Karosas DM, Gonzales L, Wang Y, Bergevin C, Carney LH, Henry KS. Otoacoustic emissions but not behavioral measurements predict cochlear-nerve frequency tuning in an avian vocal-communication specialist.
BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.29.610326. [PMID:
39257830 PMCID:
PMC11383700 DOI:
10.1101/2024.08.29.610326]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Frequency analysis by the cochlea forms a key foundation for all subsequent auditory processing. Stimulus-frequency otoacoustic emissions (SFOAEs) are a potentially powerful alternative to traditional behavioral experiments for estimating cochlear tuning without invasive testing, as is necessary in humans. Which methods accurately predict cochlear tuning remains controversial due to only a single animal study comparing SFOAE-based, behavioral, and cochlear frequency tuning in the same species. The budgerigar ( Melopsittacus undulatus ) is a parakeet species with human-like behavioral sensitivity to many sounds and the capacity to mimic speech. Intriguingly, previous studies of critical bands, psychophysical tuning curves, and critical ratios in budgerigars show that behavioral tuning sharpness increases dramatically with increasing frequency from 1-3.5 kHz, doubling once per octave with peak tuning sharpness from 3.5-4 kHz. The pattern contrasts with slower monotonic growth of behavioral tuning sharpness with increasing frequency in other animals, including most avian species, suggesting a possible auditory specialization in budgerigars. We measured SFOAE-based and cochlear-afferent tuning in budgerigars, for comparison to previously reported behavioral results. SFOAE-based and cochlear-afferent tuning sharpness both increased monotonically and relatively slowly for higher frequencies, in contrast to the behavioral pattern. SFOAE-based tuning in budgerigars accurately predicted cochlear frequency tuning, and both measures aligned with typical patterns of cochlear tuning in other species. Divergent behavioral tuning in budgerigars is unlikely attributable to the periphery and could reflect specializations for central processing of masked signals. Our findings highlight the value of SFOAEs for estimating cochlear tuning and caution against direct inference of cochlear tuning from behavioral critical bands, psychophysical tuning curves, and critical ratios.
Collapse