1
|
Martinez P, Bottenus N, Borden M. Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14091925. [PMID: 36145673 PMCID: PMC9501432 DOI: 10.3390/pharmaceutics14091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Pharmaceutical delivery can be noninvasively targeted on-demand by microbubble (MB) assisted focused ultrasound (FUS). Passive cavitation detection (PCD) has become a useful method to obtain real-time feedback on MB activity due to a FUS pulse. Previous work has demonstrated the acoustic PCD response of MBs at a variety of acoustic parameters, but few have explored variations in microbubble parameters. The goal of this study was to determine the acoustic response of different MB size populations and concentrations. Four MB size distributions were prepared (2, 3, 5 µm diameter and polydisperse) and pulled through a 2% agar wall-less vessel phantom. FUS was applied by a 1.515 MHz geometrically focused transducer for 1 ms pulses at 1 Hz PRF and seven distinct mechanical indices (MI) ranging from 0.01 to 1.0 (0.0123 to 1.23 MPa PNP). We found that the onset of harmonic (HCD) and broadband cavitation dose (BCD) depends on the mechanical index, MB size and MB concentration. When matched for MI, the HCD and BCD rise, plateau, and decline as microbubble concentration is increased. Importantly, when microbubble size and concentration are combined into gas volume fraction, all four microbubble size distributions align to similar onset and peak; these results may help guide the planning and control of MB + FUS therapeutic procedures.
Collapse
Affiliation(s)
- Payton Martinez
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- IQ Biology Program, University of Colorado, Boulder, CO 80309, USA
| | - Nick Bottenus
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- Mechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- Mechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
2
|
AlSadiq H, Tupally KR, Vogel R, Parekh HS, Veidt M. Multi-physics study of acoustofluidic delivery agents' clustering behavior. Phys Med Biol 2021; 67. [PMID: 34952530 DOI: 10.1088/1361-6560/ac4666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/24/2021] [Indexed: 11/12/2022]
Abstract
Acoustofluidicly manipulated microbubbles (MBs) and echogenic liposomes (ELIPs) have been suggested as drug delivery systems for the 'on demand' release of drug in target tissue. This requires a clear understanding of their behaviour during ultrasonication and after ultrasonication stops. The main focus of this study is to investigate the behaviour of MBs and ELIPs clusters after ultrasonication stops and the underlaying cause of cluster diffusion considering electrostatic repulsion, steric repulsion and Brownian motion. It also examines the capability of existing models used to predict MBs' attraction velocity due to secondary radiation force, on predicting ELIPs' attraction velocity. Tunable resistive pulse sensing (TRPS) and phase analysis light scattering (PALS) techniques were used to measure zeta potentials of the agents and the size distributions were measured using TRPS. The zeta potentials were found to be -2.43 mV and -0.62 mV for Definity™ MBs, and -3.62 mV and -2.35 mV for ELIPs using TRPS and PALS, respectively. Both agents were shown to have significant cluster formation at pressures as low as 6 kPa. Clusters of both agents were shown to diffuse as sonication stops at a rate that approximately equals the sum of the diffusion coefficients of the agents forming them. The de-clustering behaviours are due to Brownian motion as no sign of electrostatic repulsion was observed and particles movements were observed to be faster for smaller diameters. These findings are important to design and optimise effective drug delivery systems using acoustofluidically manipulated MBs and ELIPs.
Collapse
Affiliation(s)
- Hussain AlSadiq
- School of Mechanical and Mining Engineering, The University of Queensland, Saint Lucia, AUSTRALIA
| | - Karnaker Reddy Tupally
- school of Pharmacy , The University of Queensland, Saint Lucia, Queensland, 4072, AUSTRALIA
| | - Robert Vogel
- The University of Queensland, School of Mathematics and Physics, Saint Lucia, Queensland, 4067, AUSTRALIA
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, Saint Lucia, Queensland, 4102, AUSTRALIA
| | - Martin Veidt
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland, AUSTRALIA
| |
Collapse
|
3
|
Alsadiq H, Tupally K, Vogel R, Kokil G, Parekh HS, Veidt M. Shell properties and concentration stability of acoustofluidic delivery agents. Phys Eng Sci Med 2021; 44:79-91. [PMID: 33398637 DOI: 10.1007/s13246-020-00954-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/24/2020] [Indexed: 01/24/2023]
Abstract
This paper investigates the shell elastic properties and the number-concentration stability of a new acoustofluidic delivery agent liposome in comparison to Definity™, a monolayer ultrasonic contrast agent microbubble. The frequency dependent attenuation of an acoustic beam passing through a microbubble suspension was measured to estimate the shell parameters. The excitation voltage was adjusted to ensure constant acoustic pressure at all frequencies. The pressure was kept at the lowest possible magnitude to ensure that effects from nonlinear bubble behaviour which are not considered in the analytical model were minimal. The acoustofluidic delivery agent shell stiffness Sp and friction Sf parameters were determined as (Sp = 0.11 N/m, Sf = 0.31 × 10-6 Kg/s at 25 °C) in comparison to the Definity™ monolayer ultrasound contrast agent which were (Sp = 1.53 N/m, Sf = 1.51 × 10-6 Kg/s at 25 °C). When the temperature was raised to physiological levels, the friction coefficient Sf decreased by 28% for the monolayer microbubbles and by only 9% for the liposomes. The stiffness parameter Sp of the monolayer microbubble decreased by 23% while the stiffness parameter of the liposome increased by a similar margin (27%) when the temperature was raised to 37 °C. The size distribution of the bubbles was measured using Tunable Resistive Pulse Sensing (TRPS) for freshly prepared microbubbles and for bubble solutions at 6 h and 24 h after activation to investigate their number-concentration stability profile. The liposome maintained >80% of their number-concentration for 24 h at physiological temperature, while the monolayer microbubbles maintained only 27% of their number-concentration over the same period. These results are important input parameters for the design of effective acoustofluidic delivery systems using the new liposomes.
Collapse
Affiliation(s)
- Hussain Alsadiq
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Australia.
| | - Karnaker Tupally
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | - Robert Vogel
- School of Mathematics and Physics, University of Queensland, Brisbane, Australia
| | - Ganesh Kokil
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | | | - Martin Veidt
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Supponen O, Upadhyay A, Lum J, Guidi F, Murray T, Vos HJ, Tortoli P, Borden M. The effect of size range on ultrasound-induced translations in microbubble populations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3236. [PMID: 32486824 PMCID: PMC7205472 DOI: 10.1121/10.0001172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Microbubble translations driven by ultrasound-induced radiation forces can be beneficial for applications in ultrasound molecular imaging and drug delivery. Here, the effect of size range in microbubble populations on their translations is investigated experimentally and theoretically. The displacements within five distinct size-isolated microbubble populations are driven by a standard ultrasound-imaging probe at frequencies ranging from 3 to 7 MHz, and measured using the multi-gate spectral Doppler approach. Peak microbubble displacements, reaching up to 10 μm per pulse, are found to describe transient phenomena from the resonant proportion of each bubble population. The overall trend of the statistical behavior of the bubble displacements, quantified by the total number of identified displacements, reveals significant differences between the bubble populations as a function of the transmission frequency. A good agreement is found between the experiments and theory that includes a model parameter fit, which is further supported by separate measurements of individual microbubbles to characterize the viscoelasticity of their stabilizing lipid shell. These findings may help to tune the microbubble size distribution and ultrasound transmission parameters to optimize the radiation-force translations. They also demonstrate a simple technique to characterize the microbubble shell viscosity, the fitted model parameter, from freely floating microbubble populations using a standard ultrasound-imaging probe.
Collapse
Affiliation(s)
- Outi Supponen
- Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Jordan Lum
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Francesco Guidi
- Department of Information Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy
| | - Todd Murray
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Hendrik J. Vos
- Department of Biomedical Engineering, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy
| | - Mark Borden
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| |
Collapse
|
5
|
Acconcia CN, Leung BYC, Winch G, Wang J, Hynynen K, Goertz DE. Acoustic radiation force induced accumulation and dynamics of microbubbles on compliant surfaces. Phys Med Biol 2019; 64:135003. [PMID: 31082815 DOI: 10.1088/1361-6560/ab2163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrasound stimulated microbubbles have been shown to be capable of breaking up blood clots through micro-scale interactions occurring near the clot surface. However, only a small fraction of bubbles circulating in the bloodstream will be in close proximity to such boundaries, where they must be to elicit therapeutic effects. Here, the accumulation and subsequent behavior of microbubbles displaced from an overlying flow channel to a boundary under radiation forces were examined. Experimental data were acquired using a novel high speed microscopy configuration and simulations were conducted to provide insight into the accumulation process. There was broad agreement between experiments and simulations, both indicating that the size distribution and number of bubbles arriving at the boundary depended on channel flow rate, applied pressure, and bubble concentration. For example, higher flow rates and lower pressures favored the accumulation of larger bubbles relative to the native agent distribution. Moreover, bubble dynamics were dependent on the surface type, exhibiting rapid translation along agarose gel surfaces whereas on fibrin surfaces, they accumulated in localized regions inducing repetitive strain cycles. The results indicate that the process of bringing bubbles from within a vessel to a boundary is complex and should be an important consideration in the development of therapeutic applications such as sonothrombolysis.
Collapse
Affiliation(s)
- Christopher N Acconcia
- Department of Medical Biophysics, University of Toronto, Toronto, M5S 1A1, Canada. Sunnybrook Research Institute, 2075 Bayview Avenue, M4N 3M5, Toronto, Canada. These authors contributed equally
| | | | | | | | | | | |
Collapse
|