1
|
Keefe DH, Fitzpatrick DF, Porter HL, Chen S. Reflection function, reflectance, and area function measurements in ears of children and adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2709-2726. [PMID: 39431854 PMCID: PMC11495878 DOI: 10.1121/10.0032455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
The main experiment concerned time-domain measurements of the acoustical reflection function (RF) of the human ear in adults and children (aged 5 to 8 years) using a probe inserted into the ear canal. This RF was used to calculate the area function of the ear canal versus distance along its centerline. Acoustical reflectance was calculated in the frequency domain from the RF, as was the difference in sound pressure level near the tympanic membrane relative to the probe tip. Group responses in area function, total ear-canal length, absorbance and group delay, and admittance magnitude and phase were analyzed based on sex, ear, and age. Responses were compared between children/adults and younger/older adults relative to age 50 years. Ear and sex were never significant. Significant differences were observed in children compared to adults in the area function, absorbance and group delay, and admittance magnitude and phase (0.25-4 kHz). Group delay differed between younger and older adults. A second experiment assessed level dependence of responses to better understand limitations in probe performance observed in the main experiment. These results show the utility of time-domain measurements of the area function and derived reflectance to understand sound-transmission differences across age at frequencies important to middle-ear function.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Denis F Fitzpatrick
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Heather L Porter
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Su Chen
- College of Public Health, Department of Biostatistics, University of Nebraska Medical Center, 984375 Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
2
|
Nørgaard KM, Motallebzadeh H, Puria S. The influence of tympanic-membrane orientation on acoustic ear-canal quantities: A finite-element analysis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2769-2785. [PMID: 38662609 PMCID: PMC11052631 DOI: 10.1121/10.0025768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Assuming plane waves, ear-canal acoustic quantities, collectively known as wideband acoustic immittance (WAI), are frequently used in research and in the clinic to assess the conductive status of the middle ear. Secondary applications include compensating for the ear-canal acoustics when delivering stimuli to the ear and measuring otoacoustic emissions. However, the ear canal is inherently non-uniform and terminated at an oblique angle by the conical-shaped tympanic membrane (TM), thus potentially confounding the ability of WAI quantities in characterizing the middle-ear status. This paper studies the isolated possible confounding effects of TM orientation and shape on characterizing the middle ear using WAI in human ears. That is, the non-uniform geometry of the ear canal is not considered except for that resulting from the TM orientation and shape. This is achieved using finite-element models of uniform ear canals terminated by both lumped-element and finite-element middle-ear models. In addition, the effects on stimulation and reverse-transmission quantities are investigated, including the physical significance of quantities seeking to approximate the sound pressure at the TM. The results show a relatively small effect of the TM orientation on WAI quantities, except for a distinct delay above 10 kHz, further affecting some stimulation and reverse-transmission quantities.
Collapse
Affiliation(s)
- Kren Monrad Nørgaard
- Interacoustics Research Unit, 2800 Kongens Lyngby, Denmark
- Interacoustics A/S, 5500 Middelfart, Denmark
| | - Hamid Motallebzadeh
- Department of Communication Sciences & Disorders, California State University, Sacramento, California 95819, USA
- Department of Biomedical Engineering, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Sunil Puria
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Graduate Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
3
|
Balouch AP, Bekhazi K, Durkee HE, Farrar RM, Sok M, Keefe DH, Remenschneider AK, Horton NJ, Voss SE. Measurements of ear-canal geometry from high-resolution CT scans of human adult ears. Hear Res 2023; 434:108782. [PMID: 37201272 PMCID: PMC10219681 DOI: 10.1016/j.heares.2023.108782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Description of the ear canal's geometry is essential for describing peripheral sound flow, yet physical measurements of the canal's geometry are lacking and recent measurements suggest that older-adult-canal areas are systematically larger than previously assumed. Methods to measure ear-canal geometry from multi-planar reconstructions of high-resolution CT images were developed and applied to 66 ears from 47 subjects, ages 18-90 years. The canal's termination, central axis, entrance, and first bend were identified based on objective definitions, and the canal's cross-sectional area was measured along its canal's central axis in 1-2 mm increments. In general, left and right ears from a given subject were far more similar than measurements across subjects, where areas varied by factors of 2-3 at many locations. The canal areas varied systematically with age cohort at the first-bend location, where canal-based measurement probes likely sit; young adults (18-30 years) had an average area of 44mm2 whereas older adults (61-90 years) had a significantly larger average area of 69mm2. Across all subjects ages 18-90, measured means ± standard deviations included: canals termination area at the tympanic annulus 56±8mm2; area at the canal's first bend 53±18mm2; area at the canal's entrance 97±24mm2; and canal length 31.4±3.1mm2.
Collapse
Affiliation(s)
- Auden P Balouch
- Picker Engineering Program, Smith College, Northampton, 01063, MA, USA
| | - Karen Bekhazi
- Picker Engineering Program, Smith College, Northampton, 01063, MA, USA
| | - Hannah E Durkee
- Picker Engineering Program, Smith College, Northampton, 01063, MA, USA
| | - Rebecca M Farrar
- Picker Engineering Program, Smith College, Northampton, 01063, MA, USA
| | - Mealaktey Sok
- Picker Engineering Program, Smith College, Northampton, 01063, MA, USA
| | | | | | - Nicholas J Horton
- Department of Mathematics and Statistics, Amherst College, Amherst, 01002, MA, USA
| | - Susan E Voss
- Picker Engineering Program, Smith College, Northampton, 01063, MA, USA.
| |
Collapse
|
4
|
Nørgaard KM, Bray PJ. Comments on forward pressure and other reflectance-based quantities for delivering stimuli to the ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:909. [PMID: 36859130 DOI: 10.1121/10.0017119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The forward pressure has been proposed as an "optimal" reflectance-based quantity for delivering stimuli to the ear during evoked otoacoustic-emission measurements and audiometry. It is motivated by and avoids detrimental stimulus-level errors near standing-wave antiresonance frequencies when levels are adjusted in situ. While enjoying widespread popularity within research, the forward pressure possesses certain undesirable properties, some of which complicate its implementation into commercial otoacoustic-emission instruments conforming to existing international standards. These properties include its inability to approximate the total sound pressure anywhere in the ear canal and its discrepancy from the sound pressure at the tympanic membrane, which depends directly on the reflectance. This paper summarizes and comments on such properties of the forward pressure. Further, based on previous published data, alternative reflectance-based quantities that do not share these properties are investigated. A complex integrated pressure, with magnitude identical to the previously proposed scalar integrated pressure, is suggested as a suitable quantity for avoiding standing-wave errors when delivering stimuli to the ear. This complex integrated pressure approximates the magnitude and phase of the sound pressure at the tympanic membrane and can immediately be implemented into standardized commercial instruments to take advantage of improved stimulus-level accuracy and reproducibility in the clinic.
Collapse
Affiliation(s)
| | - Peter J Bray
- Interacoustics A/S, Audiometer Allé 1, Middelfart, DK-5500, Denmark
| |
Collapse
|