1
|
Masud AA, Liu J. Ultrasonic surface acoustic wave elastography: A review of basic theories, technical developments, and medical applications. Med Phys 2024; 51:3220-3244. [PMID: 38597908 DOI: 10.1002/mp.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Physiological and pathological changes in tissues often cause changes in tissue mechanical properties, making tissue elastography an effective modality in medical imaging. Among the existing elastography methods, ultrasound elastography is of great interest due to the inherent advantages of ultrasound imaging technology, such as low cost, portability, safety, and wide availability. However, most current ultrasound elastography methods are based on the bulk shear wave; they can image deep tissues but cannot image superficial tissues. To address this challenge, ultrasonic elastography methods based on surface acoustic waves have been proposed. In this paper, we present a comprehensive review of ultrasound-based surface acoustic wave elastography techniques, including their theoretical foundations, technical implementations, and existing medical applications. The goal is to provide a concise summary of the state-of-the-art of this field, hoping to offer a reliable reference for the further development of these techniques and foster the expansion of their medical applications.
Collapse
Affiliation(s)
- Abdullah Al Masud
- Biomedical Acoustics Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Jingfei Liu
- Biomedical Acoustics Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
2
|
Zhu Y, Shi J, Alvarez-arenas TEG, Li C, Wang H, Cai H, Zhang D, He X, Wu X. Supershear Rayleigh wave imaging for quantitative assessment of biomechanical properties of brain using air-coupled optical coherence elastography. APL Bioeng 2023; 7:046107. [PMID: 37915751 PMCID: PMC10618026 DOI: 10.1063/5.0160213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Recently, supershear Rayleigh waves (SRWs) have been proposed to characterize the biomechanical properties of soft tissues. The SRWs propagate along the surface of the medium, unlike surface Rayleigh waves, SRWs propagate faster than bulk shear waves. However, their behavior and application in biological tissues is still elusive. In brain tissue elastography, shear waves combined with magnetic resonance elastography or ultrasound elastography are generally used to quantify the shear modulus, but high spatial resolution elasticity assessment in 10 μm scale is still improving. Here, we develop an air-coupled ultrasonic transducer for noncontact excitation of SRWs and Rayleigh waves in brain tissue, use optical coherent elastography (OCE) to detect, and reconstruct the SRW propagation process; in combing with a derived theoretical model of SRWs on a free boundary surface, we quantify the shear modulus of brain tissue with high spatial resolution. We first complete validation experiments using a homogeneous isotropic agar phantom, and the experimental results clearly show the SRW is 1.9649 times faster than the bulk shear waves. Furthermore, the propagation velocity of SRWs in both the frontal and parietal lobe regions of the brain is all 1.87 times faster than the bulk shear wave velocity. Finally, we evaluated the anisotropy in different brain regions, and the medulla oblongata region had the highest anisotropy index. Our study shows that the OCE system using the SRW model is a new potential approach for high-resolution assessment of the biomechanical properties of brain tissue.
Collapse
Affiliation(s)
| | - Jiulin Shi
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Tomas E. Gomez Alvarez-arenas
- Ultrasonic and Sensors Technologies Department, Information and Physical Technologies Institute, Spanish National Research Council, Serrano 144, 28006 Madrid, Spain
| | - Chenxi Li
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Haohao Wang
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Hongling Cai
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Xingdao He
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoshan Wu
- School of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Benech N, Camargo A, Negreira C. Simplified Green's function for surface waves in quasi-incompressible elastic plates with application to elastography. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:214004. [PMID: 35234669 DOI: 10.1088/1361-648x/ac5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Surface wave elastography is a growing method to estimate the elasticity in soft solids. It is particularly useful in the case of agrifoods like meat, cheese, or fruits because it does not require major infrastructure or large equipment and could be developed in portable devices. However, estimating the shear elastic properties from surface wave measurements is not straightforward. The shear wavelength in those materials is cm sized for the excitation frequencies usually employed in elastography (∼102 Hz), and the size of samples is comparable to it. Thus, the surface wave speed is frequency dependent with no direct relation to the shear wave speed. In this work we propose a simplified Green's function for soft solid elastic plates which allows to retrieve the shear elasticity from near field measurements. The model is compared with experimental results obtained in agar-gelatin phantoms and food samples (cheese and bovine liver). The results show a good overall agreement although improvements can be achieved by incorporating diffraction and viscosity to the model.
Collapse
Affiliation(s)
- Nicolás Benech
- Laboratorio de Acústica Ultrasonora, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay
| | - Andrés Camargo
- Laboratorio de Acústica Ultrasonora, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carlos Negreira
- Laboratorio de Acústica Ultrasonora, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay
| |
Collapse
|
4
|
Urbańska MA, Kolenderska SM, Rodrigues SA, Thakur SS, Vanholsbeeck F. Broadband-excitation-based mechanical spectroscopy of highly viscous tissue-mimicking phantoms. OPTICS EXPRESS 2022; 30:603-618. [PMID: 35201234 DOI: 10.1364/oe.445259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Standard rheometers assess mechanical properties of viscoelastic samples up to 100 Hz, which often hinders the assessment of the local-scale dynamics. We demonstrate that high-frequency analysis can be achieved by inducing broadband waves and monitoring their media-dependent propagation using optical coherence tomography. Here, we present a new broadband wave analysis based on two-dimensional Fourier transformation. We validated this method by comparing the mechanical parameters to monochromatic excitation and a standard oscillatory test data. Our method allows for high-frequency mechanical spectroscopy, which could be used to investigate the local-scale dynamics of different biological tissues and the influence of diseases on their microstructure.
Collapse
|
5
|
Zemzemi C, Catheline S, Turquier F. Shear wave elastography biases in abdominal wall layers characterization. Phys Med Biol 2021; 66. [PMID: 34560674 DOI: 10.1088/1361-6560/ac29cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Ventral incisional hernia repair is one of the most common surgical procedures. The characterization of the abdominal wall layer mechanical properties is the first step towards personalized treatment. This study investigates the capability of elastography to assess these properties using anin vivoandin vitromodel of abdominal wall layers. Two experiment approaches are considered: shear wave elastography imaging and guided wave dispersion characterization, where the latter is used as a reference. Results show measurement biases in the shear wave elastography approach in such a layer structure configuration. Methods to overcome these biases are suggested to improve and to correct the elastography approach for abdominal wall layers and similar anatomical structures.
Collapse
Affiliation(s)
- C Zemzemi
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France
| | - S Catheline
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France
| | | |
Collapse
|
6
|
|
7
|
Grinspan GA, Cabral HV, de Souza LML, de Oliveira LF, Aguiar S, Blanco E, Benech N. Surface wave elastography is a reliable method to correlate muscle elasticity, torque, and electromyography activity level. Physiol Rep 2021; 9:e14955. [PMID: 34337894 PMCID: PMC8326893 DOI: 10.14814/phy2.14955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
The shear elastic modulus is one of the most important parameters to characterize the mechanical behavior of soft tissues. In biomechanics, ultrasound elastography is the gold standard for measuring and mapping it locally in skeletal muscle in vivo. However, their applications are limited to the laboratory or clinic. Thus, low-frequency elastography methods have recently emerged as a novel alternative to ultrasound elastography. Avoiding the use of high frequencies, these methods allow obtaining a mean value of bulk shear elasticity. However, they are frequently susceptible to diffraction, guided waves, and near field effects, which introduces biases in the estimates. The goal of this work is to test the performance of the non-ultrasound surface wave elastography (NU-SWE), which is portable and is based on new algorithms designed to correct the incidence of such effects. Thus, we show its first application to muscle biomechanics. We performed two experiments to assess the relationships of muscle shear elasticity versus joint torque (experiment 1) and the electromyographic activity level (experiment 2). Our results were comparable regarding previous works using the reference ultrasonic methods. Thus, the NU-SWE showed its potentiality to get wide the biomechanical applications of elastography in many areas of health and sports sciences.
Collapse
Affiliation(s)
- Gustavo A. Grinspan
- Sección Biofísica y Biología de SistemasFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
- Laboratorio de Acústica UltrasonoraFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Hélio V. Cabral
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine)School of Sport, Exercise and Rehabilitation SciencesCollege of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Leonardo M. L. de Souza
- Programa de Engenharia Biomédica (COPPE)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Liliam F. de Oliveira
- Programa de Engenharia Biomédica (COPPE)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Sofía Aguiar
- Instituto de Ensayo de MaterialesFacultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
| | - Ernesto Blanco
- Instituto de FísicaFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Nicolás Benech
- Laboratorio de Acústica UltrasonoraFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| |
Collapse
|
8
|
Xu H, Luo ZP. Assessment of viscoelasticity of ex vivo bovine cartilage using Rayleigh wave method in the near-source and far-field region. J Biomech 2021; 116:110252. [PMID: 33485145 DOI: 10.1016/j.jbiomech.2021.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
Cartilage viscoelasticity changes as cartilage degenerates. Hence, a cartilage viscoelasticity measurement could be an alternative to traditional imaging methods for osteoarthritis diagnosis. In a previous study, we confirmed the feasibility of viscoelasticity measurement in ex vivo bovine cartilage using the Lamb wave method. However, the wave speed-frequency curve of Lamb wave is totally nonlinear and the cartilage thickness could significantly affect the Lamb wave speed, making wave speed measurements and viscoelasticity inversion difficult. The objective of this study was to measure the cartilage viscoelasticity using the Rayleigh wave method (RWM). Rayleigh wave speed in the ex vivo bovine cartilage was measured, and exists only in the near-source and far-field region. The estimated cartilage elasticity was 0.66 ± 0.05 and 0.59 ± 0.07 MPa for samples 1 and 2, respectively; the estimated cartilage viscosity was 24.2 ± 0.7 and 27.1 ± 1.8 Pa·s for samples 1 and 2, respectively. These results were found to be highly reproducible, validating the feasibility of viscoelasticity measurement in ex vivo cartilage using the RWM. Current method of cartilage viscoelasticity measurement might be translated into in vivo application.
Collapse
Affiliation(s)
- Hao Xu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, PR China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Zong-Ping Luo
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, PR China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
9
|
Kirby MA, Zhou K, Pitre JJ, Gao L, Li D, Pelivanov I, Song S, Li C, Huang Z, Shen T, Wang R, O’Donnell M. Spatial resolution in dynamic optical coherence elastography. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-16. [PMID: 31535538 PMCID: PMC6749618 DOI: 10.1117/1.jbo.24.9.096006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/26/2019] [Indexed: 05/03/2023]
Abstract
Dynamic optical coherence elastography (OCE) tracks elastic wave propagation speed within tissue, enabling quantitative three-dimensional imaging of the elastic modulus. We show that propagating mechanical waves are mode converted at interfaces, creating a finite region on the order of an acoustic wavelength where there is not a simple one-to-one correspondence between wave speed and elastic modulus. Depending on the details of a boundary’s geometry and elasticity contrast, highly complex propagating fields produced near the boundary can substantially affect both the spatial resolution and contrast of the elasticity image. We demonstrate boundary effects on Rayleigh waves incident on a vertical boundary between media of different shear moduli. Lateral resolution is defined by the width of the transition zone between two media and is the limit at which a physical inclusion can be detected with full contrast. We experimentally demonstrate results using a spectral-domain OCT system on tissue-mimicking phantoms, which are replicated using numerical simulations. It is shown that the spatial resolution in dynamic OCE is determined by the temporal and spatial characteristics (i.e., bandwidth and spatial pulse width) of the propagating mechanical wave. Thus, mechanical resolution in dynamic OCE inherently differs from the optical resolution of the OCT imaging system.
Collapse
Affiliation(s)
- Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Kanheng Zhou
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - John J. Pitre
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Liang Gao
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - David Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Chemical Engineering, Seattle, Washington, United States
| | - Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to Ivan Pelivanov, E-mail:
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Chunhui Li
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - Zhihong Huang
- University of Dundee, School of Science and Engineering, Dundee, United Kingdom
| | - Tueng Shen
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Ruikang Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
10
|
Pitre JJ, Kirby MA, Gao L, Li DS, Shen T, Wang RK, O'Donnell M, Pelivanov I. Super-shear evanescent waves for non-contact elastography of soft tissues. APPLIED PHYSICS LETTERS 2019; 115:083701. [PMID: 32127722 PMCID: PMC7043857 DOI: 10.1063/1.5111952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/01/2019] [Indexed: 05/12/2023]
Abstract
We describe surface wave propagation in soft elastic media at speeds exceeding the bulk shear wave speed. By linking these waves to the elastodynamic Green's function, we derive a simple relationship to quantify the elasticity of a soft medium from the speed of this supershear evanescent wave (SEW). We experimentally probe SEW propagation in tissue-mimicking phantoms, human cornea ex vivo, and skin in vivo using a high-speed optical coherence elastography system. Measurements confirm the predicted relationship between SEW and bulk shear wave speeds, agreeing well with both theoretical and numerical models. These results suggest that SEW measurements may be a robust method to quantify elasticity in soft media, particularly in complex, bounded materials where dispersive Rayleigh-Lamb modes complicate measurements.
Collapse
Affiliation(s)
- John J Pitre
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Mitchell A Kirby
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Liang Gao
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | - Tueng Shen
- Department of Ophthalmology, University of Washington, Seattle, Washington 98104, USA
| | | | - Matthew O'Donnell
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Ivan Pelivanov
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
11
|
Bernal M, Saldarriaga J, Cabeza C, Negreira C, Bustamante J, Brum J. Development and evaluation of anisotropic and nonlinear aortic models made from clinical images for in vitro experimentation. ACTA ACUST UNITED AC 2019; 64:165006. [DOI: 10.1088/1361-6560/ab2db5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Xu H, Shi L, Chen S, Zhang X, An KN, Luo ZP. Viscoelasticity measurement of ex vivo bovine cartilage using Lamb wave method. ACTA ACUST UNITED AC 2018; 63:235019. [DOI: 10.1088/1361-6560/aaed5a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|