1
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
2
|
Le Prell CG. Preclinical prospects of investigational agents for hearing loss treatment. Expert Opin Investig Drugs 2023; 32:685-692. [PMID: 37695693 DOI: 10.1080/13543784.2023.2253141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION : Hearing loss has a high prevalence, with aging, noise exposure, ototoxic drug therapies, and genetic mutations being some of the leading causes of hearing loss. Health conditions such as cardiovascular disease and diabetes are associated with hearing loss, perhaps due to shared vascular pathology in the ear and in other tissues. AREAS COVERED : Issues in the design of preclinical research preclude the ability to make comparisons regarding the relative efficacy of different drugs of interest for possible hearing loss prevention or hearing restoration. This has not slowed the advancement of candidate therapeutics into human clinical testing. There is a robust pipeline with drugs that have different mechanisms of action providing diverse candidate therapies and opportunities for combination therapies to be considered. EXPERT OPINION : Much of the preclinical research literature lacks standard study design elements such as dose response testing, and lack of standardization of test protocols significantly limits conclusions regarding relative efficacy. Nonetheless, the many positive results to date have supported translation of preclinical efforts into clinical trials assessing potential human benefits. Approval of the first hearing loss prevention therapeutic is a major success, providing a pathway for other drugs to follow.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, USA
- Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
3
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
Affiliation(s)
- Nirvikalpa Natarajan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Dewangan KN, Patel T, Lalremruata. Noise exposure and hearing loss among tractor drivers in India. Work 2023; 74:167-181. [PMID: 36278371 DOI: 10.3233/wor-210258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Tractors emit high intensity noise and prolonged exposure to high intensity noise causes hearing loss to the drivers. OBJECTIVE The aim of this study was to measure noise intensity at the tractor drivers' ear level and hearing loss among tractor drivers. METHODS Noise intensity was measured on 6 models of tractors which were operated with 5 different tillage implements. In order to assess hearing loss, audiometric test was performed at 7 frequencies, i.e. 250, 500, 1000, 2000, 4000, 6000, and 8000 Hz, among 30 tractor drivers and 30 control group subjects. All the selected tractor drivers and control group subjects were also interviewed to obtain personal information and noise exposure details. RESULTS The tractor drivers were exposed to noise intensity in the range of 91.7-97.5 dB(A). Audiogram analysis shows that the hearing threshold levels were significantly (p < 0.05) higher among the tractor drivers as compared with the control group subjects. The effect was significantly (p < 0.05) more on the left ear as compared with the right ear among the tractor drivers. Increase in age has significant (p < 0.05) effect on the hearing threshold levels on the left ear. Prevalence of high frequency hearing loss was 50% among tractor drivers as compared with 10% among control group subjects. Hearing loss was significantly (p < 0.05) more in the low frequency as compared with the high frequency among the tractor drivers. CONCLUSION Indian tractor operators are exposed to high noise levels which may result in hearing loss. It is recommended that hearing conservation programs should be initiated to prevent noise hazards and hearing loss among the tractor drivers.
Collapse
Affiliation(s)
- Krishna Narayan Dewangan
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology (NERIST), Nirjuli, Arunachal Pradesh, India
| | - Thaneswer Patel
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology (NERIST), Nirjuli, Arunachal Pradesh, India
| | - Lalremruata
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology (NERIST), Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
5
|
Le Prell CG. Investigational Medicinal Products for the Inner Ear: Review of Clinical Trial Characteristics in ClinicalTrials.gov. J Am Acad Audiol 2021; 32:670-694. [PMID: 35609594 PMCID: PMC9129919 DOI: 10.1055/s-0041-1735522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The previous 30 years have provided information on the mechanisms of cell death in the inner ear after noise exposure, ototoxic drug injury, and during aging, and clinical trials have emerged for all of these acquired forms of hearing loss. Sudden hearing loss is less well understood, but restoration of hearing after sudden hearing loss is also a long-standing drug target, typically using steroids as an intervention but with other agents of interest as well. PURPOSE The purpose of this review was to describe the state of the science regarding clinical testing of investigational medicinal products for the inner ear with respect to treatment or prevention of acquired hearing loss. DATA COLLECTION AND ANALYSIS Comprehensive search and summary of clinical trials listed in the National Library of Medicine (www. CLINICALTRIALS gov) database identified 61 clinical trials. RESULTS Study phase, status, intervention, and primary, secondary, and other outcomes are summarized for studies assessing prevention of noise-induced hearing loss, prevention of drug-induced hearing loss, treatment of stable sensorineural hearing loss, and treatment of sudden sensorineural hearing loss. CONCLUSION This review provides a comprehensive summary of the state of the science with respect to investigational medicinal products for the inner ear evaluated in human clinical trials, and the current challenges for the field.
Collapse
MESH Headings
- Cell Death/drug effects
- Cell Death/physiology
- Deafness/chemically induced
- Deafness/drug therapy
- Deafness/prevention & control
- Ear, Inner/pathology
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/prevention & control
- Hearing Loss, Sensorineural/chemically induced
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/prevention & control
- Hearing Loss, Sudden/chemically induced
- Hearing Loss, Sudden/drug therapy
- Hearing Loss, Sudden/pathology
- Hearing Loss, Sudden/prevention & control
- Humans
- United States
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
6
|
Pienkowski M. Loud Music and Leisure Noise Is a Common Cause of Chronic Hearing Loss, Tinnitus and Hyperacusis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4236. [PMID: 33923580 PMCID: PMC8073416 DOI: 10.3390/ijerph18084236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
High sound levels capable of permanently damaging the ear are experienced not only in factories and war zones but in concert halls, nightclubs, sports stadiums, and many other leisure environments. This review summarizes evidence that loud music and other forms of "leisure noise" are common causes of noise-induced hearing loss, tinnitus, and hyperacusis, even if audiometric thresholds initially remain within clinically normal limits. Given the huge global burden of preventable noise-induced hearing loss, noise limits should be adopted in a much broader range of settings, and education to promote hearing conservation should be a higher public health priority.
Collapse
Affiliation(s)
- Martin Pienkowski
- Osborne College of Audiology, Salus University, Elkins Park, PA 19027, USA
| |
Collapse
|
7
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4051. [PMID: 31795668 PMCID: PMC7195863 DOI: 10.1121/1.5132951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
Animal models have been used to gain insight into the risk of noise-induced hearing loss (NIHL) and its potential prevention using investigational new drug agents. A number of compounds have yielded benefit in pre-clinical (animal) models. However, the acute traumatic injury models commonly used in pre-clinical testing are fundamentally different from the chronic and repeated exposures experienced by many human populations. Diverse populations that are potentially at risk and could be considered for enrollment in clinical studies include service members, workers exposed to occupational noise, musicians and other performing artists, and children and young adults exposed to non-occupational (including recreational) noise. Both animal models and clinical populations were discussed in this special issue, followed by discussion of individual variation in vulnerability to NIHL. In this final contribution, study design considerations for NIHL otoprotection in pre-clinical and clinical testing are integrated and broadly discussed with evidence-based guidance offered where possible, drawing on the contributions to this special issue as well as other existing literature. The overarching goals of this final paper are to (1) review and summarize key information across contributions and (2) synthesize information to facilitate successful translation of otoprotective drugs from animal models into human application.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinanati, Ohio 45226-1998, USA
| |
Collapse
|
8
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
9
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss: Translating risk from animal models to real-world environments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3646. [PMID: 31795692 PMCID: PMC7341677 DOI: 10.1121/1.5133385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Noise-induced hearing loss (NIHL) is a common injury for service members and civilians. Effective prevention of NIHL with drug agents would reduce the prevalence of NIHL. There are a host of challenges in translation of investigational new drug agents from animals into human clinical testing, however. Initial articles in this special issue describe common pre-clinical (animal) testing paradigms used to assess potential otoprotective drug agents and design-related factors that impact translation of promising agents into human clinical trials. Additional articles describe populations in which NIHL has a high incidence and factors that affect individual vulnerability. While otoprotective drugs will ultimately be developed for use by specific noise-exposed populations, there has been little effort to develop pre-clinical (animal) models that accurately model exposure hazards across diverse human populations. To facilitate advances in the translational framework for NIHL otoprotection in pre-clinical and clinical testing, the overarching goals of the current series are to (1) review the animal models that have been used, highlighting the relevance to the human populations of interest, (2) provide insight into the populations for whom pharmaceutical interventions might, or might not, be appropriate, and (3) highlight the factors that drive the significant individual variability observed in humans.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, Ohio 45226, USA
| |
Collapse
|
10
|
Gittleman SN, Le Prell CG, Hammill TL. Octave band noise exposure: Laboratory models and otoprotection efforts. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3800. [PMID: 31795706 PMCID: PMC7195864 DOI: 10.1121/1.5133393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/21/2019] [Indexed: 05/05/2023]
Abstract
With advances in the understanding of mechanisms of noise injury, the past 30 years have brought numerous efforts to identify drugs that prevent noise-induced hearing loss (NIHL). The diverse protocols used across investigations have made comparisons across drugs difficult. A systematic review of the literature by Hammill [(2017). Doctoral thesis, The University of Texas at Austin] identified original reports of chemical interventions to prevent or treat hearing loss caused by noise exposure. An initial search returned 3492 articles. After excluding duplicate articles and articles that did not meet the systematic review inclusion criteria, a total of 213 studies published between 1977 and 2016 remained. Reference information, noise exposure parameters, species, sex, method of NIHL assessment, and pharmaceutical intervention details for these 213 studies were entered into a database. Frequency-specific threshold shifts in control animals (i.e., in the absence of pharmaceutical intervention) are reported here. Specific patterns of hearing loss as a function of species and noise exposure parameters are provided to facilitate the selection of appropriate pre-clinical models. The emphasis of this report is octave band noise exposure, as this is one of the most common exposure protocols across pharmacological otoprotection studies.
Collapse
Affiliation(s)
- Sarah N Gittleman
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| |
Collapse
|