1
|
Schulz JA, Stresser DM, Kalvass JC. Plasma Protein-Mediated Uptake and Contradictions to the Free Drug Hypothesis: A Critical Review. Drug Metab Rev 2023:1-34. [PMID: 36971325 DOI: 10.1080/03602532.2023.2195133] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
According to the free drug hypothesis (FDH), only free, unbound drug is available to interact with biological targets. This hypothesis is the fundamental principle that continues to explain the vast majority of all pharmacokinetic and pharmacodynamic processes. Under the FDH, the free drug concentration at the target site is considered the driver of pharmacodynamic activity and pharmacokinetic processes. However, deviations from the FDH are observed in hepatic uptake and clearance predictions, where observed unbound intrinsic hepatic clearance (CLint,u) is larger than expected. Such deviations are commonly observed when plasma proteins are present and form the basis of the so-called plasma protein-mediated uptake effect (PMUE). This review will discuss the basis of plasma protein binding as it pertains to hepatic clearance based on the FDH, as well as several hypotheses that may explain the underlying mechanisms of PMUE. Notably, some, but not all, potential mechanisms remained aligned with the FDH. Finally, we will outline possible experimental strategies to elucidate PMUE mechanisms. Understanding the mechanisms of PMUE and its potential contribution to clearance underprediction is vital to improving the drug development process.
Collapse
|
2
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
3
|
Patel M, Johnson M, Sychterz CJ, Lewis GJ, Watson C, Ellens H, Polli JW, Zamek-Gliszczynski MJ. Hepatobiliary Disposition of Atovaquone: A Case of Mechanistically Unusual Biliary Clearance. J Pharmacol Exp Ther 2018; 366:37-45. [PMID: 29653960 DOI: 10.1124/jpet.117.247254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Atovaquone, an antiprotozoal and antipneumocystic agent, is predominantly cleared by biliary excretion of unchanged parent drug. Atovaquone is ≥10,000-fold concentrated in human bile relative to unbound plasma. Even after correcting for apparent nonspecific binding and incomplete solubility in bile, atovaquone is still concentrated ≥100-fold in bile, consistent with active biliary excretion. Mechanisms of atovaquone hepatobiliary disposition were studied using a multiexperimental in vitro and in vivo approach. Atovaquone uptake was not elevated in HEK293 cells singly overexpressing OATP1B1, OATP1B3, OATP2B1, OCT1, NTCP, or OAT2. Hepatocyte uptake of atovaquone was not impaired by OATP and OCT inhibitor cocktail (rifamycin and imipramine). Atovaquone liver-to-blood ratio at distributional equilibrium was not reduced in Oatp1a/1b and Oct1/2 knockout mice. Atovaquone exhibited efflux ratios of approximately unity in P-gp and BCRP overexpressing MDCK cell monolayers and did not display enhanced uptake in MRP2 vesicles. Biliary and canalicular clearance were not decreased in P-gp, Bcrp, Mrp2, and Bsep knockout rats. In the present study, we rule out the involvement of major known basolateral uptake and bile canalicular efflux transporters in the hepatic uptake and biliary excretion of atovaquone. This is the first known example of a drug cleared by biliary excretion in humans, with extensive biliary concentration, which is not transported by the mechanisms investigated herein.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition (M.P., M.J., C.W., H.E., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (C.J.S.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, United Kingdom (G.J.L.)
| | - Marta Johnson
- Mechanistic Safety and Disposition (M.P., M.J., C.W., H.E., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (C.J.S.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, United Kingdom (G.J.L.)
| | - Caroline J Sychterz
- Mechanistic Safety and Disposition (M.P., M.J., C.W., H.E., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (C.J.S.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, United Kingdom (G.J.L.)
| | - Gareth J Lewis
- Mechanistic Safety and Disposition (M.P., M.J., C.W., H.E., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (C.J.S.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, United Kingdom (G.J.L.)
| | - Cory Watson
- Mechanistic Safety and Disposition (M.P., M.J., C.W., H.E., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (C.J.S.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, United Kingdom (G.J.L.)
| | - Harma Ellens
- Mechanistic Safety and Disposition (M.P., M.J., C.W., H.E., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (C.J.S.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, United Kingdom (G.J.L.)
| | - Joseph W Polli
- Mechanistic Safety and Disposition (M.P., M.J., C.W., H.E., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (C.J.S.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, United Kingdom (G.J.L.)
| | - Maciej J Zamek-Gliszczynski
- Mechanistic Safety and Disposition (M.P., M.J., C.W., H.E., J.W.P., M.J.Z.-G.) and Bioanalysis, Immunogenicity, and Biomarkers (C.J.S.), GlaxoSmithKline, King of Prussia, Pennsylvania; and Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, United Kingdom (G.J.L.)
| |
Collapse
|
4
|
Guo C, LaCerte C, Edwards JE, Brouwer KR, Brouwer KLR. Farnesoid X Receptor Agonists Obeticholic Acid and Chenodeoxycholic Acid Increase Bile Acid Efflux in Sandwich-Cultured Human Hepatocytes: Functional Evidence and Mechanisms. J Pharmacol Exp Ther 2018; 365:413-421. [PMID: 29487110 DOI: 10.1124/jpet.117.246033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/20/2018] [Indexed: 01/04/2023] Open
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in bile acid homeostasis. FXR agonists, obeticholic acid (OCA) and chenodeoxycholic acid (CDCA), increase mRNA expression of efflux transporters in sandwich-cultured human hepatocytes (SCHH). This study evaluated the effects of OCA and CDCA treatment on the uptake, basolateral efflux, and biliary excretion of a model bile acid, taurocholate (TCA), in SCHH. In addition, changes in the protein expression of TCA uptake and efflux transporters were investigated. SCHH were treated with 1 µM OCA, 100 µM CDCA, or vehicle control for 72 hours followed by quantification of deuterated TCA uptake and efflux over time in Ca2+-containing and Ca2+-free conditions (n = 3 donors). A mechanistic pharmacokinetic model was fit to the TCA mass-time data to obtain estimates for total uptake clearance (CLUptake), total intrinsic basolateral efflux clearance (CLint,BL), and total intrinsic biliary clearance (CLint,Bile). Modeling results revealed that FXR agonists significantly increased CLint,BL by >6-fold and significantly increased CLint,Bile by 2-fold, with minimal effect on CLUptake Immunoblotting showed that protein levels of the basolateral transporter subunits organic solute transporter α and β (OSTα and OSTβ) in FXR agonist-treated SCHH were significantly induced by >2.5- and 10-fold, respectively. FXR agonist-mediated changes in the expression of other TCA transporters in SCHH were modest. In conclusion, this is the first report demonstrating that OCA and CDCA increased TCA efflux in SCHH, which contributed to reduced intracellular TCA concentrations. Increased basolateral efflux of TCA was consistent with increased OSTα/β protein expression in OCA- and CDCA-treated SCHH.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| | - Carl LaCerte
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| | - Jeffrey E Edwards
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| | - Kenneth R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| |
Collapse
|
5
|
Guo C, Yang K, Liao M, Xia CQ, Brouwer KR, Brouwer KLR. Prediction of Hepatic Efflux Transporter-Mediated Drug Interactions: When Is it Optimal to Measure Intracellular Unbound Fraction of Inhibitors? J Pharm Sci 2017; 106:2401-2406. [PMID: 28465154 PMCID: PMC5617730 DOI: 10.1016/j.xphs.2017.04.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 01/03/2023]
Abstract
The intracellular unbound inhibitor concentration ([I]unbound,cell) is the most relevant concentration for predicting the inhibition of hepatic efflux transporters. However, the intracellular unbound fraction of inhibitor in hepatocytes (fu,cell,inhibitor) is not routinely determined. Studies are needed to evaluate the benefit of measuring fu,cell,inhibitor and using [I]unbound,cell versus intracellular total inhibitor concentration ([I]total,cell) when predicting inhibitory effects. This study examined the benefit of using [I]unbound,cell to predict hepatocellular bile acid disposition. Cellular total concentrations of taurocholate ([TCA]total,cell), a prototypical bile acid, were simulated using pharmacokinetic parameters estimated from sandwich-cultured human hepatocytes. The effect of various theoretical inhibitors was simulated by varying ([I]total,cell/ half maximal inhibitory concentration [IC50]) values. In addition, the fold change was calculated as the simulated [TCA]total,cell when fu,cell,inhibitor = 1 divided by the simulated [TCA]total,cell when fu,cell,inhibitor = 0.5-0.01. The lowest ([I]total,cell/IC50) value leading to a >2-fold change in [TCA]total,cell was chosen as a cutoff, and a framework was developed to categorize risk inhibitors for which the measurement of fu,cell,inhibitor is optimal. Fifteen compounds were categorized, 5 of which were compared with experimental observations. Future work is needed to evaluate this framework based on additional experimental data. In conclusion, the benefit of measuring fu,cell,inhibitor to predict hepatic efflux transporter-mediated drug-bile acid interactions can be determined a priori.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kyunghee Yang
- DILIsym Services Inc., Research Triangle Park, North Carolina 27709
| | - Mingxiang Liao
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts 02139
| | - Cindy Q Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts 02139
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
6
|
Guo C, Yang K, Brouwer KR, St Claire RL, Brouwer KLR. Prediction of Altered Bile Acid Disposition Due to Inhibition of Multiple Transporters: An Integrated Approach Using Sandwich-Cultured Hepatocytes, Mechanistic Modeling, and Simulation. J Pharmacol Exp Ther 2016; 358:324-33. [PMID: 27233294 DOI: 10.1124/jpet.116.231928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
Transporter-mediated alterations in bile acid disposition may have significant toxicological implications. Current methods to predict interactions are limited by the interplay of multiple transporters, absence of protein in the experimental system, and inaccurate estimates of inhibitor concentrations. An integrated approach was developed to predict altered bile acid disposition due to inhibition of multiple transporters using the model bile acid taurocholate (TCA). TCA pharmacokinetic parameters were estimated by mechanistic modeling using sandwich-cultured human hepatocyte data with protein in the medium. Uptake, basolateral efflux, and biliary clearance estimates were 0.63, 0.034, and 0.074 mL/min/g liver, respectively. Cellular total TCA concentrations (Ct,Cells) were selected as the model output based on sensitivity analysis. Monte Carlo simulations of TCA Ct,Cells in the presence of model inhibitors (telmisartan and bosentan) were performed using inhibition constants for TCA transporters and inhibitor concentrations, including cellular total inhibitor concentrations ([I]t,cell) or unbound concentrations, and cytosolic total or unbound concentrations. For telmisartan, the model prediction was accurate with an average fold error (AFE) of 0.99-1.0 when unbound inhibitor concentration ([I]u) was used; accuracy dropped when total inhibitor concentration ([I]t) was used. For bosentan, AFE was 1.2-1.3 using either [I]u or [I]t This difference was evaluated by sensitivity analysis of the cellular unbound fraction of inhibitor (fu,cell,inhibitor), which revealed higher sensitivity of fu,cell,inhibitor for predicting TCA Ct,Cells when inhibitors exhibited larger ([I]t,cell/IC50) values. In conclusion, this study demonstrated the applicability of a framework to predict hepatocellular bile acid concentrations due to drug-mediated inhibition of transporters using mechanistic modeling and cytosolic or cellular unbound concentrations.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kenneth R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Robert L St Claire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.Y., K.L.R.B.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B., R.L.S.C.)
| |
Collapse
|
7
|
Chu L, Zhang K, Zhang Y, Jin X, Jiang H. Mechanism underlying an elevated serum bile acid level in chronic renal failure patients. Int Urol Nephrol 2015; 47:345-51. [PMID: 25539619 DOI: 10.1007/s11255-014-0901-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/06/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bile acids play an important role in the digestion of dietary lipids. Bile acid metabolism is regulated by the digestive system. The kidney is an important organ of the urinary system and is believed to play a minor role in bile acid excretion; however, many recent studies have reported an increased serum bile acid level and alterations in bile acid homeostasis in both clinical and animal model studies on chronic renal failure. The existing research findings on the mechanisms underlying this phenomenon were mostly derived from animal model studies, but clinical investigations have been limited. MATERIALS AND METHODS Kidney tissues and serum and urine samples from CRF patients and normal controls were studied. RESULTS We found increased serum bile acid levels and decreased urine bile acid output levels in chronic renal failure patients. Mesangial cell and endothelial cell proliferation, glomerular sclerosis, renal interstitial fibrosis, and intrarenal vascular sclerosis were observed based on hematoxylin-eosin and Masson trichrome staining pathology analysis. Scatter diagram and Pearson correlation analysis showed that in chronic renal failure patients, the estimated glomerular filtration rate and serum bile acid level were interrelated. Reverse transcription polymerase chain reaction and Western blotting results indicated that reabsorption and secretion of bile acid at the apical surface of the proximal renal tubular did not contribute to the elevated serum BA level. CONCLUSION The increase in plasma bile acid is due to decreased bile acid filtration through the kidneys in CRF patients.
Collapse
Affiliation(s)
- Lei Chu
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
8
|
Hepatocyte-based in vitro model for assessment of drug-induced cholestasis. Toxicol Appl Pharmacol 2014; 274:124-36. [DOI: 10.1016/j.taap.2013.10.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022]
|
9
|
Zou P, Liu X, Wong S, Feng MR, Liederer BM. Comparison of In Vitro-In Vivo Extrapolation of Biliary Clearance Using an Empirical Scaling Factor Versus Transport-Based Scaling Factors in Sandwich-Cultured Rat Hepatocytes. J Pharm Sci 2013; 102:2837-50. [DOI: 10.1002/jps.23620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/05/2023]
|
10
|
Swift B, Nebot N, Lee JK, Han T, Proctor WR, Thakker DR, Lang D, Radtke M, Gnoth MJ, Brouwer KLR. Sorafenib hepatobiliary disposition: mechanisms of hepatic uptake and disposition of generated metabolites. Drug Metab Dispos 2013; 41:1179-86. [PMID: 23482500 DOI: 10.1124/dmd.112.048181] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sorafenib is an orally active tyrosine kinase inhibitor used in the treatment of renal and hepatocellular carcinoma. This study was designed to establish whether transport proteins are involved in the hepatic uptake of sorafenib and to determine the extent of biliary excretion of sorafenib and its metabolites in human hepatocytes. Initial uptake was assessed in freshly isolated, suspended human hepatocytes in the presence of inhibitors and modulators. [(14)C]Sorafenib (1 µM) uptake at 4°C was reduced by about 61-63% of the uptake at 37°C, suggesting a high degree of passive diffusion. Hepatocyte uptake of [(14)C]sorafenib was not Na(+) dependent or influenced by the organic anion transporter 2 inhibitor ketoprofen. However, initial [(14)C]sorafenib hepatocyte uptake was reduced by 46 and 30% compared with control values in the presence of the organic anion transporting polypeptide inhibitor rifamycin SV and the organic cation transporter (OCT) inhibitor decynium 22, respectively. [(14)C]Sorafenib (0.5-5 µM) uptake was significantly higher in hOCT1-transfected Chinese hamster ovary cells compared with mock cells, and inhibited by the general OCT inhibitor, 1-methyl-4-phenylpryidinium. OCT1-mediated uptake was saturable with a Michaelis-Menten constant of 3.80 ± 2.53 µM and a V(max) of 116 ± 42 pmol/mg/min. The biliary excretion index and in vitro biliary clearance of sorafenib (1 µM) in sandwich-cultured human hepatocytes were low (∼11% and 11 ml/min/kg, respectively). Results suggest that sorafenib uptake in human hepatocytes occurs via passive diffusion, by OCT1, and by organic anion transporting polypeptide(s). Sorafenib undergoes modest biliary excretion, predominantly as a glucuronide conjugate(s).
Collapse
Affiliation(s)
- Brandon Swift
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
Swift B, Yue W, Brouwer KLR. Evaluation of (99m)technetium-mebrofenin and (99m)technetium-sestamibi as specific probes for hepatic transport protein function in rat and human hepatocytes. Pharm Res 2010; 27:1987-98. [PMID: 20652625 DOI: 10.1007/s11095-010-0203-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/21/2010] [Indexed: 01/09/2023]
Abstract
PURPOSE This study characterized 99mTc-Mebrofenin (MEB) and 99mTc-Sestamibi (MIBI) hepatic transport and preferential efflux routes (canalicular vs. basolateral) in rat and human sandwich-cultured hepatocytes (SCH). METHODS 99mTc-MEB and 99mTc-MIBI disposition was determined in suspended hepatocytes and in SCH in the presence and absence of inhibitors and genetic knockdown of breast cancer resistance protein (Bcrp). RESULTS The general organic anion transporting polypeptide (Oatp/OATP) inhibitor rifamycin SV reduced initial 99mTc-MEB uptake in rat and human suspended hepatocytes. Initial 99mTc-MIBI uptake in suspended rat hepatocytes was not Na+-dependent or influenced by inhibitors. Multidrug resistance-associated protein (Mrp2/MRP2) inhibitors decreased 99mTc-MEB canalicular efflux in rat and human SCH. 99mTc-MEB efflux in human SCH was predominantly canalicular (45.8 +/- 8.6%) and approximately 3-fold greater than in rat SCH. 99mTc-MIBI canalicular efflux was similar in human and rat SCH; basolateral efflux was 37% greater in human than rat SCH. 99mTc-MIBI cellular accumulation, biliary excretion index and in vitro biliary clearance in rat SCH were unaffected by Bcrp knockdown. CONCLUSION 99mTc-MEB hepatic uptake is predominantly Oatp-mediated with biliary excretion by Mrp2. 99mTc-MIBI appears to passively diffuse into hepatocytes; biliary excretion is mediated by P-gp. The SCH model is useful to investigate factors that may alter the route and/or extent of hepatic basolateral and canalicular efflux of substrates.
Collapse
Affiliation(s)
- Brandon Swift
- Division of Pharmacotherapy and Experimental Therapeutics UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7569, USA
| | | | | |
Collapse
|
13
|
Swift B, Brouwer KL. Influence of seeding density and extracellular matrix on bile Acid transport and mrp4 expression in sandwich-cultured mouse hepatocytes. Mol Pharm 2010; 7:491-500. [PMID: 19968322 PMCID: PMC3235796 DOI: 10.1021/mp900227a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was undertaken to examine the influence of seeding density, extracellular matrix and days in culture on bile acid transport proteins and hepatobiliary disposition of the model bile acid taurocholate. Mouse hepatocytes were cultured in a sandwich configuration on six-well Biocoat plates with an overlay of Matrigel (BC/MG) or gelled-collagen (BC/GC) for 3 or 4 days at seeding densities of 1.0, 1.25, or 1.5 x 10(6) cells/well. The lower seeding densities of 1.0 and 1.25 x 10(6) cells/well resulted in good hepatocyte morphology and bile canalicular network formation, as visualized by 5-(and 6)-carboxy-2',7'-dichlorofluorescein accumulation. In general, taurocholate cellular accumulation tended to increase as a function of seeding density in BC/GC; cellular accumulation was significantly increased in hepatocytes cultured in BC/MG compared to BC/GC at the same seeding density on both days 3 and 4 of culture. In general, in vitro intrinsic biliary clearance of taurocholate was increased at higher seeding densities. Levels of bile acid transport proteins on days 3 and 4 were not markedly influenced by seeding density or extracellular matrix except for multidrug resistance protein 4 (Mrp4), which was inversely related to seeding density. Mrp4 levels decreased approximately 2- to 3-fold between seeding densities of 1.0 x 10(6) and 1.25 x 10(6) cells/well regardless of extracellular matrix; an additional approximately 3- to 5-fold decrease in Mrp4 protein was noted in BC/GC between seeding densities of 1.25 x 10(6) and 1.5 x 10(6) cells/well. Results suggest that seeding density, extracellular matrix and days in culture profoundly influence Mrp4 expression in sandwich-cultured mouse hepatocytes. Primary mouse hepatocytes seeded in a BC/MG configuration at densities of 1.25 x 10(6) cells/well and 1.0 x 10(6), and cultured for 3 days, yielded optimal transport based on the probes studied. This work demonstrates the applicability of the sandwich-cultured model to mouse hepatocytes.
Collapse
Affiliation(s)
- Brandon Swift
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7569
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7569
| |
Collapse
|
14
|
Use of cassette dosing in sandwich-cultured rat and human hepatocytes to identify drugs that inhibit bile acid transport. Toxicol In Vitro 2009; 24:297-309. [PMID: 19706322 DOI: 10.1016/j.tiv.2009.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 01/13/2023]
Abstract
Hepatocellular accumulation of bile acids due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) is one proposed mechanism of drug-induced liver injury (DILI). Some hepatotoxic compounds also are potent inhibitors of bile acid uptake by Na(+)-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1). This study used a cassette dosing approach in rat and human sandwich-cultured hepatocytes (SCH) to determine whether known or suspected hepatotoxic drugs inhibit bile acid transport individually or in combination. [(3)H]-Taurocholate served as the NTCP/BSEP probe substrate. Individually, cyclosporin A and rifampin decreased taurocholate in vitro biliary clearance (Cl(biliary)) and biliary excretion index (BEI) by more than 20% in rat SCH, suggesting that these drugs primarily inhibited canalicular efflux. In contrast, ampicillin, carbenicillin, cloxacillin, nafcillin, oxacillin, carbamazepine, pioglitazone, and troglitazone decreased the in vitro Cl(biliary) by more than 20% with no notable change in BEI, suggesting that these drugs primarily inhibited taurocholate uptake. Cassette dosing (n=2-4 compounds per cassette) in rat SCH yielded similar findings, and results in human SCH were consistent with rat SCH. In summary, cassette dosing in SCH is a useful in vitro approach to identify compounds that inhibit the hepatic uptake and/or excretion of bile acids, which may cause DILI.
Collapse
|