1
|
Kuo CY, Liu JW, Wang CH, Juan CH, Hsieh IH. The role of carrier spectral composition in the perception of musical pitch. Atten Percept Psychophys 2023; 85:2083-2099. [PMID: 37479873 DOI: 10.3758/s13414-023-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
Temporal envelope fluctuations of natural sounds convey critical information to speech and music processing. In particular, musical pitch perception is assumed to be primarily underlined by temporal envelope encoding. While increasing evidence demonstrates the importance of carrier fine structure to complex pitch perception, how carrier spectral information affects musical pitch perception is less clear. Here, transposed tones designed to convey identical envelope information across different carriers were used to assess the effects of carrier spectral composition to pitch discrimination and musical-interval and melody identifications. Results showed that pitch discrimination thresholds became lower (better) with increasing carrier frequencies from 1k to 10k Hz, with performance comparable to that of pure sinusoids. Musical interval and melody defined by the periodicity of sine- or harmonic complex envelopes across carriers were identified with greater than 85% accuracy even on a 10k-Hz carrier. Moreover, enhanced interval and melody identification performance was observed with increasing carrier frequency up to 6k Hz. Findings suggest a perceptual enhancement of temporal envelope information with increasing carrier spectral region in musical pitch processing, at least for frequencies up to 6k Hz. For carriers in the extended high-frequency region (8-20k Hz), the use of temporal envelope information to music pitch processing may vary depending on task requirement. Collectively, these results implicate the fidelity of temporal envelope information to musical pitch perception is more pronounced than previously considered, with ecological implications.
Collapse
Affiliation(s)
- Chao-Yin Kuo
- Institute of Cognitive Neuroscience, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 320317, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Jia-Wei Liu
- Institute of Cognitive Neuroscience, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 320317, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 320317, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 320317, Taiwan
| | - I-Hui Hsieh
- Institute of Cognitive Neuroscience, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 320317, Taiwan.
- Cognitive Intelligence and Precision Healthcare Center, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 320317, Taiwan.
| |
Collapse
|
2
|
Goldsworthy RL, Camarena A, Bissmeyer SRS. Pitch perception is more robust to interference and better resolved when provided by pulse rate than by modulation frequency of cochlear implant stimulation. Hear Res 2021; 409:108319. [PMID: 34340020 PMCID: PMC9343238 DOI: 10.1016/j.heares.2021.108319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023]
Abstract
Cochlear implants are medical devices that have been used to restore hearing to more than half a million people worldwide. Most recipients achieve high levels of speech comprehension through these devices, but speech comprehension in background noise and music appreciation in general are markedly poor compared to normal hearing. A key aspect of hearing that is notably diminished in cochlear implant outcomes is the sense of pitch provided by these devices. Pitch perception is an important factor affecting speech comprehension in background noise and is critical for music perception. The present article summarizes two experiments that examine the robustness and resolution of pitch perception as provided by cochlear implant stimulation timing. The driving hypothesis is that pitch conveyed by stimulation timing cues is more robust and better resolved when provided by variable pulse rates than by modulation frequency of constant-rate stimulation. Experiment 1 examines the robustness for hearing a large, one-octave, pitch difference in the presence of interfering electrical stimulation. With robustness to interference characterized for an otherwise easily discernible pitch difference, Experiment 2 examines the resolution of discrimination thresholds in the presence of interference as conveyed by modulation frequency or by pulse rate. These experiments test for an advantage of stimulation with precise temporal cues. The results indicate that pitch provided by pulse rate is both more robust to interference and is better resolved compared to when provided by modulation frequency. These results should inform the development of new sound processing strategies for cochlear implants designed to encode fundamental frequency of sounds into precise temporal stimulation.
Collapse
Affiliation(s)
- Raymond L Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Andres Camarena
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Susan R S Bissmeyer
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Mehta AH, Lu H, Oxenham AJ. The Perception of Multiple Simultaneous Pitches as a Function of Number of Spectral Channels and Spectral Spread in a Noise-Excited Envelope Vocoder. J Assoc Res Otolaryngol 2020; 21:61-72. [PMID: 32048077 DOI: 10.1007/s10162-019-00738-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/30/2019] [Indexed: 01/06/2023] Open
Abstract
Cochlear implant (CI) listeners typically perform poorly on tasks involving the pitch of complex tones. This limitation in performance is thought to be mainly due to the restricted number of active channels and the broad current spread that leads to channel interactions and subsequent loss of precise spectral information, with temporal information limited primarily to temporal-envelope cues. Little is known about the degree of spectral resolution required to perceive combinations of multiple pitches, or a single pitch in the presence of other interfering tones in the same spectral region. This study used noise-excited envelope vocoders that simulate the limited resolution of CIs to explore the perception of multiple pitches presented simultaneously. The results show that the resolution required for perceiving multiple complex pitches is comparable to that found in a previous study using single complex tones. Although relatively high performance can be achieved with 48 channels, performance remained near chance when even limited spectral spread (with filter slopes as steep as 144 dB/octave) was introduced to the simulations. Overall, these tight constraints suggest that current CI technology will not be able to convey the pitches of combinations of spectrally overlapping complex tones.
Collapse
Affiliation(s)
- Anahita H Mehta
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Hao Lu
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Parkway, Minneapolis, MN, 55455, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Parkway, Minneapolis, MN, 55455, USA
| |
Collapse
|