely compromised for patients with hearing loss who receive bilateral cochlear implants (BiCIs). Several patient factors relate to poorer performance in listeners with BiCIs, associated with auditory deprivation, experience, and age. Critically, characteristic errors are made by patients with BiCIs (e.g., medial responses at lateral target locations), and the relationship between patient factors and the type of errors made by patients has seldom been investigated across individuals. In the present study, several different types of analysis were used to understand localization errors and their relationship with patient-dependent factors (selected based on their robustness of prediction). Binaural hearing experience is required for developing accurate localization skills, auditory deprivation is associated with degradation of the auditory periphery, and aging leads to poorer temporal resolution. Therefore, it was hypothesized that earlier onsets of deafness would be associated with poorer localization acuity and longer periods without BiCI stimulation or older age would lead to greater amounts of variability in localization responses. A novel machine learning approach was introduced to characterize the types of errors made by listeners with BiCIs, making them simple to interpret and generalizable to everyday experience. Sound localization performance was measured in 48 listeners with BiCIs using pink noise trains presented in free-field. Our results suggest that older age at testing and earlier onset of deafness are associated with greater average error, particularly for sound sources near the center of the head, consistent with previous research. The machine learning analysis revealed that variability of localization responses tended to be greater for individuals with earlier compared to later onsets of deafness. These results suggest that early bilateral hearing is essential for best sound source localization outcomes in listeners with BiCIs.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rachael Jocewicz
- Department of Audiology, Stanford University, Stanford, California, United States of America
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales, Australia
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - ShengLi Tzeng
- Department of Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Novel Approaches to Measure Spatial Release From Masking in Children With Bilateral Cochlear Implants. Ear Hear 2022; 43:101-114. [PMID: 34133400 PMCID: PMC8671563 DOI: 10.1097/aud.0000000000001080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To investigate the role of auditory cues for spatial release from masking (SRM) in children with bilateral cochlear implants (BiCIs) and compare their performance with children with normal hearing (NH). To quantify the contribution to speech intelligibility benefits from individual auditory cues: head shadow, binaural redundancy, and interaural differences; as well as from multiple cues: SRM and binaural squelch. To assess SRM using a novel approach of adaptive target-masker angular separation, which provides a more functionally relevant assessment in realistic complex auditory environments. DESIGN Children fitted with BiCIs (N = 11) and with NH (N = 18) were tested in virtual acoustic space that was simulated using head-related transfer functions measured from individual children with BiCIs behind the ear and from a standard head and torso simulator for all NH children. In experiment I, by comparing speech reception thresholds across 4 test conditions that varied in target-masker spatial separation (colocated versus separated at 180°) and listening conditions (monaural versus binaural/bilateral listening), intelligibility benefits were derived for individual auditory cues for SRM. In experiment II, SRM was quantified using a novel measure to find the minimum angular separation (MAS) between the target and masker to achieve a fixed 20% intelligibility improvement. Target speech was fixed at either +90 or -90° azimuth on the side closer to the better ear (+90° for all NH children) and masker locations were adaptively varied. RESULTS In experiment I, children with BiCIs as a group had smaller intelligibility benefits from head shadow than NH children. No group difference was observed in benefits from binaural redundancy or interaural difference cues. In both groups of children, individuals who gained a larger benefit from interaural differences relied less on monaural head shadow, and vice versa. In experiment II, all children with BiCIs demonstrated measurable MAS thresholds <180° and on average larger than that from NH children. Eight of 11 children with BiCIs and all NH children had a MAS threshold <90°, requiring interaural differences only to gain the target intelligibility benefit; whereas the other 3 children with BiCIs had a MAS between 120° and 137°, requiring monaural head shadow for SRM. CONCLUSIONS When target and maskers were separated at 180° on opposing hemifields, children with BiCIs demonstrated greater intelligibility benefits from head shadow and interaural differences than previous literature showed with a smaller separation. Children with BiCIs demonstrated individual differences in using auditory cues for SRM. From the MAS thresholds, more than half of the children with BiCIs demonstrated robust access to interaural differences without needing additional monaural head shadow for SRM. Both experiments led to the conclusion that individualized fitting strategies in the bilateral devices may be warranted to maximize spatial hearing for children with BiCIs in complex auditory environments.
Collapse
|
15
|
Tsai P, Wisener N, Papsin B, Cushing S, Gordon K. Toward a method of achieving balanced stimulation of bilateral auditory nerves: Evidence from children receiving matched and unmatched bilateral cochlear implants simultaneously. Hear Res 2022; 416:108445. [DOI: 10.1016/j.heares.2022.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
|
16
|
Abstract
The auditory cortex of people with sensorineural hearing loss can be re-afferented using a cochlear implant (CI): a neural prosthesis that bypasses the damaged cells in the cochlea to directly stimulate the auditory nerve. Although CIs are the most successful neural prosthesis to date, some CI users still do not achieve satisfactory outcomes using these devices. To explain variability in outcomes, clinicians and researchers have increasingly focused their attention on neuroscientific investigations that examined how the auditory cortices respond to the electric signals that originate from the CI. This chapter provides an overview of the literature that examined how the auditory cortex changes its functional properties in response to inputs from the CI, in animal models and in humans. We focus first on the basic responses to sounds delivered through electrical hearing and, next, we examine the integrity of two fundamental aspects of the auditory system: tonotopy and processing of binaural cues. When addressing the effects of CIs in humans, we also consider speech-evoked responses. We conclude by discussing to what extent this neuroscientific literature can contribute to clinical practices and help to overcome variability in outcomes.
Collapse
Affiliation(s)
- Francesco Pavani
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | |
Collapse
|
17
|
Gordon KA, Papsin BC, Papaioannou V, Cushing SL. The Importance of Access to Bilateral Hearing through Cochlear Implants in Children. Semin Hear 2021; 42:381-388. [PMID: 34912166 PMCID: PMC8660169 DOI: 10.1055/s-0041-1739371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Children with hearing loss require early access to sound in both ears to support their development. In this article, we describe barriers to providing bilateral hearing and developmental consequences of delays during early sensitive periods. Barriers include late identification of hearing loss in one or both ears and delayed access to intervention with hearing devices such as cochlear implants. Effects of delayed bilateral input on the auditory pathways and brain are discussed as well as behavioral effects on speech perception and other developmental outcomes including language and academics. Evidence for these effects has supported an evolution in cochlear implant candidacy in children that was started with unilateral implantation in children with profound deafness bilaterally to bilateral implantation to implantation of children with asymmetric hearing loss including children with single-side deafness. Opportunities to enhance the developmental benefits of bilateral hearing in children with hearing loss are also discussed including efforts to improve binaural/spatial hearing and consideration of concurrent vestibular deficits which are common in children with hearing loss.
Collapse
Affiliation(s)
- Karen A Gordon
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Canada.,Department of Communication Disorders, The Hospital for Sick Children, Toronto, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Canada
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Canada.,Department of Otolaryngology, The Hospital for Sick Children, Toronto, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Canada
| | - Vicky Papaioannou
- Department of Communication Disorders, The Hospital for Sick Children, Toronto, Canada.,Department of Otolaryngology, The Hospital for Sick Children, Toronto, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Canada
| | - Sharon L Cushing
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Canada.,Department of Otolaryngology, The Hospital for Sick Children, Toronto, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Sparreboom M, Ausili SA, Mylanus EAM. Lateralization of interaural level differences in children with bilateral cochlear implants. Cochlear Implants Int 2021; 23:125-133. [PMID: 34872461 DOI: 10.1080/14670100.2021.2010000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To investigate the perception of interaural level differences (ILDs) in children with bilateral cochlear implants (BiCIs) and compare them to normal hearing peers. As intracranial shifts in perception of ILDs might have an effect on localization, this was further investigated. METHODS ILD responses on four different frequency bands (broadband, low-pass, mid-pass and high-pass) were measured in 9 children with BiCIs and 15 children with normal hearing. In the children with BiCIs, 7 of them were implanted sequentially and 2 of them simultaneously. The outcomes were compared with the outcomes from a previous study on advanced localization using the same stimuli as in the current study. The effect of chronological age, inter-implant delay and preoperative residual hearing were also taken into account. RESULTS No significant differences in ILD responses between children with BiCIs and children with normal hearing were found. For broadband stimuli, children with sequential BiCIs showed a significant shift in their response towards the first implant. A significant correlation was found between inter-implant delay and shift in ILD response for the broadband and high-pass stimuli. The shift in ILD response had no effect on localization. CONCLUSION Children with BiCIs are able to perceive ILD responses similar to those of normal hearing children. The inter-implant delay has a negative effect on the lateralization of the response towards the first implant side, indicative of deprivation of high-frequency sounds prior to receiving a second implant. This shift, however, is not associated with a shift in localization response.
Collapse
Affiliation(s)
- M Sparreboom
- Department of Otorhinolaryngology, Head and Neck Surgery, Hearing and Implants, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - S A Ausili
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - E A M Mylanus
- Department of Otorhinolaryngology, Head and Neck Surgery, Hearing and Implants, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
19
|
Sparreboom M, Ausili S, Agterberg MJH, Mylanus EAM. Bimodal Fitting and Bilateral Cochlear Implants in Children With Significant Residual Hearing: The Impact of Asymmetry in Spatial Release of Masking on Localization. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4030-4043. [PMID: 34525311 DOI: 10.1044/2021_jslhr-20-00720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose This study aimed to gain more insight into the primary auditory abilities of children with significant residual hearing in order to improve decision making when choosing between bimodal fitting or sequential bilateral cochlear implantation. Method Sound localization abilities, spatial release of masking, and fundamental frequency perception were tested. Nine children with bimodal fitting and seven children with sequential bilateral cochlear implants were included in the study. As a reference, 15 children with normal hearing and two children with simultaneous bilateral cochlear implants were included. Results On all outcome measures, the implanted children performed worse than the normal hearing children. For high-frequency localization, children with sequential bilateral cochlear implants performed significantly better than children with bimodal fitting. Compared to children with normal hearing, the left-right asymmetry in spatial release of masking was significant. When the implant was hindered by noise, bimodally fitted children obtained significantly lower spatial release of masking compared to when the hearing aid was hindered by noise. Overall, the larger the left-right asymmetry in spatial release of masking, the poorer the localization skills. No significant differences were found in fundamental frequency perception between the implant groups. Conclusions The data hint to an advantage of bilateral implantation over bimodal fitting. The extent of asymmetry in spatial release of masking is a promising tool for decision making when choosing whether to continue with the hearing aid or to provide a second cochlear implant in children with significant residual hearing.
Collapse
Affiliation(s)
- Marloes Sparreboom
- Department of Otorhinolaryngology-Head and Neck Surgery, Hearing and Implants, and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Martijn J H Agterberg
- Department of Otorhinolaryngology-Head and Neck Surgery, Hearing and Implants, and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Biophysics and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Emmanuel A M Mylanus
- Department of Otorhinolaryngology-Head and Neck Surgery, Hearing and Implants, and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Gajecki T, Nogueira W. Enhancement of interaural level differences for bilateral cochlear implant users. Hear Res 2021; 409:108313. [PMID: 34340023 DOI: 10.1016/j.heares.2021.108313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
Bilateral cochlear implant (BiCI) users do not localize sounds as well as normal hearing (NH) listeners do. NH listeners rely on two binaural cues to localize sounds in the horizontal plane, namely interaural level differences (ILDs) and interaural time differences. BiCI systems, however, convey these cues poorly. In this work, we investigated two methods to improve the coding of ILDs in BiCIs. The first method enhances ILDs by applying an artificial current-versus-angle function to the clinical levels delivered by the basal electrodes of the CI contralateral to the target sound. The second method enhances ILDs by using bilaterally linked N-of-M band selection. Results indicate that the participants were able to discriminate the location of the sound more accurately at narrow azimuths when the ILD enhancement was applied, compared to when they were using natural ILDs. Also, the results show that linking the band selection had a positive effect on left/right discrimination accuracy at larger azimuths for three out of the 10 tested participants, when compared to unlinked band selection. Based on these results, we conclude that ILD enhancement besides linked N-of-M band selection can help some BiCI participants to discriminate sound sources on the frontal horizontal plane.
Collapse
Affiliation(s)
- Tom Gajecki
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Hannover, 30625, Germany.
| | - Waldo Nogueira
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Hannover, 30625, Germany.
| |
Collapse
|
21
|
Sensitivity to interaural time differences in the inferior colliculus of cochlear implanted rats with or without hearing experience. Hear Res 2021; 408:108305. [PMID: 34315027 DOI: 10.1016/j.heares.2021.108305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/11/2023]
Abstract
For deaf patients cochlear implants (CIs) can restore substantial amounts of functional hearing. However, binaural hearing, and in particular, the perception of interaural time differences (ITDs) with current CIs has been found to be notoriously poor, especially in the event of early hearing loss. One popular hypothesis for these deficits posits that a lack of early binaural experience may be a principal cause of poor ITD perception in pre-lingually deaf CI patients. This is supported by previous electrophysiological studies done in neonatally deafened, bilateral CI-stimulated animals showing reduced ITD sensitivity. However, we have recently demonstrated that neonatally deafened CI rats can quickly learn to discriminate microsecond ITDs under optimized stimulation conditions which suggests that the inability of human CI users to make use of ITDs is not due to lack of binaural hearing experience during development. In the study presented here, we characterized ITD sensitivity and tuning of inferior colliculus neurons under bilateral CI stimulation of neonatally deafened and hearing experienced rats. The hearing experienced rats were not deafened prior to implantation. Both cohorts were implanted bilaterally between postnatal days 64-77 and recorded immediately following surgery. Both groups showed comparably large proportions of ITD sensitive multi-units in the inferior colliculus (Deaf: 84.8%, Hearing: 82.5%), and the strength of ITD tuning, quantified as mutual information between response and stimulus ITD, was independent of hearing experience. However, the shapes of tuning curves differed substantially between both groups. We observed four main clusters of tuning curves - trough, contralateral, central, and ipsilateral tuning. Interestingly, over 90% of multi-units for hearing experienced rats showed predominantly contralateral tuning, whereas as many as 50% of multi-units in neonatally deafened rats were centrally tuned. However, when we computed neural d' scores to predict likely limits on performance in sound lateralization tasks, we did not find that these differences in tuning shapes predicted worse psychoacoustic performance for the neonatally deafened animals. We conclude that, at least in rats, substantial amounts of highly precise, "innate" ITD sensitivity can be found even after profound hearing loss throughout infancy. However, ITD tuning curve shapes appear to be strongly influenced by auditory experience although substantial lateralization encoding is present even in its absence.
Collapse
|
22
|
Provision of interaural time difference information in chronic intracochlear electrical stimulation enhances neural sensitivity to these differences in neonatally deafened cats. Hear Res 2021; 406:108253. [PMID: 33971428 DOI: 10.1016/j.heares.2021.108253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
Although performance with bilateral cochlear implants is superior to that with a unilateral implant, bilateral implantees have poor performance in sound localisation and in speech discrimination in noise compared to normal hearing subjects. Studies of the neural processing of interaural time differences (ITDs) in the inferior colliculus (IC) of long-term deaf animals, show substantial degradation compared to that in normal hearing animals. It is not known whether this degradation can be ameliorated by chronic cochlear electrical stimulation, but such amelioration is unlikely to be achieved using current clinical speech processors and cochlear implants, which do not provide good ITD cues. We therefore developed a custom sound processor to deliver salient ITDs for chronic bilateral intra-cochlear electrical stimulation in a cat model of neonatal deafness, to determine if long-term exposure to salient ITDs would prevent degradation of ITD processing. We compared the sensitivity to ITDs in cochlear electrical stimuli of neurons in the IC of cats chronically stimulated with our custom ITD-aware sound processor with sensitivity in acutely deafened cats with normal hearing development and in cats chronically stimulated with a clinical stimulator and sound processor. Animals that experienced stimulation with our custom ITD-aware sound processor had significantly higher neural sensitivity to ITDs than those that received stimulation from clinical sound processors. There was no significant difference between animals received no stimulation and those that received stimulation from clinical sound processors, consistent with findings from clinical cochlear implant users. This result suggests that development and use of clinical ITD-aware sound processing strategies from a young age may promote ITD sensitivity in the clinical population.
Collapse
|
23
|
Rosskothen-Kuhl N, Buck AN, Li K, Schnupp JW. Microsecond interaural time difference discrimination restored by cochlear implants after neonatal deafness. eLife 2021; 10:59300. [PMID: 33427644 PMCID: PMC7815311 DOI: 10.7554/elife.59300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023] Open
Abstract
Spatial hearing in cochlear implant (CI) patients remains a major challenge, with many early deaf users reported to have no measurable sensitivity to interaural time differences (ITDs). Deprivation of binaural experience during an early critical period is often hypothesized to be the cause of this shortcoming. However, we show that neonatally deafened (ND) rats provided with precisely synchronized CI stimulation in adulthood can be trained to lateralize ITDs with essentially normal behavioral thresholds near 50 μs. Furthermore, comparable ND rats show high physiological sensitivity to ITDs immediately after binaural implantation in adulthood. Our result that ND-CI rats achieved very good behavioral ITD thresholds, while prelingually deaf human CI patients often fail to develop a useful sensitivity to ITD raises urgent questions concerning the possibility that shortcomings in technology or treatment, rather than missing input during early development, may be behind the usually poor binaural outcomes for current CI patients.
Collapse
Affiliation(s)
- Nicole Rosskothen-Kuhl
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Alexa N Buck
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kongyan Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jan Wh Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,CityU Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
24
|
Jensen KK, Cosentino S, Bernstein JGW, Stakhovskaya OA, Goupell MJ. A Comparison of Place-Pitch-Based Interaural Electrode Matching Methods for Bilateral Cochlear-Implant Users. Trends Hear 2021; 25:2331216521997324. [PMID: 34057382 PMCID: PMC8182630 DOI: 10.1177/2331216521997324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Interaural place-of-stimulation mismatch for bilateral cochlear-implant (BI-CI) listeners is often evaluated using pitch-comparison tasks that can be susceptible to procedural biases. Bias effects were compared for three sequential interaural pitch-comparison tasks in six BI-CI listeners using single-electrode direct stimulation. The reference (right ear) was a single basal, middle, or apical electrode. The comparison electrode (left ear) was chosen from one of three ranges: basal half, full array, or apical half. In Experiment 1 (discrimination), interaural pairs were chosen randomly (method of constant stimuli). In Experiment 2 (ranking), an efficient adaptive procedure rank ordered 3 reference and 6 or 11 comparison electrodes. In Experiment 3 (matching), listeners adjusted the comparison electrode to pitch match the reference. Each experiment was evaluated for testing-range bias (point of subjective equality [PSE] vs. comparison-range midpoint) and reference-electrode slope bias (PSE vs. reference electrode). Discrimination showed large biases for both metrics; matching showed a smaller but significant reference-electrode bias; ranking showed no significant biases in either dimension. Ranking and matching were also evaluated for starting-point bias (PSE vs. adaptive-track starting point), but neither showed significant effects. A response-distribution truncation model explained a nonsignificant bias for ranking but it could not fully explain the observed biases for discrimination or matching. It is concluded that (a) BI-CI interaural pitch comparisons are inconsistent across test methods; (b) biases must be evaluated in more than one dimension before accepting the results as valid; and (c) of the three methods tested, ranking was least susceptible to biases and therefore emerged as the optimal approach.
Collapse
Affiliation(s)
- Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Stefano Cosentino
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Olga A. Stakhovskaya
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| |
Collapse
|
25
|
Lee HJ, Smieja D, Polonenko MJ, Cushing SL, Papsin BC, Gordon KA. Consistent and chronic cochlear implant use partially reverses cortical effects of single sided deafness in children. Sci Rep 2020; 10:21526. [PMID: 33298987 PMCID: PMC7726152 DOI: 10.1038/s41598-020-78371-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Potentially neuroprotective effects of CI use were studied in 22 children with single sided deafness (SSD). Auditory-evoked EEG confirmed strengthened representation of the intact ear in the ipsilateral auditory cortex at initial CI activation in children with early-onset SSD (n = 15) and late-onset SSD occurring suddenly in later childhood/adolescence (n = 7). In early-onset SSD, representation of the hearing ear decreased with chronic CI experience and expected lateralization to the contralateral auditory cortex from the CI increased with longer daily CI use. In late-onset SSD, abnormally high activity from the intact ear in the ipsilateral cortex reduced, but responses from the deaf ear weakened despite CI use. Results suggest that: (1) cortical reorganization driven by unilateral hearing can occur throughout childhood; (2) chronic and consistent CI use can partially reverse these effects; and (3) CI use may not protect children with late-onset SSD from ongoing deterioration of pathways from the deaf ear.
Collapse
Affiliation(s)
- Hyo-Jeong Lee
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Communication Disorders, Hospital for Sick Children, Toronto, ON, Canada
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Daniel Smieja
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Communication Disorders, Hospital for Sick Children, Toronto, ON, Canada
| | - Melissa Jane Polonenko
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Communication Disorders, Hospital for Sick Children, Toronto, ON, Canada
| | - Sharon Lynn Cushing
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Blake Croll Papsin
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Karen Ann Gordon
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Communication Disorders, Hospital for Sick Children, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Misurelli SM, Goupell MJ, Burg EA, Jocewicz R, Kan A, Litovsky RY. Auditory Attention and Spatial Unmasking in Children With Cochlear Implants. Trends Hear 2020; 24:2331216520946983. [PMID: 32812515 PMCID: PMC7446264 DOI: 10.1177/2331216520946983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The ability to attend to target speech in background noise is an important skill, particularly for children who spend many hours in noisy environments. Intelligibility improves as a result of spatial or binaural unmasking in the free-field for normal-hearing children; however, children who use bilateral cochlear implants (BiCIs) demonstrate little benefit in similar situations. It was hypothesized that poor auditory attention abilities might explain the lack of unmasking observed in children with BiCIs. Target and interferer speech stimuli were presented to either or both ears of BiCI participants via their clinical processors. Speech reception thresholds remained low when the target and interferer were in opposite ears, but they did not show binaural unmasking when the interferer was presented to both ears and the target only to one ear. These results demonstrate that, in the most extreme cases of stimulus separation, children with BiCIs can ignore an interferer and attend to target speech, but there is weak or absent binaural unmasking. It appears that children with BiCIs mostly experience poor encoding of binaural cues rather than deficits in ability to selectively attend to target speech.
Collapse
Affiliation(s)
- Sara M Misurelli
- Waisman Center, University of Wisconsin-Madison.,Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health
| | | | | | | | - Alan Kan
- Waisman Center, University of Wisconsin-Madison.,School of Engineering, Macquarie University, Sydney, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison.,Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health
| |
Collapse
|
27
|
Buechner A, Krueger B, Klawitter S, Zimmermann D, Fredelake S, Holube I. The perception of the stereo effect in bilateral and bimodal cochlear implant users and its contribution to music enjoyment. PLoS One 2020; 15:e0235435. [PMID: 32628690 PMCID: PMC7337296 DOI: 10.1371/journal.pone.0235435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/15/2020] [Indexed: 11/18/2022] Open
Abstract
Objectives In this clinical study, stereo perception of music samples and its contribution to music enjoyment in CI users is investigated. It is studied in free field as well as direct audio presentation. Methods 20 bilateral and 9 bimodal CI users performed stereo detection tests and music enjoyment ratings. Music was presented either in mono or in stereo in free field or with direct audio presentation. Stereo detection was assessed with a 3-AFC paradigm. Music enjoyment was studied with scale ratings. Results For bilateral CI users, stereo detection increased from 52% correct in free field to 86% with direct audio presentation. Increased music enjoyment with improved stereo detection was obtained. Bimodal CI users could not identify stereo sounds. Music enjoyment did not increase for stereo presentations in bimodal subjects. Discussion For bilateral CI users, improved stereo detection might increase music enjoyment with direct audio presentation, which is likely due to bypassing the room acoustics. In bimodal CI users, no clear improvement was found, which is likely attributed due to the different hearing losses and therefore individually different interaural frequency overlaps between the hearing aid and the cochlear implant. Conclusion Direct audio presentation is an efficient method to improve music enjoyment in bilateral CI users.
Collapse
Affiliation(s)
- Andreas Buechner
- Medical University of Hanover, Hanover, Germany
- Cluster of Excellence Hearing4all, Germany
- * E-mail:
| | | | | | | | - Stefan Fredelake
- Advanced Bionics GmbH, European Research Center, Hanover, Germany
| | - Inga Holube
- Cluster of Excellence Hearing4all, Germany
- Institute of Hearing Technology and Audiology, Jade University of Applied Sciences, Oldenburg, Germany
| |
Collapse
|
28
|
Thakkar T, Anderson SR, Kan A, Litovsky RY. Evaluating the Impact of Age, Acoustic Exposure, and Electrical Stimulation on Binaural Sensitivity in Adult Bilateral Cochlear Implant Patients. Brain Sci 2020; 10:E406. [PMID: 32604860 PMCID: PMC7348899 DOI: 10.3390/brainsci10060406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023] Open
Abstract
Deafness in both ears is highly disruptive to communication in everyday listening situations. Many individuals with profound deafness receive bilateral cochlear implants (CIs) to gain access to spatial cues used in localization and speech understanding in noise. However, the benefit of bilateral CIs, in particular sensitivity to interaural time and level differences (ITD and ILDs), varies among patients. We measured binaural sensitivity in 46 adult bilateral CI patients to explore the relationship between binaural sensitivity and three classes of patient-related factors: age, acoustic exposure, and electric hearing experience. Results show that ILD sensitivity increased with shorter years of acoustic exposure, younger age at testing, or an interaction between these factors, moderated by the duration of bilateral hearing impairment. ITD sensitivity was impacted by a moderating effect between years of bilateral hearing impairment and CI experience. When age at onset of deafness was treated as two categories (<18 vs. >18 years of age), there was no clear effect for ILD sensitivity, but some differences were observed for ITD sensitivity. Our findings imply that maximal binaural sensitivity is obtained by listeners with a shorter bilateral hearing impairment, a longer duration of CI experience, and potentially a younger age at testing. 198/200.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.T.); (S.R.A.)
| | - Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.T.); (S.R.A.)
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.T.); (S.R.A.)
| |
Collapse
|
29
|
Anderson SR, Easter K, Goupell MJ. Effects of rate and age in processing interaural time and level differences in normal-hearing and bilateral cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3232. [PMID: 31795662 PMCID: PMC6948219 DOI: 10.1121/1.5130384] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implants (BICIs) provide improved sound localization and speech understanding in noise compared to unilateral CIs. However, normal-hearing (NH) listeners demonstrate superior binaural processing abilities compared to BICI listeners. This investigation sought to understand differences between NH and BICI listeners' processing of interaural time differences (ITDs) and interaural level differences (ILDs) as a function of fine-structure and envelope rate using an intracranial lateralization task. The NH listeners were presented band-limited acoustical pulse trains and sinusoidally amplitude-modulated tones using headphones, and the BICI listeners were presented single-electrode electrical pulse trains using direct stimulation. Lateralization range increased as fine-structure rate increased for ILDs in BICI listeners. Lateralization range decreased for rates above 100 Hz for fine-structure ITDs, but decreased for rates lower or higher than 100 Hz for envelope ITDs in both groups. Lateralization ranges for ITDs were smaller for BICI listeners on average. After controlling for age, older listeners showed smaller lateralization ranges and BICI listeners had a more rapid decline for ITD sensitivity at 300 pulses per second. This work suggests that age confounds comparisons between NH and BICI listeners in temporal processing tasks and that some NH-BICI binaural processing differences persist even when age differences are adequately addressed.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Kyle Easter
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
30
|
Gordon K, Kral A. Animal and human studies on developmental monaural hearing loss. Hear Res 2019; 380:60-74. [DOI: 10.1016/j.heares.2019.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/26/2022]
|
31
|
Chen Y, Chen W, Zhang P, Chen P. [Research progress of microphone array based front-end speech enhancement technology for cochlear implant]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2019; 36:696-704. [PMID: 31441274 PMCID: PMC10319500 DOI: 10.7507/1001-5515.201805050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 11/03/2022]
Abstract
Microphone array based methods are gradually applied in the front-end speech enhancement and speech recognition improvement for cochlear implant in recent years. By placing several microphones in different locations in space, this method can collect multi-channel signals containing a lot of spatial position and orientation information. Microphone array can also yield specific beamforming mode to enhance desired signal and suppress ambient noise, which is particularly suitable to be applied in face-to-face conversation for cochlear implant users. And its application value has attracted more and more attention from researchers. In this paper, we describe the principle of microphone array method, analyze the microphone array based speech enhancement technologies in present literature, and further present the technical difficulties and development trend.
Collapse
Affiliation(s)
- Yousheng Chen
- Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518000,
| | - Weifang Chen
- Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518000, P.R.China
| | - Pu Zhang
- Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518000, P.R.China
| | - Peipei Chen
- Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518000, P.R.China
| |
Collapse
|
32
|
Polonenko MJ, Papsin BC, Gordon KA. Cortical plasticity with bimodal hearing in children with asymmetric hearing loss. Hear Res 2019; 372:88-98. [DOI: 10.1016/j.heares.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/12/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
|
33
|
Kan A. Improving Speech Recognition in Bilateral Cochlear Implant Users by Listening With the Better Ear. Trends Hear 2018; 22:2331216518772963. [PMID: 29708063 PMCID: PMC5949926 DOI: 10.1177/2331216518772963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
For patients with bilateral cochlear implants (BiCIs), understanding a target talker in a noisy situation can be difficult. Current efforts for improving speech-in-noise understanding have focused on improving signal-to-noise ratio by using multiple microphones or signal processing, with only moderate improvements in speech understanding performance. However, BiCI users typically report having a better ear for listening which can lead to an asymmetry in speech unmasking performance. This work proposes a novel listening strategy for improving speech-in-noise understanding by combining (a) a priori knowledge of a better ear and having a BiCI user selectively attend to a target talker in that ear with (b) signal processing that delivers the target talker to the better ear and the noisy background to the opposite ear. This strategy is different from traditional noise reduction strategies because it maintains situational awareness (background sounds are delivered to the ear contralateral to the better ear) while improving speech understanding. Speech recognition performance was evaluated with and without the better ear strategy in a speech-in-noise listening test using a virtual auditory space created from individualized head-related transfer functions. Listeners showed an average improvement of 4.4 dB signal-to-noise ratio in their speech reception threshold when using the better ear strategy with no listener showing a decrement in performance. This implies that the strategy has the potential to boost speech-in-noise recognition in BiCI users and may be useful in other hearing assistance devices such as hearing aids.
Collapse
Affiliation(s)
- Alan Kan
- Waisman Center, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
34
|
Binaural integration: a challenge to overcome for children with hearing loss. Curr Opin Otolaryngol Head Neck Surg 2017; 25:514-519. [DOI: 10.1097/moo.0000000000000413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|