Modulators of Change-of-Direction Economy After Repeated Sprints in Elite Soccer Players.
Int J Sports Physiol Perform 2021;
16:1649-1655. [PMID:
33873152 DOI:
10.1123/ijspp.2020-0740]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE
To investigate the acute effect of repeated-sprint activity (RSA) on change-of-direction economy (assessed using shuttle running economy [SRE]) in soccer players and explore neuromuscular and cardiorespiratory characteristics that may modulate this effect.
METHODS
Eleven young elite male soccer players (18.5 [1.4] y old) were tested on 2 different days during a 2-week period in their preseason. On day 1, lower-body stiffness, power and force were assessed via countermovement jumps, followed by an incremental treadmill test to exhaustion to measure maximal aerobic capacity. On day 2, 2 SRE tests were performed before and after a repeated-sprint protocol with heart rate, minute ventilation, and blood lactate measured.
RESULTS
Pooled group analysis indicated no significant changes for SRE following RSA due to variability in individual responses, with a potentiation or impairment effect of up to 4.5% evident across soccer players. The SRE responses to RSA were significantly and largely correlated to players' lower-body stiffness (r = .670; P = .024), and moderately (but not significantly) correlated to players' force production (r = -.455; P = .237) and blood lactate after RSA (r = .327; P = .326).
CONCLUSIONS
In summary, SRE response to RSA in elite male soccer players appears to be highly individual. Higher lower-body stiffness appears as a relevant physical contributor to preserve or improve SRE following RSA.
Collapse