1
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Bhargava A, Huang S, McPherson DD, Bader KB. Assessment of bubble activity generated by histotripsy combined with echogenic liposomes. Phys Med Biol 2022; 67:215015. [PMID: 36220055 DOI: 10.1088/1361-6560/ac994f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Objective.Histotripsy is a form of focused ultrasound therapy that uses the mechanical activity of bubbles to ablate tissue. While histotripsy alone degrades the cellular content of tissue, recent studies have demonstrated it effectively disrupts the extracellular structure of pathologic conditions such as venous thrombosis when combined with a thrombolytic drug. Rather than relying on standard administration methods, associating thrombolytic drugs with an ultrasound-triggered echogenic liposome vesicle will enable targeted, systemic drug delivery. To date, histotripsy has primarily relied on nano-nuclei inherent to the medium for bubble cloud generation, and microbubbles associated with echogenic liposomes may alter the histotripsy bubble dynamics. The objective of this work was to investigate the interaction of histotripsy pulse with echogenic liposomes.Approach.Bubble clouds were generated using a focused source in anin vitromodel of venous flow. Acoustic emissions generated during the insonation were passively acquired to assess the mechanical activity of the bubble cloud. High frame rate, pulse inversion imaging was used to track the change in echogenicity of the liposomes following histotripsy exposure.Main results.For peak negative pressures less than 20 MPa, acoustic emissions indicative of stable and inertial bubble activity were observed. As the peak negative pressure of the histotripsy excitation increased, harmonics of the excitation were observed in OFP t-ELIP solutions and plasma alone. Additional observations with high frame rate imaging indicated a transition of bubble behavior as the pulse pressure transitioned to shock wave formation.Significance.These observations suggest that a complex interaction between histotripsy pulses and echogenic liposomes that may be exploited for combination treatment approaches.
Collapse
Affiliation(s)
- Aarushi Bhargava
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Shaoling Huang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Sciences Center-Houston, Houston, TX, United States of America
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Sciences Center-Houston, Houston, TX, United States of America
| | - Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
3
|
de Andrade MO, Haqshenas R, Pahk KJ, Saffari N. Mechanisms of nuclei growth in ultrasound bubble nucleation. ULTRASONICS SONOCHEMISTRY 2022; 88:106091. [PMID: 35839705 PMCID: PMC9287806 DOI: 10.1016/j.ultsonch.2022.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This paper interrogates the intersections between bubble dynamics and classical nucleation theory (CNT) towards constructing a model that describes intermediary nucleation events between the extrema of cavitation and boiling. We employ Zeldovich's hydrodynamic approach to obtain a description of bubble nuclei that grow simultaneously via hydrodynamic excitation by the acoustic field and vapour transport. By quantifying the relative dominance of both mechanisms, it is then possible to discern the extent to which viscosity, inertia, surface tension and vapour transport shape the growth of bubble nuclei through non-dimensional numbers that naturally arise within the theory. The first non-dimensional number Φ12/Φ2 is analogous to the Laplace number, representing the balance between surface tension and inertial constraints to viscous effects. The second non-dimensional number δ represents how enthalpy transport into the bubble can reduce nucleation rates by cooling the surrounding liquid. This formulation adds to the current understanding of ultrasound bubble nucleation by accounting for bubble dynamics during nucleation, quantifying the physical distinctions between "boiling" and "cavitation" bubbles through non-dimensional parameters, and outlining the characteristic timescales of nucleation according to the growth mechanism of bubbles throughout the histotripsy temperature range. We observed in our simulations that viscous effects control the process of ultrasound nucleation in water-like media throughout the 0-120 °C temperature range, although this dominance decreases with increasing temperatures. Enthalpy transport was found to reduce nucleation rates for increasing temperatures. This effect becomes significant at temperatures above 30 °C and favours the creation of fewer nuclei that are larger in size. Conversely, negligible enthalpy transport at lower temperatures can enable the nucleation of dense clusters of small nuclei, such as cavitation clouds. We find that nuclei growth as modelled by the Rayleigh-Plesset equation occurs over shorter timescales than as modelled by vapour-dominated growth. This suggests that the first stage of bubble nuclei growth is hydrodynamic, and vapour transport effects can only be observed over longer timescales. Finally, we propose that this framework can be used for comparison between different experiments in bubble nucleation, towards standardisation and dosimetry of protocols.
Collapse
Affiliation(s)
| | - Reza Haqshenas
- UCL Mechanical Engineering, University College London, London, United Kingdom
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Nader Saffari
- UCL Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
4
|
Wallach EL, Shekhar H, Flores-Guzman F, Hernandez SL, Bader KB. Histotripsy Bubble Cloud Contrast With Chirp-Coded Excitation in Preclinical Models. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:787-794. [PMID: 34748487 DOI: 10.1109/tuffc.2021.3125922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Histotripsy is a focused ultrasound therapy for tissue ablation via the generation of bubble clouds. These effects can be achieved noninvasively, making sensitive and specific bubble imaging essential for histotripsy guidance. Plane-wave ultrasound imaging can track bubble clouds with an excellent temporal resolution, but there is a significant reduction in echoes when deep-seated organs are targeted. Chirp-coded excitation uses wideband, long-duration imaging pulses to increase signals at depth and promote nonlinear bubble oscillations. In this study, we evaluated histotripsy bubble contrast with chirp-coded excitation in scattering gel phantoms and a subcutaneous mouse tumor model. A range of imaging pulse durations were tested, and compared to a standard plane-wave pulse sequence. Received chirped signals were processed with matched filters to highlight components associated with either fundamental or subharmonic (bubble-specific) frequency bands. The contrast-to-tissue ratio (CTR) was improved in scattering media for subharmonic contrast relative to fundamental contrast (both chirped and standard imaging pulses) with the longest-duration chirped-pulse tested (7.4 [Formula: see text] pulse duration). The CTR was improved for subharmonic contrast relative to fundamental contrast (both chirped and standard imaging pulses) by 4.25 dB ± 1.36 dB in phantoms and 3.84 dB ± 6.42 dB in vivo. No systematic changes were observed in the bubble cloud size or dissolution rate between sequences, indicating image resolution was maintained with the long-duration imaging pulses. Overall, this study demonstrates the feasibility of specific histotripsy bubble cloud visualization with chirp-coded excitation.
Collapse
|
5
|
Bader KB, Wallach EL, Shekhar H, Flores-Guzman F, Halpern HJ, Hernandez SL. Estimating the mechanical energy of histotripsy bubble clouds with high frame rate imaging. Phys Med Biol 2021; 66:10.1088/1361-6560/ac155d. [PMID: 34271560 PMCID: PMC10680990 DOI: 10.1088/1361-6560/ac155d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
Mechanical ablation with the focused ultrasound therapy histotripsy relies on the generation and action of bubble clouds. Despite its critical role for ablation, quantitative metrics of bubble activity to gauge treatment outcomes are still lacking. Here, plane wave imaging was used to track the dissolution of bubble clouds following initiation with the histotripsy pulse. Information about the rate of change in pixel intensity was coupled with an analytic diffusion model to estimate bubble size. Accuracy of the hybrid measurement/model was assessed by comparing the predicted and measured dissolution time of the bubble cloud. Good agreement was found between predictions and measurements of bubble cloud dissolution times in agarose phantoms and murine subcutaneous SCC VII tumors. The analytic diffusion model was extended to compute the maximum bubble size as well as energy imparted to the tissue due to bubble expansion. Regions within tumors predicted to have undergone strong bubble expansion were collocated with ablation. Further, the dissolution time was found to correlate with acoustic emissions generated by the bubble cloud during histotripsy insonation. Overall, these results indicate a combination of modeling and high frame rate imaging may provide means to quantify mechanical energy imparted to the tissue due to bubble expansion for histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Emily L Wallach
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Himanshu Shekhar
- Discipline of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | | | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL United States of America
| | - Sonia L Hernandez
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
6
|
Maxwell AD, Hunter C, Cunitz BW, Kreider W, Totten S, Wang YN. Factors Affecting Tissue Cavitation during Burst Wave Lithotripsy. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2286-2295. [PMID: 34078545 PMCID: PMC8259501 DOI: 10.1016/j.ultrasmedbio.2021.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Burst wave lithotripsy (BWL) is a technology under clinical investigation for non-invasive fragmentation of urinary stones. Under certain ranges of ultrasound exposure parameters, this technology can cause cavitation in tissue leading to renal injury. This study sought to measure the focal pressure amplitude needed to cause cavitation in vivo and determine its consistency in native tissue, in an implanted stone model and under different exposure parameters. The kidneys of eight pigs were exposed to transcutaneous BWL ultrasound pulses. In each kidney, two locations were targeted: the renal sinus and the kidney parenchyma. Each was exposed for 5 min at a set pressure level and parameters, and cavitation was detected using an active cavitation imaging method based on power Doppler ultrasound. The threshold was determined by incrementing the pressure amplitude up or down after each 5-min interval until cavitation occurred/subsided. The pressure thresholds were remeasured postsurgery, targeting an implanted stone or collecting space (in sham). The presence of a stone or sham surgery did not significantly impact the threshold for tissue cavitation. Targeting parenchyma instead of kidney collecting space and lowering the ultrasound pulse repetition frequency both resulted in an increased pressure threshold for cavitation.
Collapse
Affiliation(s)
- Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.
| | - Christopher Hunter
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Bryan W Cunitz
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Stephanie Totten
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Mancia L, Rodriguez M, Sukovich J, Xu Z, Johnsen E. Single–bubble dynamics in histotripsy and high–amplitude ultrasound: Modeling and validation. ACTA ACUST UNITED AC 2020; 65:225014. [DOI: 10.1088/1361-6560/abb02b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Hendley SA, Bollen V, Anthony GJ, Paul JD, Bader KB. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots. Phys Med Biol 2019; 64:145019. [PMID: 31146275 DOI: 10.1088/1361-6560/ab25a6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As a bubble-based ablative therapy, the efficacy of histotripsy has been demonstrated in healthy or acutely diseased models. Chronic conditions associated with stiff tissues may require additional bubble activity prior to histotripsy liquefaction. In this study, histotripsy pulses were generated in agarose phantoms of Young's moduli ranging from 12.3 to 142 kPa, and in vitro clot models with mild and strong platelet-activated retraction. Bubble cloud emissions were tracked with passive cavitation imaging, and the threshold acoustic power associated with phantom liquefaction was extracted with receiver operator characteristic analysis. The power of histotripsy-generated emissions and the degree of liquefaction were tabulated for both clot models. For the agarose phantoms, the acoustic power associated with liquefaction increased with Young's modulus. When grouped based on agarose concentration, only two arms displayed a significant difference in the liquefaction threshold acoustic power (22.1 kPa versus 142 kPa Young's modulus). The bubble cloud dynamics tracked with passive cavitation imaging indicated no strong changes in the bubble dynamics based on the phantom stiffness. For identical histotripsy exposure, the power of acoustic emissions and degree of clot lysis did not vary based on the clot model. Overall, these results indicate that a fixed threshold acoustic power mapped with passive cavitation imaging can be utilized for predicting histotripsy liquefaction over a wide range of tissue stiffness.
Collapse
Affiliation(s)
- Samuel A Hendley
- The University of Chicago, Chicago, IL, United States of America. 5812 S Ellis Ave, IB-016, Chicago, IL 60637, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
9
|
Bader KB, Hendley SA, Anthony GJ, Bollen V. Observation and modulation of the dissolution of histotripsy-induced bubble clouds with high-frame rate plane wave imaging. Phys Med Biol 2019; 64:115012. [PMID: 30995623 DOI: 10.1088/1361-6560/ab1a64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Focused ultrasound therapies are a noninvasive means to ablate tissue. Histotripsy utilizes short ultrasound pulses with sufficient tension to nucleate bubble clouds that impart lethal strain to the surrounding tissues. Tracking bubble cloud dissolution between the application of histotripsy pulses is critical to ensure treatment efficacy. In this study, plane wave B-mode imaging was employed to monitor bubble cloud motion and grayscale at frame rates up to 11.25 kHz. Minimal changes in the area or position of the bubble clouds were observed 50 ms post excitation. The bubble cloud grayscale was observed to decrease with the square root of time, indicating a diffusion-driven process. These results were qualitatively consistent with an analytic model of gas diffusion during the histotripsy process. Finally, the rate of bubble cloud dissolution was found to be dependent on the output of the imaging pulse, indicating an interaction between the bubble cloud and imaging parameters. Overall, these results highlight the utility of plane wave B-mode imaging for monitoring histotripsy bubble clouds.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America. Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
10
|
Bader KB, Vlaisavljevich E, Maxwell AD. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1056-1080. [PMID: 30922619 PMCID: PMC6524960 DOI: 10.1016/j.ultrasmedbio.2018.10.035] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 05/04/2023]
Abstract
Histotripsy is a focused ultrasound therapy for non-invasive tissue ablation. Unlike thermally ablative forms of therapeutic ultrasound, histotripsy relies on the mechanical action of bubble clouds for tissue destruction. Although acoustic bubble activity is often characterized as chaotic, the short-duration histotripsy pulses produce a unique and consistent type of cavitation for tissue destruction. In this review, the action of histotripsy-induced bubbles is discussed. Sources of bubble nuclei are reviewed, and bubble activity over the course of single and multiple pulses is outlined. Recent innovations in terms of novel acoustic excitations, exogenous nuclei for targeted ablation and histotripsy-enhanced drug delivery and image guidance metrics are discussed. Finally, gaps in knowledge of the histotripsy process are highlighted, along with suggested means to expedite widespread clinical utilization of histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, Illinois, USA.
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech University, Blacksburg, Virginia, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
11
|
Wilson CT, Hall TL, Johnsen E, Mancia L, Rodriguez M, Lundt JE, Colonius T, Henann DL, Franck C, Xu Z, Sukovich JR. Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media. Phys Rev E 2019; 99:043103. [PMID: 31108707 DOI: 10.1103/physreve.99.043103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 04/30/2023]
Abstract
Experimental observations of the growth and collapse of acoustically and laser-nucleated single bubbles in water and agarose gels of varying stiffness are presented. The maximum radii of generated bubbles decreased as the stiffness of the media increased for both nucleation modalities, but the maximum radii of laser-nucleated bubbles decreased more rapidly than acoustically nucleated bubbles as the gel stiffness increased. For water and low stiffness gels, the collapse times were well predicted by a Rayleigh cavity, but bubbles collapsed faster than predicted in the higher stiffness gels. The growth and collapse phases occurred symmetrically (in time) about the maximum radius in water but not in gels, where the duration of the growth phase decreased more than the collapse phase as gel stiffness increased. Numerical simulations of the bubble dynamics in viscoelastic media showed varying degrees of success in accurately predicting the observations.
Collapse
Affiliation(s)
- Chad T Wilson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Mauro Rodriguez
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jonathan E Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Tim Colonius
- Department of Mechanical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - David L Henann
- Department of Mechanical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
12
|
Lundt J, Hall T, Rao A, Fowlkes JB, Cain C, Lee F, Xu Z. Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Phys Med Biol 2018; 63:225010. [PMID: 30418936 DOI: 10.1088/1361-6560/aaeaf3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following collapse of a histotripsy cloud, residual microbubbles may persist for seconds, distributed throughout the focus. Their presence can attenuate and scatter subsequent pulses, hindering treatment speed and homogeneity. Previous studies have demonstrated use of separate low-amplitude (~1 MPa) pulses interleaved with histotripsy pulses to drive bubble coalescence (BC), significantly improving treatment speed without sacrificing homogeneity. We propose that by using electronic focal steering (EFS) to direct the therapy focus throughout specially-designed EFS sequences, it is possible to use low-gain regions of the therapy beam to accomplish BC during EFS without any additional acoustic sequence. First, to establish proof of principle for an isolated focus, a 50-foci EFS sequence was constructed with the first position isolated near the geometric focus and remaining positions distributed post-focally. EFS sequences were evaluated in tissue-mimicking phantoms with gas concentrations of 20% and 100% with respect to saturation. Results using an isolated focus demonstrated that at 20% gas concentration, 49 EFS pulses were sufficient to achieve BC in all samples for pulse repetition frequency (PRF) ⩽ 800 Hz and 84.1% ± 3.0% of samples at 5 kHz PRF. For phantoms prepared with 100% gas concentration, BC was achieved by 49 EFS pulses in 39.2% ± 4.7% of samples at 50 Hz PRF and 63.4% ± 15.3% of samples at 5 kHz. To show feasibility of using the EFS-BC method to ablate a large volume quickly, a 1000-foci EFS sequence covering a volume of approximately 27 ml was tested. Results indicate that the BC effect was similarly present. A treatment rate of 27 ± 6 ml min-1 was achieved, which is signficantly faster than standard histotripsy and ultrasound thermal ablation. This study demonstrates that histotripsy with EFS can achieve BC without employing a separate acoustic sequence which has the potential to accelerate large-volume ablation while minimizing energy deposition.
Collapse
Affiliation(s)
- Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|