1
|
Dillon MT, Rooth MA, Canfarotta MW, Richter ME, Thompson NJ, Brown KD. Sound Source Localization by Cochlear Implant Recipients with Normal Hearing in the Contralateral Ear: Effects of Spectral Content and Duration of Listening Experience. Audiol Neurootol 2022; 27:437-448. [PMID: 35439753 DOI: 10.1159/000523969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Cochlear implant (CI) recipients with normal hearing (NH) in the contralateral ear experience a significant improvement in sound source localization when listening with the CI in combination with their NH-ear (CI + NH) as compared to with the NH-ear alone. The improvement in localization is primarily due to sensitivity to interaural level differences (ILDs). Sensitivity to interaural timing differences (ITDs) may be limited by auditory aging, frequency-to-place mismatches, the signal coding strategy, and duration of CI use. The present report assessed the sensitivity of ILD and ITD cues in CI + NH listeners who were recipients of long electrode arrays that provide minimal frequency-to-place mismatches and were mapped with a coding strategy that presents fine structure cues on apical channels. METHODS Sensitivity to ILDs and ITDs for localization was assessed using broadband noise (BBN), as well as high-pass (HP) and low-pass (LP) filtered noise for adult CI + NH listeners. Stimuli were 200-ms noise bursts presented from 11 speakers spaced evenly over an 180° arc. Performance was quantified in root-mean-squared error and response patterns were analyzed to evaluate the consistency, accuracy, and side bias of the responses. Fifteen listeners completed the task at the 2-year post-activation visit; seven listeners repeated the task at a later annual visit. RESULTS Performance at the 2-year visit was best with the BBN and HP stimuli and poorer with the LP stimulus. Responses to the BBN and HP stimuli were significantly correlated, consistent with the idea that CI + NH listeners primarily use ILD cues for localization. For the LP stimulus, some listeners responded consistently and accurately and with limited side bias, which may indicate sensitivity to ITD cues. Two of the 7 listeners who repeated the task at a later annual visit experienced a significant improvement in performance with the LP stimulus, which may indicate that sensitivity to ITD cues may improve with long-term CI use. CONCLUSIONS CI recipients with a NH-ear primarily use ILD cues for sound source localization, though some may use ITD cues as well. Sensitivity to ITD cues may improve with long-term CI listening experience.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith A Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael W Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret E Richter
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J Thompson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin D Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Xu N, Luo L, Chen L, Ding Y, Li L. Different binaural processing of the envelope component and the temporal fine structure component of a narrowband noise in rat inferior colliculus. Hear Res 2021; 411:108354. [PMID: 34583218 DOI: 10.1016/j.heares.2021.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Complex broadband sounds are decomposed by peripheral auditory filters into a series of relatively narrowband signals, each with a slowly varying envelope (ENV) and a rapidly fluctuating temporal fine structure (TFS). ENV and TFS information at the bilateral ears contribute differentially to auditory perception. However, whether the difference could attribute to mechanisms of binaural integration remains an open question. As a potential neural correlate, subsets of neurons in the central nucleus of the inferior colliculus (ICC) are known to integrate binaural information with binaural inhibition or binaural summation. Therefore, we recorded the frequency-following responses (FFRs) to the ENV and TFS components of narrowband noises in the ICC of anesthetized rats and examined changes in FFR amplitude and stimulus-response coherence under various sound-delivery settings. We showed that binaural FFRENV was predominantly elicited by contralateral inputs and inhibited by ipsilateral inputs, exhibiting a "binaural-inhibition" like property. On the other hand, binaural FFRTFS received a balanced contribution from both sides, echoing the "binaural-summation" mechanism. What is more, binaural FFRENV was significantly correlated with contralateral-evoked but not ipsilateral-evoked FFRENV, while binaural FFRTFS correlated with both contralateral- and ipsilateral-evoked FFRTFS. Overall, these results suggest distinct binaural processing of ENV and TFS information at the midbrain level.
Collapse
Affiliation(s)
- Na Xu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Liangjie Chen
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China
| | - Yu Ding
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Division of Sports Science and physical education, Tsinghua University, Beijing 100084, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Beijing Institute for Brain Disorders, Beijing 100096, China.
| |
Collapse
|
3
|
Patro C, Kreft HA, Wojtczak M. The search for correlates of age-related cochlear synaptopathy: Measures of temporal envelope processing and spatial release from speech-on-speech masking. Hear Res 2021; 409:108333. [PMID: 34425347 PMCID: PMC8424701 DOI: 10.1016/j.heares.2021.108333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Older adults often experience difficulties understanding speech in adverse listening conditions. It has been suggested that for listeners with normal and near-normal audiograms, these difficulties may, at least in part, arise from age-related cochlear synaptopathy. The aim of this study was to assess if performance on auditory tasks relying on temporal envelope processing reveal age-related deficits consistent with those expected from cochlear synaptopathy. Listeners aged 20 to 66 years were tested using a series of psychophysical, electrophysiological, and speech-perception measures using stimulus configurations that promote coding by medium- and low-spontaneous-rate auditory-nerve fibers. Cognitive measures of executive function were obtained to control for age-related cognitive decline. Results from the different tests were not significantly correlated with each other despite a presumed reliance on common mechanisms involved in temporal envelope processing. Only gap-detection thresholds for a tone in noise and spatial release from speech-on-speech masking were significantly correlated with age. Increasing age was related to impaired cognitive executive function. Multivariate regression analyses showed that individual differences in hearing sensitivity, envelope-based measures, and scores from nonauditory cognitive tests did not significantly contribute to the variability in spatial release from speech-on-speech masking for small target/masker spatial separation, while age was a significant contributor.
Collapse
Affiliation(s)
- Chhayakanta Patro
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA.
| | - Heather A Kreft
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Magdalena Wojtczak
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Körtje M, Baumann U, Stöver T, Weissgerber T. Sensitivity to interaural time differences and localization accuracy in cochlear implant users with combined electric-acoustic stimulation. PLoS One 2020; 15:e0241015. [PMID: 33075114 PMCID: PMC7571672 DOI: 10.1371/journal.pone.0241015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES In this study, localization accuracy and sensitivity to acoustic interaural time differences (ITDs) in subjects using cochlear implants with combined electric-acoustic stimulation (EAS) were assessed and compared with the results of a normal hearing control group. METHODS Eight CI users with EAS (2 bilaterally implanted, 6 unilaterally implanted) and symmetric binaural acoustic hearing and 24 normal hearing subjects participated in the study. The first experiment determined mean localization error (MLE) for different angles of sound incidence between ± 60° (frontal and dorsal presentation). The stimuli were either low-pass, high-pass or broadband noise bursts. In a second experiment, just noticeable differences (JND) of ITDs were measured for pure tones of 125 Hz, 250 Hz and 500 Hz (headphone presentation). RESULTS Experiment 1: MLE of EAS subjects was 8.5°, 14.3° and 14.7°, (low-, high-pass and broadband stimuli respectively). In the control group, MLE was 1.8° (broadband stimuli). In the differentiation between sound incidence from front and back, EAS subjects performed on chance level. Experiment 2: The JND-ITDs were 88.7 μs for 125 Hz, 48.8 μs for 250 Hz and 52.9 μs for 500 Hz (EAS subjects). Compared to the control group, JND-ITD for 125 Hz was on the same level of performance. No statistically significant correlation was found between MLE and JND-ITD in the EAS cohort. CONCLUSIONS Near to normal ITD sensitivity in the lower frequency acoustic hearing was demonstrated in a cohort of EAS users. However, in an acoustic localization task, the majority of the subjects did not reached the level of accuracy of normal hearing. Presumably, signal processing time delay differences between devices used on both sides are deteriorating the transfer of precise binaural timing cues.
Collapse
Affiliation(s)
- Monika Körtje
- Audiological Acoustics, ENT Department, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Uwe Baumann
- Audiological Acoustics, ENT Department, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Timo Stöver
- ENT Department, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Weissgerber
- Audiological Acoustics, ENT Department, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Ahrens A, Joshi SN, Epp B. Perceptual Weighting of Binaural Lateralization Cues across Frequency Bands. J Assoc Res Otolaryngol 2020; 21:485-496. [PMID: 32915339 PMCID: PMC7644719 DOI: 10.1007/s10162-020-00770-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
The auditory system uses interaural time and level differences (ITD and ILD) as cues to localize and lateralize sounds. The availability of ITDs and ILDs in the auditory system is limited by neural phase-locking and by the head size, respectively. Although the frequency-specific limitations are well known, the relative contribution of ITDs and ILDs in individual frequency bands in broadband stimuli is unknown. To determine these relative contributions, or spectral weights, listeners were asked to lateralize stimuli consisting of eleven simultaneously presented 1-ERB-wide noise bands centered between 442 and 5544 Hz and separated by 1-ERB-wide gaps. Either ITDs or ILDs were varied independently across each noise band, while fixing the other interaural disparity to either 0 dB or 0 μs. The weights were obtained using a multiple linear regression analysis. In a second experiment, the effect of auditory enhancement on the spectral weights was investigated. The enhancement of single noise bands was realized by presenting ten of the noise bands as preceding and following sounds (pre- and post-cursors, respectively). Listeners were asked to lateralize the stimuli as in the first experiment. Results show that in the absence of pre- and post-cursors, only the lowest or highest frequency band received highest weight for ITD and ILD, respectively. Auditory enhancement led to significantly enhanced weights given to the band without the pre- and post-cursor. The weight enhancement could only be observed at low frequencies, when determined with ITD cues and for low and high frequencies for ILDs. Hence, the auditory system seems to be able to change the spectral weighting of binaural information depending on the information content.
Collapse
Affiliation(s)
- Axel Ahrens
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Suyash Narendra Joshi
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Present Address: Brain & Sound Lab, Department of Biomedicine, Basel University, Basel, Switzerland
| | - Bastian Epp
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Moore BCJ. Effects of hearing loss and age on the binaural processing of temporal envelope and temporal fine structure information. Hear Res 2020; 402:107991. [PMID: 32418682 DOI: 10.1016/j.heares.2020.107991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022]
Abstract
Within the cochlea, broadband sounds like speech and music are filtered into a series of narrowband signals, each with a relatively slowly varying envelope (ENV) imposed on a rapidly oscillating carrier (the temporal fine structure, TFS). Information about ENV is conveyed by the timing and short-term rate of action potentials in the auditory nerve while information about TFS is conveyed by synchronization of action potentials to a specific phase of the waveform in the cochlea (phase locking). This paper describes the effects of age and hearing loss on the binaural processing of ENV and TFS information, i.e. on the processing of differences in ENV and TFS at the two ears. The binaural processing of TFS information is adversely affected by both hearing loss and increasing age. The binaural processing of ENV information deteriorates somewhat with increasing age but is only slightly affected by hearing loss. The reduced TFS processing abilities found for older/hearing-impaired subjects may partially account for the difficulties that such subjects experience in complex listening situations when the target speech and interfering sounds come from different directions in space.
Collapse
Affiliation(s)
- Brian C J Moore
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| |
Collapse
|
7
|
Baltzell LS, Swaminathan J, Cho AY, Lavandier M, Best V. Binaural sensitivity and release from speech-on-speech masking in listeners with and without hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:1546. [PMID: 32237845 PMCID: PMC7060089 DOI: 10.1121/10.0000812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 05/29/2023]
Abstract
Listeners with sensorineural hearing loss routinely experience less spatial release from masking (SRM) in speech mixtures than listeners with normal hearing. Hearing-impaired listeners have also been shown to have degraded temporal fine structure (TFS) sensitivity, a consequence of which is degraded access to interaural time differences (ITDs) contained in the TFS. Since these "binaural TFS" cues are critical for spatial hearing, it has been hypothesized that degraded binaural TFS sensitivity accounts for the limited SRM experienced by hearing-impaired listeners. In this study, speech stimuli were noise-vocoded using carriers that were systematically decorrelated across the left and right ears, thus simulating degraded binaural TFS sensitivity. Both (1) ITD sensitivity in quiet and (2) SRM in speech mixtures spatialized using ITDs (or binaural release from masking; BRM) were measured as a function of TFS interaural decorrelation in young normal-hearing and hearing-impaired listeners. This allowed for the examination of the relationship between ITD sensitivity and BRM over a wide range of ITD thresholds. This paper found that, for a given ITD sensitivity, hearing-impaired listeners experienced less BRM than normal-hearing listeners, suggesting that binaural TFS sensitivity can account for only a modest portion of the BRM deficit in hearing-impaired listeners. However, substantial individual variability was observed.
Collapse
Affiliation(s)
- Lucas S Baltzell
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Jayaganesh Swaminathan
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Adrian Y Cho
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Mathieu Lavandier
- University of Lyon, ENTPE, Laboratoire Génie Civil et Bâtiment, Rue Maurice Audin, F-69518 Vaulx-en-Velin Cedex, France
| | - Virginia Best
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
8
|
Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners. Hear Res 2018; 370:22-39. [PMID: 30265860 DOI: 10.1016/j.heares.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/21/2022]
Abstract
Interaural time and intensity differences (ITD and IID) are important cues in binaural hearing and allow for sound localization, improving speech understanding in noise and reverberation, and integrating sound sources in the auditory scene. Whereas previous research showed that the upper-frequency limit for ITD detection in the fine structure of sound declines in aging, the processing of envelope ITD in low-frequency amplitude modulated (AM) sound and the related brain responses are less understood. This study investigated the cortical processing of envelope ITD and compared the results with previous findings about the fine-structure ITD. In two experiments, participants listened to 40-Hz AM tones containing sudden changes in the envelope ITD. Multiple MEG responses were analyzed, including the auditory evoked N1 responses, elicited both by sound onsets and ITD changes, and 40-Hz responses, elicited by the AM. The first experiment with healthy young adults revealed a substantial decline in the magnitudes of the ITD change N1 response, and the 40-Hz phase resets at higher carrier frequencies, suggesting a similar frequency characteristic as observed for fine structure ITD. The amplitude of the 40-Hz ASSR declined only gradually with increasing carrier frequency, and it was excluded as a confounding factor in the decline in the ITD response. Larger responses to outward ITD changes than inward changes, here first reported for envelope ITD, were another characteristics that were similar to fine-structure ITD. A second experiment with groups of young and older listeners examined the effects of aging and concurrent noise on the cortical envelope ITD responses. One important research question was, whether binaural cues are accessible in noise. Behavioural tests showed an age-related hearing loss in the older group and decreased performance in envelope ITD detection and speech-in-noise (SIN) understanding. Binaural hearing and SIN performance were correlated with one other, but not with hearing loss. The frequency limit for envelope ITD was reduced in older listeners similarly as previously found for fine structure ITD, and older listeners were more susceptible to concurrent multi-talker noise. The similarities between responses to envelope ITD and to fine structure ITD suggest that a common cortical code exists for the envelope and fine structure ITD. The dependency on the carrier frequency suggests that envelope ITD processing at the subcortical level requires stimulus phase locking, which might be reduced in aging.
Collapse
|
9
|
Füllgrabe C, Sęk AP, Moore BCJ. Senescent Changes in Sensitivity to Binaural Temporal Fine Structure. Trends Hear 2018; 22:2331216518788224. [PMID: 30027803 PMCID: PMC6055238 DOI: 10.1177/2331216518788224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022] Open
Abstract
Differences in the temporal fine structure (TFS) of sounds at the two ears are used for sound localization and for the perceptual analysis of complex auditory scenes. The ability to process this binaural TFS information is poorer for older than for younger participants, and this may contribute to age-related declines in the ability to understand speech in noisy situations. However, it is unclear how sensitivity to binaural TFS changes across the older age range. This article presents data for a test of binaural sensitivity to TFS, the "TFS-adaptive frequency" (AF) test, for 118 listeners aged 60 to 96 years with normal or near-normal low-frequency hearing, but a variety of patterns of hearing loss at higher frequencies. TFS-AF scores were significantly lower (i.e., poorer) than those for young adults. On average, scores decreased by about 162 Hz for each 10-year increase in age over the range 60 to 85 years. Individual variability increased with increasing age. Scores also declined as low-frequency audiometric thresholds worsened. The results illustrate the range of scores that can be obtained as a function of age and may be useful for the diagnosis and management of age-related hearing difficulties.
Collapse
Affiliation(s)
- Christian Füllgrabe
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, UK
| | - Aleksander P. Sęk
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
- Department of Psychology, University of Cambridge, UK
| | | |
Collapse
|