1
|
Piska K, Koczurkiewicz-Adamczyk P, Jamrozik M, Bucki A, Kołaczkowski M, Pękala E. Comparative study on ABCB1-dependent efflux of anthracyclines and their metabolites: consequences for cancer resistance. Xenobiotica 2023; 53:507-514. [PMID: 37753851 DOI: 10.1080/00498254.2023.2264391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
1. ABCB1 (P-glycoprotein, MDR1) is one of the most important transporter involved in cancer multi-drug resistance. It also plays a significant role in cancer resistance against anthracyclines, an anticancer group of drugs, including doxorubicin and daunorubicin. Several intracellular enzymes metabolise anthracyclines to carbonyl-reduced, hydroxy metabolites, which have impaired cytotoxic properties. However, metabolite efflux by ABCB1 transporter is not well characterised, while it may be the mechanism responsible for the metabolites' lack of activity.2. In this study recombinant ABCB1 ATPase transporter assay; anthracyclines accumulation assay in resistant cells overexpressing ABCB1; and molecular modelling were used to investigate anthracyclines: doxorubicin and daunorubicin and their carbonyl-reduced metabolites (doxorubicinol, daunorubicinol) susceptibility for ABCB1-dependent efflux.3. Based on the kinetics parameters of ATPase activity of ABCB1, it was found that daunorubicinol exerted an exceptionally high potential for being effluxed by the ABCB1 transporter. ABCB1 significantly affected the accumulation pattern of studied chemicals in resistant cancer cells. Doxorubicin and daunorubicinol accumulation were influenced by the activity of ABCB1 modulator - valspodar.4. Results indicate that ABCB1 activity affects not only anthracyclines but also their metabolites. Therefore crosstalk between the process of anthracyclines metabolism and metabolite efflux may be the mechanism of impairing anticancer properties of anthracyclines metabolites.
Collapse
Affiliation(s)
- Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | | - Marek Jamrozik
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
2
|
Balhara A, Kumar AR, Unadkat JD. Predicting Human Fetal Drug Exposure Through Maternal-Fetal PBPK Modeling and In Vitro or Ex Vivo Studies. J Clin Pharmacol 2022; 62 Suppl 1:S94-S114. [PMID: 36106781 PMCID: PMC9494623 DOI: 10.1002/jcph.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Medication (drug) use in human pregnancy is prevalent. Determining fetal safety and efficacy of drugs is logistically challenging. However, predicting (not measuring) fetal drug exposure (systemic and tissue) throughout pregnancy is possible through maternal-fetal physiologically based pharmacokinetic (PBPK) modeling and simulation. Such prediction can inform fetal drug safety and efficacy. Fetal drug exposure can be quantified in 2 complementary ways. First, the ratio of the steady-state unbound plasma concentration in the fetal plasma (or area under the plasma concentration-time curve) to the corresponding maternal plasma concentration (ie, Kp,uu ). Second, the maximum unbound peak (Cu,max,ss,f ) and trough (Cu,min,ss,f ) fetal steady-state plasma concentrations. We (and others) have developed a maternal-fetal PBPK model that can successfully predict maternal drug exposure. To predict fetal drug exposure, the model needs to be populated with drug specific parameters, of which transplacental clearances (active and/or passive) and placental/fetal metabolism of the drug are critical. Herein, we describe in vitro studies in cells/tissue fractions or the perfused human placenta that can be used to determine these drug-specific parameters. In addition, we provide examples whereby this approach has successfully predicted systemic fetal exposure to drugs that passively or actively cross the placenta. Apart from maternal-fetal PBPK models, animal studies also have the potential to estimate fetal drug exposure by allometric scaling. Whether such scaling will be successful is yet to be determined. Here, we review the above approaches to predict fetal drug exposure, outline gaps in our knowledge to make such predictions and map out future research directions that could fill these gaps.
Collapse
Affiliation(s)
- Ankit Balhara
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Aditya R Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Yamashita M, Markert UR. Overview of Drug Transporters in Human Placenta. Int J Mol Sci 2021; 22:ijms222313149. [PMID: 34884954 PMCID: PMC8658420 DOI: 10.3390/ijms222313149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023] Open
Abstract
The transport of drugs across the placenta is a point of great importance in pharmacotherapy during pregnancy. However, the knowledge of drug transport in pregnancy is mostly based on experimental clinical data, and the underlying biological mechanisms are not fully understood. In this review, we summarize the current knowledge of drug transporters in the human placenta. We only refer to human data since the placenta demonstrates great diversity among species. In addition, we describe the experimental models that have been used in human placental transport studies and discuss their availability. A better understanding of placental drug transporters will be beneficial for the health of pregnant women who need drug treatment and their fetuses.
Collapse
Affiliation(s)
- Michiko Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka 5650871, Japan
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Correspondence:
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| |
Collapse
|
4
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Placental Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:505-548. [PMID: 31571173 DOI: 10.1007/978-981-13-7647-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Grandin FC, Lacroix MZ, Gayrard V, Viguié C, Mila H, de Place A, Vayssière C, Morin M, Corbett J, Gayrard C, Gely CA, Toutain PL, Picard-Hagen N. Is bisphenol S a safer alternative to bisphenol A in terms of potential fetal exposure ? Placental transfer across the perfused human placenta. CHEMOSPHERE 2019; 221:471-478. [PMID: 30654261 DOI: 10.1016/j.chemosphere.2019.01.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The aim of our study was to evaluate the bidirectional transfer of Bisphenol S (BPS) and its main metabolite, BPS Glucuronide (BPSG), using the model of perfused human placenta and to compare the obtained values with those of Bisphenol A (BPA) and BPA Glucuronide. Fourteen placentas at term were perfused in an open dual circuit with deuterated BPS (1 and 5 μM) and non-labelled BPSG (2.5 μM) and a freely diffusing marker antipyrine (800 ng/ml) in the presence of albumin (25 mg/ml). In a second experiment, the potential role of P-glycoprotein in the active efflux of BPS across the placental barrier was studied using the well-established P-glycoprotein inhibitor, PSC833 (2 and 4 μM). Placental transfer of BPS was much lower than that of BPA in both directions. The placental clearance index of BPS in the materno-fetal direction was three times lower than in the opposite direction, strongly suggesting some active efflux transport. However, our results show that P-glycoprotein is not involved in limiting the materno-fetal transfer of BPS. Placental transfer of BPSG in the fetal compartment was almost non-existent indicating that, in the fetal compartment, BPSG originates mainly from feto-placental metabolism. The feto-maternal clearance index for BPSG was 20-fold higher than the materno-fetal index. We conclude that the blood-placental barrier is much more efficient in limiting fetal exposure to BPS than to BPA, indicating that the placenta has a crucial role in protecting the human fetus from BPS exposure.
Collapse
Affiliation(s)
- Flore C Grandin
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France.
| | - Marlène Z Lacroix
- INTHERES, Université de Toulouse, INRA, ENVT, 31 076 Toulouse, France.
| | - Véronique Gayrard
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France; Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse Cedex 3, France.
| | - Catherine Viguié
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France.
| | - Hanna Mila
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France; Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse Cedex 3, France
| | - Alice de Place
- Service de Gynécologie-obstétrique, Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France; UMR 1027 INSERM, Université Paul-Sabatier Toulouse III, Toulouse, France.
| | - Christophe Vayssière
- Service de Gynécologie-obstétrique, Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France; UMR 1027 INSERM, Université Paul-Sabatier Toulouse III, Toulouse, France.
| | - Mathieu Morin
- Service de Gynécologie-obstétrique, Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France; UMR 1027 INSERM, Université Paul-Sabatier Toulouse III, Toulouse, France.
| | - Julie Corbett
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France
| | - Cécile Gayrard
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France
| | - Clémence A Gely
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France.
| | | | - Nicole Picard-Hagen
- INRA (Institut National de la Recherche Agronomique), UMR1331 (Unité Mixe de Recherche 1331), Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France; Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), F-31076 Toulouse Cedex 3, France.
| |
Collapse
|
6
|
Abstract
As a result of an increasing aging population, the number of individuals taking multiple medications simultaneously has grown considerably. For these individuals, taking multiple medications has increased the risk of undesirable drug–drug interactions (DDIs), which can cause serious and debilitating adverse drug reactions (ADRs). A comprehensive understanding of DDIs is needed to combat these deleterious outcomes. This review provides a synopsis of the pharmacokinetic (PK) and pharmacodynamic (PD) mechanisms that underlie DDIs. PK-mediated DDIs affect all aspects of drug disposition: absorption, distribution, metabolism and excretion (ADME). In this review, the cells that play a major role in ADME and have been investigated for DDIs are discussed. Key examples of drug metabolizing enzymes and drug transporters that are involved in DDIs and found in these cells are described. The effect of inhibiting or inducing these proteins through DDIs on the PK parameters is also reviewed. Despite most DDI studies being focused on the PK effects, DDIs through PD can also lead to significant and harmful effects. Therefore, this review outlines specific examples and describes the additive, synergistic and antagonistic mechanisms of PD-mediated DDIs. The effects DDIs on the maximum PD response (Emax) and the drug dose or concentration (EDEC50) that lead to 50% of Emax are also examined. Significant gaps in our understanding of DDIs remain, so innovative and emerging approaches are critical for overcoming them.
Collapse
Affiliation(s)
- Arthur G Roberts
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA,
| | - Morgan E Gibbs
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA,
| |
Collapse
|
7
|
Aengenheister L, Keevend K, Muoth C, Schönenberger R, Diener L, Wick P, Buerki-Thurnherr T. An advanced human in vitro co-culture model for translocation studies across the placental barrier. Sci Rep 2018; 8:5388. [PMID: 29599470 PMCID: PMC5876397 DOI: 10.1038/s41598-018-23410-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/12/2018] [Indexed: 01/10/2023] Open
Abstract
Although various drugs, environmental pollutants and nanoparticles (NP) can cross the human placental barrier and may harm the developing fetus, knowledge on predictive placental transfer rates and the underlying transport pathways is mostly lacking. Current available in vitro placental transfer models are often inappropriate for translocation studies of macromolecules or NPs and do not consider barrier function of placental endothelial cells (EC). Therefore, we developed a human placental in vitro co-culture transfer model with tight layers of trophoblasts (BeWo b30) and placental microvascular ECs (HPEC-A2) on a low-absorbing, 3 µm porous membrane. Translocation studies with four model substances and two polystyrene (PS) NPs across the individual and co-culture layers revealed that for most of these compounds, the trophoblast and the EC layer both demonstrate similar, but not additive, retention capacity. Only the paracellular marker Na-F was substantially more retained by the BeWo layer. Furthermore, simple shaking, which is often applied to mimic placental perfusion, did not alter translocation kinetics compared to static exposure. In conclusion, we developed a novel placental co-culture model, which provides predictive values for translocation of a broad variety of molecules and NPs and enables valuable mechanistic investigations on cell type-specific placental barrier function.
Collapse
Affiliation(s)
- Leonie Aengenheister
- Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Kerda Keevend
- Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Carina Muoth
- Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - René Schönenberger
- UTOX, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Liliane Diener
- Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Peter Wick
- Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|
8
|
Duan HY, Ma D, Zhou KY, Wang T, Zhang Y, Li YF, Wu JL, Hua YM, Wang C. Effect of Histone Deacetylase Inhibition on the Expression of Multidrug Resistance-associated Protein 2 in a Human Placental Trophoblast Cell Line. Chin Med J (Engl) 2018; 130:1352-1360. [PMID: 28524836 PMCID: PMC5455046 DOI: 10.4103/0366-6999.206352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Placental multidrug resistance-associated protein 2 (MRP2), encoded by ABCC2 gene in human, plays a significant role in regulating drugs' transplacental transfer rates. Studies on placental MRP2 regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. Currently, the roles of epigenetic mechanisms in regulating placental drug transporters are still unclear. This study aimed to investigate the effect of histone deacetylases (HDACs) inhibition on MRP2 expression in the placental trophoblast cell line and to explore whether HDAC1/2/3 are preliminarily involved in this process. METHODS The human choriocarcinoma-derived trophoblast cell line (Bewo cells) was treated with the HDAC inhibitors-trichostatin A (TSA) at different concentration gradients of 0.5, 1.0, 3.0, and 5.0 μmol/L. Cells were harvested after 24 and 48 h treatment. Small interfering RNA (siRNA) specific for HDAC1/HDAC2/HDAC3 or control siRNA was transfected into cells. Total HDAC activity was detected by colorimetric assay kits. HDAC1/2/3/ABCC2 messenger RNA (mRNA) and protein expressions were determined by real-time quantitative polymerase chain reaction and Western-blot analysis, respectively. Immunofluorescence for MRP2 protein expression was visualized and assessed using an immunofluorescence microscopy and ImageJ software, respectively. RESULTS TSA could inhibit total HDAC activity and HDAC1/2/3 expression in company with increase of MRP2 expression in Bewo cells. Reduction of HDAC1 protein level was noted after 24 h of TSA incubation at 1.0, 3.0, and 5.0 μmol/L (vs. vehicle group, all P < 0.001), accompanied with dose-dependent induction of MRP2 expression (P = 0.045 for 1.0 μmol/L, P = 0.001 for 3.0 μmol/L, and P < 0.001 for 5.0 μmol/L), whereas no significant differences in MRP2 expression were noted after HDAC2/3 silencing. Fluorescent micrograph images of MRP2 protein were expressed on the cell membrane. The fluorescent intensities of MRP2 in the control, HDAC2, and HDAC3 siRNA-transfected cells were week, and no significant differences were noticed among these three groups (all P > 0.05). However, MRP2 expression was remarkably elevated in HDAC1 siRNA-transfected cells, which displayed an almost 3.19-fold changes in comparison with the control siRNA-transfected cells (P < 0.001). CONCLUSIONS HDACs inhibition could up-regulate placental MRP2 expression in vitro, and HDAC1 was probably to be involved in this process.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Ma
- Department of Pediatric Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin-Lin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Johnson AC, Hammer ES, Sakkaki S, Tremble SM, Holmes GL, Cipolla MJ. Inhibition of blood-brain barrier efflux transporters promotes seizure in pregnant rats: Role of circulating factors. Brain Behav Immun 2018; 67:13-23. [PMID: 28739514 PMCID: PMC5696046 DOI: 10.1016/j.bbi.2017.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022] Open
Abstract
Seizure-provoking factors circulate late in gestation during normal pregnancy, but do not readily gain access to the brain due to the protective nature of the blood-brain barrier. In particular, efflux transporters are powerful ATP-driven pumps that actively prevent unwanted compounds from entering the brain. We hypothesized that acute inhibition of efflux transporters at the blood-brain barrier would result in spontaneous seizures in pregnant rats. We further hypothesized that the blood-brain barrier protects the maternal brain from seizure by increasing expression and/or activity of p-glycoprotein (P-gp), a major efflux transporter. Main blood-brain barrier efflux transporters were inhibited in-vivo in nonpregnant (Nonpreg) and pregnant (Preg; d19) Sprague Dawley rats (n=8/group). Seizures were monitored in conscious animals for 8h via chronically implanted electroencephalography (EEG) electrodes in the hippocampus and motor cortex and time-synced video. P-gp activity was measured via a calcein accumulation assay in freshly isolated cortical and hippocampal capillaries from Preg (d20) and Nonpreg rats (n=8-16/group), to assess regional susceptibility to transporter inhibition. P-gp expression, capillary density, and microglial activation as a measure of neuroinflammation were quantified using immunohistochemistry (n=4-6/group). Efflux transporter inhibition elicited hippocampal seizures within 1h in 100% of Preg rats that was not associated with neuroinflammation or elevated tumor necrosis factor alpha (TNFα) or vascular endothelial growth factor (VEGF), but negatively correlated with levels of estradiol. Hippocampal seizures were considerably less prevalent in Nonpreg rats. However, behavioral seizures in the motor cortex developed of similar severity in both groups of rats, demonstrating regional heterogeneity in response to efflux transporter inhibition. Basal P-gp activity was similar between groups, however, exposure to serum from Preg rats significantly decreased P-gp activity in the hippocampus, but not cortex, compared to serum from Nonpreg rats (0.29±0.1units/s in Preg vs. 0.06±0.02units/s in Nonpreg rats; p<0.05) that was not associated with elevated TNFα or VEGF. Thus, pregnancy differentially increased the susceptibility of the hippocampus to seizures in response to blood-brain barrier efflux transporter inhibition that may be due to the inhibitory effect of circulating factors in pregnancy on P-gp activity in the hippocampus.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Erica S Hammer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Sophie Sakkaki
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Sarah M Tremble
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA; Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| |
Collapse
|
10
|
Gahir SS, Piquette-Miller M. The Role of PXR Genotype and Transporter Expression in the Placental Transport of Lopinavir in Mice. Pharmaceutics 2017; 9:pharmaceutics9040049. [PMID: 29064386 PMCID: PMC5750655 DOI: 10.3390/pharmaceutics9040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022] Open
Abstract
Lopinavir (LPV), an antiretroviral protease inhibitor frequently prescribed in HIV-positive pregnancies, is a substrate of Abcb1 and Abcc2. As differences in placental expression of these transporters were seen in Pregnane X Receptor (PXR) −/− mice, we examined the impact of placental transporter expression and fetal PXR genotype on the fetal accumulation of LPV. PXR +/− dams bearing PXR +/+, PXR +/−, and PXR −/− fetuses were generated by mating PXR +/− female mice with PXR +/− males. On gestational day 17, dams were administered 10 mg/kg LPV (i.v.) and sacrificed 30 min post injection. Concentrations of LPV in maternal plasma and fetal tissue were measured by LC-MS/MS, and transporter expression was determined by quantitative RT-PCR. As compared to the PXR +/+ fetal units, placental expression of Abcb1a, Abcc2, and Abcg2 mRNA were two- to three-fold higher in PXR −/− fetuses (p < 0.05). Two-fold higher fetal:maternal LPV concentration ratios were also seen in the PXR +/+ as compared to the PXR −/− fetuses (p < 0.05), and this significantly correlated to the placental expression of Abcb1a (r = 0.495; p < 0.005). Individual differences in the expression of placental transporters due to genetic or environmental factors can impact fetal exposure to their substrates.
Collapse
Affiliation(s)
- Sarabjit S Gahir
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.
- Reata Pharmaceuticals, Irving, TX 75063, USA.
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
11
|
Al-Enazy S, Ali S, Albekairi N, El-Tawil M, Rytting E. Placental control of drug delivery. Adv Drug Deliv Rev 2017; 116:63-72. [PMID: 27527665 DOI: 10.1016/j.addr.2016.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023]
Abstract
The placenta serves as the interface between the maternal and fetal circulations and regulates the transfer of oxygen, nutrients, and waste products. When exogenous substances are present in the maternal bloodstream-whether from environmental contact, occupational exposure, medication, or drug abuse-the extent to which this exposure affects the fetus is determined by transport and biotransformation processes in the placental barrier. Advances in drug delivery strategies are expected to improve the treatment of maternal and fetal diseases encountered during pregnancy.
Collapse
|
12
|
Daud ANA, Bergman JEH, Oktora MP, Kerstjens-Frederikse WS, Groen H, Bos JH, Hak E, Wilffert B. Maternal use of drug substrates of placental transporters and the effect of transporter-mediated drug interactions on the risk of congenital anomalies. PLoS One 2017; 12:e0173530. [PMID: 28288183 PMCID: PMC5348032 DOI: 10.1371/journal.pone.0173530] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/21/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND A number of transporter proteins are expressed in the placenta, and they facilitate the placental transfer of drugs. The inhibition of P-glycoprotein (P-gp) was previously found to be associated with an increase in the risk of congenital anomalies caused by drug substrates of this transporter. We now explore the role of other placental transporter proteins. METHODS A population-based case-referent study was performed using cases with congenital anomalies (N = 5,131) from EUROCAT Northern Netherlands, a registry of congenital anomalies. The referent population (N = 31,055) was selected from the pregnancy IADB.nl, a pharmacy prescription database. RESULTS Ten placental transporters known to have comparable expression levels in the placenta to that of P-gp, were selected in this study. In total, 147 drugs were identified to be substrates, inhibitors or inducers, of these transporters. Fifty-eight of these drugs were used by at least one mother in our cases or referent population, and 28 were used in both. The highest user rate was observed for the substrates of multidrug resistance-associated protein 1, mainly folic acid (6% of cases, 8% of referents), and breast cancer resistance protein, mainly nitrofurantoin (2.3% of cases, 2.9% of referents). In contrast to P-gp, drug interactions involving substrates of these transporters did not have a significant effect on the risk of congenital anomalies. CONCLUSIONS Some of the drugs which are substrates or inhibitors of placental transporters were commonly used during pregnancy. No significant effect of transporter inhibition was found on fetal drug exposure, possibly due to a limited number of exposures.
Collapse
Affiliation(s)
- Aizati N. A. Daud
- University of Groningen, Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, Groningen, the Netherlands
- Universiti Sains Malaysia, School of Pharmaceutical Sciences, Discipline of Clinical Pharmacy, Penang, Malaysia
| | - Jorieke E. H. Bergman
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Monika P. Oktora
- University of Groningen, Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, Groningen, the Netherlands
| | | | - Henk Groen
- University of Groningen, University Medical Centre Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Jens H. Bos
- University of Groningen, Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, Groningen, the Netherlands
| | - Eelko Hak
- University of Groningen, Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, Groningen, the Netherlands
| | - Bob Wilffert
- University of Groningen, Groningen Research Institute of Pharmacy, PharmacoTherapy, -Epidemiology & -Economics, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| |
Collapse
|
13
|
Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, Audus KL, Unadkat JD, Gerk PM. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharm Res 2016; 33:2847-2878. [PMID: 27644937 DOI: 10.1007/s11095-016-2028-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.
Collapse
Affiliation(s)
- Anand A Joshi
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Soniya S Vaidya
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts, USA
| | - Marie V St-Pierre
- Department of Clinical Pharmacology and Toxicology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrei M Mikheev
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
- Department of Neurosurgery, Institute of Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Kelly E Desino
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
- Abbvie Inc, North Chicago, Illinois, USA
| | - Abner N Nyandege
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Kenneth L Audus
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA.
| |
Collapse
|
14
|
Rubinchik-Stern M, Shmuel M, Bar J, Eyal S, Kovo M. Maternal-fetal transfer of indocyanine green across the perfused human placenta. Reprod Toxicol 2016; 62:100-5. [PMID: 27132189 DOI: 10.1016/j.reprotox.2016.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
Abstract
Indocyanine green (ICG) is an FDA-approved near-infrared imaging probe, given also to pregnant women. We aimed to characterize ICG's transplacental transfer using the ex-vivo perfusion model. Placentas were obtained from caesarean deliveries. Cotyledons were cannulated and dually perfused. ICG, 9.6μg/mL and antipyrine (50μg/mL) were added to the maternal circulation in the absence (n=4) or the presence of the organic anion transporting polypeptide (OATPs) inhibitor rifampin (10μg/mL; n=5) or the P-glycoprotein inhibitor valspodar (2μg/mL; n=3). ICG's maternal-to-fetal transfer was evaluated over 180min. The cumulative percent of ICG in the fetal reservoir was minor. When ICG transfer was normalized to that of antipyrine, it was lower in the presence of rifampin (a 41% decrease; p<0.05). Valspodar did not appear to modify the kinetics of ICG. ICG's transplacental transfer is minimal and is probably OATP-mediated. The placenta is an effective protective barrier to ICG's distribution into the fetus.
Collapse
Affiliation(s)
- Miriam Rubinchik-Stern
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | - Miriam Shmuel
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | - Jacob Bar
- Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | - Michal Kovo
- Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Daud ANA, Bergman JEH, Bakker MK, Wang H, Kerstjens-Frederikse WS, de Walle HEK, Groen H, Bos JHJ, Hak E, Wilffert B. P-Glycoprotein-Mediated Drug Interactions in Pregnancy and Changes in the Risk of Congenital Anomalies: A Case-Reference Study. Drug Saf 2016; 38:651-9. [PMID: 26017034 PMCID: PMC4486783 DOI: 10.1007/s40264-015-0299-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction Drug use in pregnancy is very common but may cause harm to the fetus. The teratogenic effect of a drug is partly dependent on the drug level in the fetal circulation, which is associated with the transport across the placenta. Many drugs are substrates of P-glycoprotein (P-gp), an efflux transporter that acts as a protective barrier for the fetus. We aim to identify whether drug interactions associated with P-gp promote any changes in fetal drug exposure, as measured by the risk of having children with congenital anomalies. Methods In this study, cases (N = 4634) were mothers of children with congenital anomalies registered in the EUROCAT Northern Netherlands registry, and the reference population were mothers of children (N = 25,126) from a drug prescription database (IADB.nl). Results Drugs that are associated with P-gp transport were commonly used in pregnancy in cases (10 %) and population (12 %). Several drug classes, which are substrates for P-gp, were shown to have a higher user rate in mothers of cases with specific anomalies. The use of this subset of drugs in combination with other P-gp substrates increased the risk for specific anomalies (odds ratio [OR] 4.17, 95 % CI 1.75–9.91), and the addition of inhibitors further increased the risk (OR 13.03, 95 % CI 3.37–50.42). The same pattern of risk increment was observed when the drugs were analyzed separately according to substrate specificity. Conclusions The use of drugs associated with P-gp transport was common during pregnancy. For several drug classes associated with specific anomalies, P-gp-mediated drug interactions are associated with an increased risk for those specific anomalies. Electronic supplementary material The online version of this article (doi:10.1007/s40264-015-0299-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aizati N A Daud
- Unit of Pharmacotherapy and Pharmaceutical Care, Department of Pharmacy, University of Groningen, Groningen, The Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Staud F, Ceckova M. Regulation of drug transporter expression and function in the placenta. Expert Opin Drug Metab Toxicol 2015; 11:533-55. [DOI: 10.1517/17425255.2015.1005073] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Vasanthan T, Rochow N, Mian F, Codini T, DeFrance B, Fusch G, Samiee-Zafarghandy S, Fusch C. LPS from bovine serum albumin drives TNF-α release during ex-vivo placenta perfusion experiments, contaminates the perfusion system but can be effectively removed by oxidative cleaning. Placenta 2014; 35:1095-8. [PMID: 25454474 DOI: 10.1016/j.placenta.2014.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The dual ex-vivo perfusion of human placental tissue is useful to study inflammatory pathways. We found significant TNF-α release in negative controls similar in concentration to lipopolysaccharide (LPS) stimulated placentas. The aim of the current study was to (i) identify sources driving TNF-α release and (ii) develop an approach to control for it. METHOD (i) To determine sources leading to TNF-α release, solutions frequently circulated through the perfusion system and perfusion media with different bovine serum albumin (BSA) quality were exposed to mouse macrophage cell lines (RAW264.7) and subsequently measured for TNF-α expression. (ii) To assess memory effects and validate cleaning procedures, sham perfusion experiments were conducted either in the presence or absence of exogenous LPS, in new tubing that was contaminated, cleaned and analyzed for the effectiveness of LPS removal. Oxidative and acid-base cleaning were tested for their effectiveness to reduce LPS contamination. RESULTS TNF-α release, observed in negative control experiments, was attributed to the use of LPS-contaminated BSA as well as inadequate cleaning of the perfusion system. Once introduced in the perfusion system, LPS accumulated and created a memory effect. Oxidative but not acid-base depyrogenation effectively reduced LPS levels to concentrations that were in accordance with FDA guidelines (<0.5 EU/mL) for medical equipment redeemed appropriate for re-use. DISCUSSION LPS contamination of the placenta perfusion model could have confounding effects on experimental outcomes leading to misinterpretation of data. To circumvent LPS contamination LPS-free BSA and oxidative depyrogenation cleaning techniques should be implemented in future placental perfusion studies.
Collapse
Affiliation(s)
- T Vasanthan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - N Rochow
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - F Mian
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - T Codini
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - B DeFrance
- Department of Obstetrics & Gynecology, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - G Fusch
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - S Samiee-Zafarghandy
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - C Fusch
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada.
| |
Collapse
|
18
|
Pavek P, Smutny T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab Rev 2013; 46:19-32. [PMID: 24020384 DOI: 10.3109/03602532.2013.835819] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the past 20 years, the toxicological and protective roles of the placental barrier with respect to drug detoxification and transporter-controlled protection of the fetus have been intensively examined. Several cytochrome P450 enzymes are expressed in placental trophoblast at different stages of pregnancy, though only a few of these have functional activity to metabolize xenobiotics. Drug transporters such as P-glycoprotein/MDR1 or breast cancer resistance protein (BCRP) are highly expressed in the placenta, and their functional activities have been demonstrated in the placenta both in vitro and in vivo. In addition, several studies have reported on ligand-activated transcription factors and nuclear receptors referred to as "xenosensors" in the placenta. The xenosensors control transcriptional regulation of both xenobiotic-metabolizing enzymes and drug transporters in different organs. Their ligands include toxic compounds and environmental pollutants, drugs, as well as herbal, dietary or vitamin supplements. Nevertheless, it remains debatable whether the placental barrier adapts to toxic injuries coming either from maternal medication or environmental contamination and whether the placenta contains a mechanism to respond dynamically in protecting the developing fetus. In the present paper, we summarize current knowledge about the activity and expression of major ligand-activated transcriptional mechanisms involved in biotransformation enzymes and transporters regulation in human placenta. In particular, we highlight the emerging roles of aryl hydrocarbon (AHR), vitamin D (VDR), glucocorticoid (GR) and pregnane X (PXR) receptors in that regulation. We show that the placenta constitute a unique metabolizing organ with significant overlap of exogenous and endogenous compounds metabolism controlled by nuclear receptors.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Centre for Drug Development, Charles University in Prague , Hradec Kralove , Czech Republic
| | | |
Collapse
|
19
|
Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target 2012; 20:736-63. [PMID: 22994411 DOI: 10.3109/1061186x.2012.716847] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pharmacotherapy during pregnancy is often inevitable for medical treatment of the mother, the fetus or both. The knowledge of drug transport across placenta is, therefore, an important topic to bear in mind when deciding treatment in pregnant women. Several drug transporters of the ABC and SLC families have been discovered in the placenta, such as P-glycoprotein, breast cancer resistance protein, or organic anion/cation transporters. It is thus evident that the passage of drugs across the placenta can no longer be predicted simply on the basis of their physical-chemical properties. Functional expression of placental drug transporters in the trophoblast and the possibility of drug-drug interactions must be considered to optimize pharmacotherapy during pregnancy. In this review we summarize current knowledge on the expression and function of ABC and SLC transporters in the trophoblast. Furthermore, we put this data into context with medical conditions that require maternal and/or fetal treatment during pregnancy, such as gestational diabetes, HIV infection, fetal arrhythmias and epilepsy. Proper understanding of the role of placental transporters should be of great interest not only to clinicians but also to pharmaceutical industry for future drug design and development to control the degree of fetal exposure.
Collapse
Affiliation(s)
- Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic.
| | | | | |
Collapse
|
20
|
Rubinchik-Stern M, Eyal S. Drug Interactions at the Human Placenta: What is the Evidence? Front Pharmacol 2012; 3:126. [PMID: 22787449 PMCID: PMC3391695 DOI: 10.3389/fphar.2012.00126] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023] Open
Abstract
Pregnant women (and their fetuses) are treated with a significant number of prescription and non-prescription medications. Interactions among those drugs may affect their efficacy and toxicity in both mother and fetus. Whereas interactions that result in altered drug concentrations in maternal plasma are detectable, those involving modulation of placental transfer mechanisms are rarely reflected by altered drug concentrations in maternal plasma. Therefore, they are often overlooked. Placental-mediated interactions are possible because the placenta is not only a passive diffusional barrier, but also expresses a variety of influx and efflux transporters and drug-metabolizing enzymes. Current data on placental-mediated drug interactions are limited. In rodents, pharmacological or genetic manipulations of placental transporters significantly affect fetal drug exposure. In contrast, studies in human placentae suggest that the magnitude of such interactions is modest in most cases. Nevertheless, under certain circumstances, such interactions may be of clinical significance. This review describes currently known mechanisms of placental-mediated drug interactions and the potential implications of such interactions in humans. Better understanding of those mechanisms is important for minimizing fetal toxicity from drugs while improving their efficacy when directed to treat the fetus.
Collapse
|
21
|
Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA. Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 2012; 7:11. [PMID: 22458943 PMCID: PMC3390283 DOI: 10.1186/1749-8104-7-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 11/27/2022] Open
Abstract
Background Pannexin 1 forms ion and metabolite permeable hexameric channels and is abundantly expressed in the brain. After discovering pannexin 1 expression in postnatal neural stem and progenitor cells we sought to elucidate its functional role in neuronal development. Results We detected pannexin 1 in neural stem and progenitor cells in vitro and in vivo. We manipulated pannexin 1 expression and activity in Neuro2a neuroblastoma cells and primary postnatal neurosphere cultures to demonstrate that pannexin 1 regulates neural stem and progenitor cell proliferation likely through the release of adenosine triphosphate (ATP). Conclusions Permeable to ATP, a potent autocrine/paracine signaling metabolite, pannexin 1 channels are ideally suited to influence the behavior of neural stem and progenitor cells. Here we demonstrate they play a robust role in the regulation of neural stem and progenitor cell proliferation. Endogenous postnatal neural stem and progenitor cells are crucial for normal brain health, and their numbers decline with age. Furthermore, these special cells are highly responsive to neurological injury and disease, and are gaining attention as putative targets for brain repair. Therefore, understanding the fundamental role of pannexin 1 channels in neural stem and progenitor cells is of critical importance for brain health and disease.
Collapse
Affiliation(s)
- Leigh E Wicki-Stordeur
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
22
|
Anger GJ, Cressman AM, Piquette-Miller M. Expression of ABC Efflux transporters in placenta from women with insulin-managed diabetes. PLoS One 2012; 7:e35027. [PMID: 22558111 PMCID: PMC3338746 DOI: 10.1371/journal.pone.0035027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/10/2012] [Indexed: 12/16/2022] Open
Abstract
Drug efflux transporters in the placenta can significantly influence the materno-fetal transfer of a diverse array of drugs and other xenobiotics. To determine if clinically important drug efflux transporter expression is altered in pregnancies complicated by gestational diabetes mellitus (GDM-I) or type 1 diabetes mellitus (T1DM-I), we compared the expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and the breast cancer resistance protein (BCRP) via western blotting and quantitative real-time polymerase chain reaction in samples obtained from insulin-managed diabetic pregnancies to healthy term-matched controls. At the level of mRNA, we found significantly increased expression of MDR1 in the GDM-I group compared to both the T1DM-I (p<0.01) and control groups (p<0.05). Significant changes in the placental protein expression of MDR1, MRP2, and BCRP were not detected (p>0.05). Interestingly, there was a significant, positive correlation observed between plasma hemoglobin A1c levels (a retrospective marker of glycemic control) and both BCRP protein expression (r = 0.45, p<0.05) and BCRP mRNA expression (r = 0.58, p<0.01) in the insulin-managed DM groups. Collectively, the data suggest that the expression of placental efflux transporters is not altered in pregnancies complicated by diabetes when hyperglycemia is managed; however, given the relationship between BCRP expression and plasma hemoglobin A1c levels it is plausible that their expression could change in poorly managed diabetes.
Collapse
Affiliation(s)
- Gregory J. Anger
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Alex M. Cressman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Saljé K, Lederer K, Oswald S, Dazert E, Warzok R, Siegmund W. Effects of rifampicin, dexamethasone, St. John's Wort and Thyroxine on maternal and foetal expression of Abcb1 and organ distribution of talinolol in pregnant rats. Basic Clin Pharmacol Toxicol 2012; 111:99-105. [PMID: 22339773 DOI: 10.1111/j.1742-7843.2012.00866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/16/2012] [Indexed: 11/27/2022]
Abstract
It is well accepted that ABCB1 plays a critical role in absorption, distribution and elimination of many xenobiotics and drugs. Only little is known about the regulation and function of ABCB1 during pregnancy. Thus, the aim of this study is to investigate maternal, placental and foetal Abcb1 expression and function in pregnant rats after induction with rifampicin, dexamethasone, St. John's wort (SJW) or thyroxine. Wistar rats were orally treated with rifampicin (250 mg/kg), SJW (1.0 g/kg), thyroxine (9 μg/kg), dexamethasone (1 mg/kg) or 0.5% methylcellulose suspension (control) for 9 days during late pregnancy (each N = 5). Afterwards, organ mRNA expression and protein content of Abcb1a were determined. Tissue concentrations of the ABCB1 probe drug talinolol were measured after repeated administration of the drug (100 mg/kg, 9 days) and after induction with oral rifampicin (250 mg/kg, 9 days, N = 5). Abcb1 expression was substantially lower in foetal than in maternal organs. Abcb1 was significantly induced by SJW in the maternal jejunum and placenta, by dexamethasone in foetal brain and liver and by thyroxine in the placenta and maternal and foetal brain. Rifampicin induced Abcb1 in all maternal and foetal organs. However, organ distribution of talinolol was not influenced by comedication of rifampicin. In conclusion, maternal and foetal Abcb1 organ expression in pregnant rats is inducible by nuclear receptor agonists. Although rifampicin regulates maternal and foetal Abcb1 expression, organ distribution of talinolol remains unchanged most likely caused by the known inhibitory effect of rifampicin on Abcb1 function.
Collapse
Affiliation(s)
- Karen Saljé
- Department of Clinical Pharmacology, Ernst Moritz Arndt University of Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Ballesta A, Dulong S, Abbara C, Cohen B, Okyar A, Clairambault J, Levi F. A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comput Biol 2011; 7:e1002143. [PMID: 21931543 PMCID: PMC3169519 DOI: 10.1371/journal.pcbi.1002143] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/16/2011] [Indexed: 11/26/2022] Open
Abstract
Circadian timing largely modifies efficacy and toxicity of many anticancer drugs. Recent findings suggest that optimal circadian delivery patterns depend on the patient genetic background. We present here a combined experimental and mathematical approach for the design of chronomodulated administration schedules tailored to the patient molecular profile. As a proof of concept we optimized exposure of Caco-2 colon cancer cells to irinotecan (CPT11), a cytotoxic drug approved for the treatment of colorectal cancer. CPT11 was bioactivated into SN38 and its efflux was mediated by ATP-Binding-Cassette (ABC) transporters in Caco-2 cells. After cell synchronization with a serum shock defining Circadian Time (CT) 0, circadian rhythms with a period of 26 h 50 (SD 63 min) were observed in the mRNA expression of clock genes REV-ERBα, PER2, BMAL1, the drug target topoisomerase 1 (TOP1), the activation enzyme carboxylesterase 2 (CES2), the deactivation enzyme UDP-glucuronosyltransferase 1, polypeptide A1 (UGT1A1), and efflux transporters ABCB1, ABCC1, ABCC2 and ABCG2. DNA-bound TOP1 protein amount in presence of CPT11, a marker of the drug PD, also displayed circadian variations. A mathematical model of CPT11 molecular pharmacokinetics-pharmacodynamics (PK-PD) was designed and fitted to experimental data. It predicted that CPT11 bioactivation was the main determinant of CPT11 PD circadian rhythm. We then adopted the therapeutics strategy of maximizing efficacy in non-synchronized cells, considered as cancer cells, under a constraint of maximum toxicity in synchronized cells, representing healthy ones. We considered exposure schemes in the form of an initial concentration of CPT11 given at a particular CT, over a duration ranging from 1 to 27 h. For any dose of CPT11, optimal exposure durations varied from 3h40 to 7h10. Optimal schemes started between CT2h10 and CT2h30, a time interval corresponding to 1h30 to 1h50 before the nadir of CPT11 bioactivation rhythm in healthy cells. Treatment timing within the 24-h timescale, that is, circadian (circa, about; dies, day) timing, can change by several fold the tolerability and antitumor efficacy of anticancer agents both in experimental models and in cancer patients. Chronotherapeutics aims at improving the tolerability and/or the efficacy of medications through the administration of treatments according to biological rhythms. Recent findings highlight the need of individualizing circadian delivery schedules according to the patient genetic background. In order to address this issue, we propose a combined experimental and mathematical approach in which molecular mathematical models are fitted to experimental measurements of critical biological variables in the studied experimental model or patient. Optimization procedures are then applied to the calibrated mathematical model for the design of theoretically optimal circadian delivery patterns. As a first proof of concept we focused on the anticancer drug irinotecan. A mathematical model of the drug molecular PK-PD was built and fitted to experimental data in Caco-2 colon cancer cells. Numerical algorithms were then applied to theoretically optimize the chronomodulated exposure of Caco-2 cells to irinotecan.
Collapse
|
25
|
Ni Z, Mao Q. ATP-binding cassette efflux transporters in human placenta. Curr Pharm Biotechnol 2011; 12:674-85. [PMID: 21118087 DOI: 10.2174/138920111795164057] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 04/08/2010] [Indexed: 01/11/2023]
Abstract
Pregnant women are often complicated with diseases including viral or bacterial infections, epilepsy, hypertension, or pregnancy-induced conditions such as depression and gestational diabetes that require treatment with medication. In addition, substance abuse during pregnancy remains a major public health problem. Many drugs used by pregnant women are off label without the necessary dose, efficacy, and safety data required for rational dosing regimens of these drugs. Thus, a major concern arising from the widespread use of drugs by pregnant women is the transfer of drugs across the placental barrier, leading to potential toxicity to the developing fetus. Knowledge regarding the ATP-binding cassette (ABC) efflux transporters, which play an important role in drug transfer across the placental barrier, is absolutely critical for optimizing the therapeutic strategy to treat the mother while protecting the fetus during pregnancy. Such transporters include P-glycoprotein (P-gp, gene symbol ABCB1), the breast cancer resistance protein (BCRP, gene symbol ABCG2), and the multidrug resistance proteins (MRPs, gene symbol ABCCs). In this review, we summarize the current knowledge with respect to developmental expression and regulation, membrane localization, functional significance, and genetic polymorphisms of these ABC transporters in the placenta and their relevance to fetal drug exposure and toxicity.
Collapse
Affiliation(s)
- Zhanglin Ni
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
26
|
May K, Rosenlöf L, Olsson MG, Centlow M, Mörgelin M, Larsson I, Cederlund M, Rutardottir S, Siegmund W, Schneider H, Akerström B, Hansson SR. Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by α1-microglobulin. Placenta 2011; 32:323-32. [PMID: 21356557 DOI: 10.1016/j.placenta.2011.01.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preeclamptic women have increased plasma levels of free fetal hemoglobin (HbF), increased gene expression of placental HbF and accumulation of free HbF in the placental vascular lumen. Free hemoglobin (Hb) is pro-inflammatory, and causes oxidative stress and tissue damage. METHODOLOGY To show the impact of free Hb in PE, we used the dual ex vivo placental perfusion model. Placentas were perfused with Hb and investigated for physical parameters, Hb leakage, gene expression and morphology. The protective effects of α(1)-microglobulin (A1M), a heme- and radical-scavenger and antioxidant, was investigated. RESULTS Hb-addition into the fetal circulation led to a significant increase of the perfusion pressure and the feto-maternal leakage of free Hb. Morphological damages similar to the PE placentas were observed. Gene array showed up-regulation of genes related to immune response, apoptosis, and oxidative stress. Simultaneous addition of A1M to the maternal circulation inhibited the Hb leakage, morphological damage and gene up-regulation. Furthermore, perfusion with Hb and A1M induced a significant up-regulation of extracellular matrix genes. SIGNIFICANCE The ex vivo Hb-perfusion of human placenta resulted in physiological and morphological changes and a gene expression profile similar to what is observed in PE placentas. These results underline the potentially important role of free Hb in PE etiology. The damaging effects were counteracted by A1M, suggesting a role of this protein as a new potential PE therapeutic agent.
Collapse
Affiliation(s)
- K May
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University Hospital, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vaidya SS, Walsh SW, Gerk PM. Formation and efflux of ATP-binding cassette transporter substrate 2,4-dinitrophenyl-S-glutathione from cultured human term placental villous tissue fragments. Mol Pharm 2010; 6:1689-702. [PMID: 19397308 DOI: 10.1021/mp900019z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Upon exposure to 1-chloro-2,4-dinitrobenzene (CDNB), the human placental tissue forms its glutathione conjugate 2,4-dinitrophenyl-S-glutathione (DNP-SG). The purpose of this study was to investigate the involvement of human placental ATP-binding cassette (ABC) transporters in the efflux of DNP-SG. Placental tissue samples were obtained from pregnant patients undergoing C-section deliveries following normal pregnancies; villous tissue was cultured in suspension, and DNP-SG formation and efflux upon exposure to 100 microM CDNB were measured by HPLC. DNP-SG efflux decreased by 69.1 (+/-11.3)%, 51.1 (+/-5.4)%, 56.7 (+/-8.3)% and 53.6 (+/-10.8)% (p < 0.05) in the presence of 5 mM sodium orthovanadate (ATPase inhibitor), 100 microM MK571 (MRP-inhibitor), 1 mM dipyridamole (BCRP/P-gp/MRP1-inhibitor) and 100 microM verapamil (P-gp/MRP1 inhibitor) respectively, without any change in DNP-SG formation, total tissue glutathione, GSH/GSSG ratio, tissue integrity or tissue viability. These data clearly established the role of ABC transporters in the human placental efflux of DNP-SG. To investigate the contribution of various ABC transporters toward DNP-SG transport, ATP-dependent transport of 3H-DNP-SG was determined in Sf9 membrane vesicles overexpressing P-gp, BCRP and the MRP proteins. MRP1-mediated DNP-SG transport was inhibited in the presence of sodium orthovanadate, MK571, dipyridamole and verapamil in the presence of glutathione. Furthermore, MRP1-mediated transport [K(t) = 11.3 +/- 1.3 microM and v(max) = 86.7 +/- 1.9 pmol/mg/min] was a high-affinity process compared to MRP2-mediated transport [K(t) = 168 +/- 7 microM and v(max) = 1367 +/- 18 pmol/mg/min]. The inhibition pattern and the kinetics of DNP-SG efflux in the placental villous tissue were consistent with MRP1-mediated DNP-SG efflux, suggesting a functional role and an apical localization for an MRP1-like transporter in the human placental syncytiotrophoblast.
Collapse
Affiliation(s)
- Soniya S Vaidya
- Departments of Pharmaceutics and Obstetrics & Gynecology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, Virginia 23298-0533, USA
| | | | | |
Collapse
|
28
|
Köck K, Koenen A, Giese B, Fraunholz M, May K, Siegmund W, Hammer E, Völker U, Jedlitschky G, Kroemer HK, Grube M. Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C-mediated internalization. J Biol Chem 2010; 285:11336-47. [PMID: 20159975 DOI: 10.1074/jbc.m109.056457] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Members of the organic anion transporting polypeptide (OATP) family are involved in various pharmacological, pathophysiological, and physiological processes, such as hepatic drug uptake, progress of cancer, or transport of hormones. Although variability in expression and function of OATPs has been investigated in detail, data concerning regulation are rather limited. Here, we report a novel mechanism for rapid regulation of OATP2B1 mediated by protein kinase C (PKC) resulting in significant changes of transport activity. PKC activation by the phorbol ester (phorbol 12-myristate 13-acetate, PMA) resulted in increased phosphorylation of OATP2B1 as well as reduced OATP2B1 transport activity with a decrease in V(max) of E(1)S uptake (288 +/- 21 (control) versus 165 +/- 16 pmol/min/mg of protein (PMA)). This effect was sensitive to the PKC inhibitor bisindolylmaleimide I (BIM-I). Confocal microscopy, fluorescence-based internalization assay, and live-cell imaging using green fluorescent protein-tagged OATP2B1 revealed that transport inhibition was due to internalization of the transporter. Furthermore, colocalization with LAMP-2 and chloroquine-sensitive degradation of OATP2B1 suggest that the internalized protein is targeted to a lysosomal degradation pathway. With regard to the underlying mechanism inhibition of caveolin/lipid raft-mediated endocytosis failed to prevent OATP2B1 internalization, whereas inhibition of clathrin-mediated processes blocked OATP2B1 sequestration. However, small interfering RNA-mediated clathrin knock-down affected general trafficking of OATP2B1 and resulted in intracellular accumulation in the absence of PMA. In conclusion, our data demonstrate that OATP2B1 function is regulated by PKC-mediated, clathrin-dependent internalization and followed by lysosomal degradation. Furthermore, internalization could be shown in an ex vivo placenta perfusion. Our findings represent a new, rapid mechanism in regulation of human OATPs.
Collapse
Affiliation(s)
- Kathleen Köck
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, 17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Antibody-dependent transplacental transfer of malaria blood-stage antigen using a human ex vivo placental perfusion model. PLoS One 2009; 4:e7986. [PMID: 19956710 PMCID: PMC2777305 DOI: 10.1371/journal.pone.0007986] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/17/2009] [Indexed: 02/05/2023] Open
Abstract
Prenatal exposure to allergens or antigens released by infections during pregnancy can stimulate an immune response or induce immunoregulatory networks in the fetus affecting susceptibility to infection and disease later in life. How antigen crosses from the maternal to fetal environment is poorly understood. One hypothesis is that transplacental antigen transfer occurs as immune complexes, via receptor-mediated transport across the syncytiotrophoblastic membrane and endothelium of vessels in fetal villi. This hypothesis has never been directly tested. Here we studied Plasmodium falciparum merozoite surface protein 1 (MSP1) that is released upon erythrocyte invasion. We found MSP1 in cord blood from a third of newborns of malaria-infected women and in >90% following treatment with acid dissociation demonstrating MSP1 immune complexes. Using an ex vivo human placental model that dually perfuses a placental cotyledon with independent maternal and fetal circuits, immune-complexed MSP1 transferred from maternal to fetal circulation. MSP1 alone or with non-immune plasma did not transfer; pre-incubation with human plasma containing anti-MSP1 was required. MSP1 bound to IgG was detected in the fetal perfusate. Laser scanning confocal microscopy demonstrated MSP1 in the fetal villous stroma, predominantly in fetal endothelial cells. MSP1 co-localized with IgG in endothelial cells, but not with placental macrophages. Thus we show, for the first time, antibody-dependent transplacental transfer of an antigen in the form of immune complexes. These studies imply frequent exposure of the fetus to certain antigens with implications for management of maternal infections during pregnancy and novel approaches to deliver vaccines or drugs to the fetus.
Collapse
|
30
|
Feinshtein V, Holcberg G, Amash A, Erez N, Rubin M, Sheiner E, Polachek H, Ben-Zvi Z. Nitrofurantoin transport by placental choriocarcinoma JAr cells: involvement of BCRP, OATP2B1 and other MDR transporters. Arch Gynecol Obstet 2009; 281:1037-44. [PMID: 19924425 DOI: 10.1007/s00404-009-1286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 11/02/2009] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To determine the role of BCRP in nitrofurantoin (NF) transport in JAr cells and the possible contribution of OATP2B1, P-gp and MRPs to this transport. METHODS Cells were incubated with various BCRP, P-gp, MRPs, organic anion transporting polypeptide (OAT) and OATP2B1 inhibitors for 15 min, followed by incubation for 30 min with NF, with or without the inhibitors mentioned earlier. NF cytotoxicity was examined using neutral red (NR) assay. Intracellular NF levels were analyzed by HPLC. RESULTS NR assay showed that incubation conditions with NF (as carried out in our experiments) were not cytotoxic. Incubation with specific inhibitors of BCRP (FTC, Chrysin and Novobiocin), showed a significant increase in NF accumulation in the cells. Inhibitors of OATP2B1 (EGCG and BSP) had no influence on NF accumulation. Specific inhibitors of P-gp and MRPs (Verapamil and Indomethacin, respectively) also had no influence on NF accumulation in JAr cells. CONCLUSIONS NF is probably a specific substrate of BCRP, and BCRP has a major active role in NF transport in JAr cells. For the first time, we showed, that P-gp, MRPs, and the OATP2B1, probably have a negligible contribution to NF transport in JAr cells.
Collapse
Affiliation(s)
- Valeria Feinshtein
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Myllynen P, Immonen E, Kummu M, Vähäkangas K. Developmental expression of drug metabolizing enzymes and transporter proteins in human placenta and fetal tissues. Expert Opin Drug Metab Toxicol 2009; 5:1483-99. [DOI: 10.1517/17425250903304049] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Vähäkangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol 2009; 158:665-78. [PMID: 19788499 DOI: 10.1111/j.1476-5381.2009.00336.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies on the increasing number of transporters found in the placental barrier are gaining momentum, because of their tissue-specific expression, significance in physiology and disease, and the possible utilization of the emerging knowledge in pharmacology. In the placenta, both syncytiotrophoblast and fetal capillary endothelium express transporters. Fetal exposure is determined by the net effect of combination of transporters, their nature and localization in relation to placental cells and their substrate specificity. Although the significance of placental transporters on human fetal drug exposure is almost an unstudied field so far, their potential use to design drugs that do not cross the placenta is already being pursued. It is thus of interest to review the existing knowledge of human placental transporters. Transporters in all groups which take part in drug transport are found in human placenta. Especially, ATP-binding cassette transporters ABCG2/breast cancer resistance protein, ABCB1/P-glycoprotein and ABCC2/MRP2 are all expressed at the apical surface of syncytiotrophoblast facing maternal blood and are putatively important protective proteins both for placental tissue and the fetus, because they are efflux transporters and their substrates include many drugs and also environmental chemicals. Such protective effect has been shown in animals, but these results cannot be directly extrapolated to humans due to interspecies differences in placental structure and function. Experimental models utilizing human placental tissue, especially human placental perfusion, offer valuable possibilities, which have been insufficiently studied so far.
Collapse
Affiliation(s)
- Kirsi Vähäkangas
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
33
|
Abstract
Large interindividual variation in efficacy and adverse effects of anti-epileptic therapy presents opportunities and challenges in pharmacogenomics. Although the first true association of genetic polymorphism in drug-metabolizing enzymes with anti-epileptic drug dose was reported 10 years ago, most of the findings have had little impact on clinical practice so far. Most studies performed to date examined candidate genes and were focused on candidate gene selection. Genome-wide association and whole-genome sequencing technologies empower hypothesis-free comprehensive screening of genetic variation across the genome and now the main challenge remaining is to select and study clinically relevant phenotypes suitable for genetic studies. Here we review the current state of epilepsy pharmacogenetics focusing on phenotyping questions and discuss what characteristics we need to study to get answers.
Collapse
Affiliation(s)
- Dalia Kasperavičiūtė
- Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sanjay M Sisodiya
- Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|