1
|
Zhang Q, Wei H, Lee A, Felmlee MA. Sex and Cross-Sex Testosterone Treatment Alters Gamma-Hydroxybutyrate Acid Toxicokinetics and Toxicodynamics in Rats. Pharmaceutics 2024; 16:143. [PMID: 38276513 PMCID: PMC10821532 DOI: 10.3390/pharmaceutics16010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Γ-hydroxybutyric acid (GHB) is widely abused due to its sedative/hypnotic and euphoric effects. In recent years, GHB use has witnessed a notable rise within the LGBTQ+ community. GHB is a substrate of monocarboxylate transporters (MCTs) and exhibits nonlinear toxicokinetics, characterized by saturable metabolism, absorption, and renal reabsorption. This study investigates the impact of exogenous testosterone administration on GHB toxicokinetics and toxicodynamics, exploring the potential of MCT1 inhibition as a strategy to counteract toxicity. Ovariectomized (OVX) females and castrated (CST) male Sprague Dawley rats were treated with testosterone or placebo for 21 days. GHB was administered at two doses (1000 mg/kg or 1500 mg/kg i.v.), and the MCT1 inhibitor AR-C 155858 (1 mg/kg i.v.) was administered 5 min after GHB (1500 mg/kg i.v.) administration. Plasma and urine were collected up to 8 h post-dose, and GHB concentrations were quantified via a validated LC/MS/MS assay. Sleep time (sedative/hypnotic effect) was utilized as the toxicodynamic endpoint. Testosterone treatment significantly affected GHB toxicokinetics and toxicodynamics. Testosterone-treated CST rats exhibited significantly lower renal clearance, higher AUC, and increased sedative effect, while testosterone-treated OVX rats demonstrated higher metabolic clearance. AR-C 155858 treatment led to an increase in GHB renal and total clearance together with an improvement in sedative/hypnotic effect. In conclusion, exogenous testosterone treatment induces significant alterations in GHB toxicokinetics and toxicodynamics, and MCT inhibition can serve as a potential therapeutic strategy for GHB overdose in both cisgender and transgender male populations.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (Q.Z.)
| | - Hao Wei
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (Q.Z.)
- QPS LLC, Newark, DE 19711, USA
| | - Annie Lee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (Q.Z.)
| | - Melanie A. Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (Q.Z.)
| |
Collapse
|
2
|
Wei H, Cao J, Fallert T, Yeo S, Felmlee MA. GHB toxicokinetics and renal monocarboxylate transporter expression are influenced by the estrus cycle in rats. BMC Pharmacol Toxicol 2023; 24:58. [PMID: 37919807 PMCID: PMC10623699 DOI: 10.1186/s40360-023-00700-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The illicit use and abuse of gamma-hydroxybutyric acid (GHB) occurs due to its sedative/hypnotic and euphoric effects. Currently, there are no clinically available therapies to treat GHB overdose, and care focuses on symptom treatment until the drug is eliminated from the body. Proton- and sodium-dependent monocarboxylate transporters (MCTs (SLC16A) and SMCTs (SLC5A)) transport and mediate the renal clearance and distribution of GHB. Previously, it has been shown that MCT expression is regulated by sex hormones in the liver, skeletal muscle and Sertoli cells. The focus of the current study is to evaluate GHB toxicokinetics and renal monocarboxylate transporter expression over the estrus cycle in females, and in the absence of male and female sex hormones. METHODS GHB toxicokinetics and renal transporter expression of MCT1, SMCT1 and CD147 were evaluated in females over the estrus cycle, and in ovariectomized (OVX) female, male and castrated (CST) male rats. GHB was administered iv bolus (600 and 1000 mg/kg) and plasma and urine samples were collected for six hours post-dose. GHB concentrations were quantified using a validated LC/MS/MS assay. Transporter mRNA and protein expression was quantified by qPCR and Western Blot. RESULTS GHB renal clearance and AUC varied between sexes and over the estrus cycle in females with higher renal clearance and a lower AUC in proestrus females as compared to males (intact and CST), and OVX females. We demonstrated that renal MCT1 membrane expression varies over the estrus cycle, with the lowest expression observed in proestrus females, which is consistent with the observed changes in GHB renal clearance. CONCLUSIONS Our results suggest that females may be less susceptible to GHB-induced toxicity due to decreased exposure resulting from increased renal clearance, as a result of decreased renal MCT1 expression.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Jieyun Cao
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- AstraZeneca, Gaithersburg, Maryland, USA
| | - Tyler Fallert
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- Clovis Community Medical Center, Clovis, CA, USA
| | - Su Yeo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- Kaiser Permanente, Santa Clara, CA, USA
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA.
| |
Collapse
|
3
|
Jung S, Kim M, Kim S, Lee S. Interaction between γ-Hydroxybutyric Acid and Ethanol: A Review from Toxicokinetic and Toxicodynamic Perspectives. Metabolites 2023; 13:180. [PMID: 36837798 PMCID: PMC9965651 DOI: 10.3390/metabo13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Gamma-hydroxybutyric acid (GHB) is a potent, short-acting central nervous system depressant as well as an inhibitory neurotransmitter or neuromodulator derived from gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter. The sodium salt of GHB, sodium oxybate, has been used for the treatment of narcolepsy and cataplexy, whereas GHB was termed as a date rape drug or a club drug in the 1990s. Ethanol is the most co-ingested drug in acute GHB intoxication. In this review, the latest findings on the combined effects of GHB and ethanol are summarized from toxicokinetic and toxicodynamic perspectives. For this purpose, we mainly discussed the pharmacology and toxicology of GHB, GHB intoxication under alcohol consumption, clinical cases of the combined intoxication of GHB and ethanol, and previous studies on the toxicokinetic and toxicodynamic interactions between GHB and ethanol in humans, animals, and an in vitro model. The combined administration of GHB and ethanol enhanced sedation and cardiovascular dysfunction, probably by the additive action of GABA receptors, while toxicokinetic changes of GHB were not significant. The findings of this review will contribute to clinical and forensic interpretation related to GHB intoxication. Furthermore, this review highlights the significance of studies aiming to further understand the enhanced inhibitory effects of GHB induced by the co-ingestion of ethanol.
Collapse
Affiliation(s)
| | | | | | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
4
|
Toxicokinetic/Toxicodynamic Interaction Studies in Rats between the Drugs of Abuse γ-Hydroxybutyric Acid and Ketamine and Treatment Strategies for Overdose. Pharmaceutics 2021; 13:pharmaceutics13050741. [PMID: 34069815 PMCID: PMC8157280 DOI: 10.3390/pharmaceutics13050741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
γ-hydroxybutyric acid (GHB) is widely abused alone and in combination with other club drugs such as ketamine. GHB exhibits nonlinear toxicokinetics, characterized by saturable metabolism, saturable absorption and saturable renal reabsorption mediated by monocarboxylate transporters (MCTs). In this research, we characterized the effects of ketamine on GHB toxicokinetics/toxicodynamics (TK/TD) and evaluated the use of MCT inhibition and specific receptor antagonism as potential treatment strategies for GHB overdose in the presence of ketamine. Adult male Sprague-Dawley rats were administered GHB 600 mg/kg i.v. alone or with ketamine (6 mg/kg i.v. bolus plus 1 mg/kg/min i.v. infusion). Plasma and urine samples were collected and respiratory parameters (breathing frequency, tidal and minute volume) continuously monitored using whole-body plethysmography. Ketamine co-administration resulted in a significant decrease in GHB total and metabolic clearance, with renal clearance remaining unchanged. Ketamine prevented the compensatory increase in tidal volume produced by GHB, and this resulted in a significant decline in minute volume when compared to GHB alone. Sleep time and lethality were also increased after ketamine co-administration when compared to GHB. L-lactate and AR-C155858 (potent MCT inhibitor) treatment resulted in an increase in GHB renal and total clearance and improvement in respiratory depression. AR-C155858 administration also resulted in a significant decrease in GHB brain/plasma ratio. SCH50911 (GABAB receptor antagonist), but not naloxone, improved GHB-induced respiratory depression in the presence of ketamine. In conclusion, ketamine ingestion with GHB can result in significant TK/TD interactions. MCT inhibition and GABAB receptor antagonism can serve as potential treatment strategies for GHB overdose when it is co-ingested with ketamine.
Collapse
|
5
|
Rodriguez-Cruz V, Morris ME. γ-Hydroxybutyric Acid-Ethanol Drug-Drug Interaction: Reversal of Toxicity with Monocarboxylate Transporter 1 Inhibitors. J Pharmacol Exp Ther 2021; 378:42-50. [PMID: 33963018 DOI: 10.1124/jpet.121.000566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
The drug of abuse, γ-hydroxybutyric acid (GHB), is commonly co-ingested with ethanol, resulting in a high incidence of toxicity and death. Our laboratory has previously reported that GHB is a substrate for the monocarboxylate transporters (MCTs), necessary for its absorption, renal clearance, and tissue distribution, including across the blood-brain barrier. Our goal was to investigate the drug-drug interaction (DDI) between GHB and ethanol and to evaluate MCT1 inhibition as a strategy to reverse toxicity. The toxicokinetics of this DDI were investigated, including brain-to-plasma concentration ratios, in the presence and absence of ethanol. The toxicodynamic parameters examined were respiratory depression (breathing frequency, tidal volume) and sedation (time of return-of-righting reflex). Ethanol was administered (2 g/kg i.v.) 5 minutes before the intravenous or oral administration of GHB, and MCT1 inhibitors AZD-3965 and AR-C155858 (5 mg/kg i.v.) were administered 60 minutes after GHB administration. Ethanol administration did not alter the toxicokinetics or respiratory depression caused by GHB after intravenous or oral administration; however, it significantly increased the sedation effect, measured by return-to-righting time. AZD-3965 or AR-C155858 significantly decreased the effects of the co-administration of GHB and ethanol on respiratory depression and sedation of this DDI and decreased brain concentrations and the brain-to-plasma concentration ratio of GHB. The results indicate that ethanol co-administered with GHB increases toxicity and that MCT1 inhibition is effective in reversing toxicity by inhibiting GHB brain uptake when given after GHB-ethanol administration. SIGNIFICANCE STATEMENT: These studies investigated the enhanced toxicity observed clinically when γ-hydroxybutyric acid (GHB) is co-ingested with alcohol and evaluated strategies to reverse this toxicity. The effects of the novel monocarboxylate transporter 1 (MCT1) inhibitors AR-C155858 and AZD-3965 on this drug-drug interaction have not been studied before, and these preclinical studies indicate that MCT1 inhibitors can decrease brain concentrations of GHB by inhibiting brain uptake, even when administered at times after GHB-ethanol. AZD-3965 represents a potential treatment strategy for GHB-ethanol overdoses.
Collapse
Affiliation(s)
- Vivian Rodriguez-Cruz
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
6
|
Felmlee MA, Morse BL, Morris ME. γ-Hydroxybutyric Acid: Pharmacokinetics, Pharmacodynamics, and Toxicology. AAPS J 2021; 23:22. [PMID: 33417072 PMCID: PMC8098080 DOI: 10.1208/s12248-020-00543-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Gamma-hydroxybutyrate (GHB) is a short-chain fatty acid present endogenously in the brain and used therapeutically for the treatment of narcolepsy, as sodium oxybate, and for alcohol abuse/withdrawal. GHB is better known however as a drug of abuse and is commonly referred to as the "date-rape drug"; current use in popular culture includes recreational "chemsex," due to its properties of euphoria, loss of inhibition, amnesia, and drowsiness. Due to the steep concentration-effect curve for GHB, overdoses occur commonly and symptoms include sedation, respiratory depression, coma, and death. GHB binds to both GHB and GABAB receptors in the brain, with pharmacological/toxicological effects mainly due to GABAB agonist effects. The pharmacokinetics of GHB are complex and include nonlinear absorption, metabolism, tissue uptake, and renal elimination processes. GHB is a substrate for monocarboxylate transporters, including both sodium-dependent transporters (SMCT1, 2; SLC5A8; SLC5A12) and proton-dependent transporters (MCT1-4; SLC16A1, 7, 8, and 3), which represent significant determinants of absorption, renal reabsorption, and brain and tissue uptake. This review will provide current information of the pharmacology, therapeutic effects, and pharmacokinetics/pharmacodynamics of GHB, as well as therapeutic strategies for the treatment of overdoses. Graphical abstract.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry Thomas J Long School of Pharmacy, University of the Pacific, Stockton, California, USA
| | - Bridget L Morse
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, 46285, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 304 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
7
|
Felmlee MA, Morse BL, Follman KE, Morris ME. The Drug of Abuse Gamma-Hydroxybutyric Acid Exhibits Tissue-Specific Nonlinear Distribution. AAPS JOURNAL 2017; 20:21. [PMID: 29280004 DOI: 10.1208/s12248-017-0180-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/03/2017] [Indexed: 02/08/2023]
Abstract
The drug of abuse γ-hydroxybutyric acid (GHB) demonstrates complex toxicokinetics with dose-dependent metabolic and renal clearance. GHB is a substrate of monocarboxylate transporters (MCTs) which are responsible for the saturable renal reabsorption of GHB. MCT expression is observed in many tissues and therefore may impact the tissue distribution of GHB. The objective of the present study was to evaluate the tissue distribution kinetics of GHB at supratherapeutic doses. GHB (400, 600, and 800 mg/kg iv) or GHB 600 mg/kg plus L-lactate (330 mg/kg iv bolus followed by 121 mg/kg/h infusion) was administered to rats and blood and tissues were collected for up to 330 min post-dose. K p values for GHB varied in both a tissue- and dose-dependent manner and were less than 0.5 (except in the kidney). Nonlinear partitioning was observed in the liver (0.06 at 400 mg/kg to 0.30 at 800 mg/kg), kidney (0.62 at 400 mg/kg to 0.98 at 800 mg/kg), and heart (0.15 at 400 mg/kg to 0.29 at 800 mg/kg), with K p values increasing with dose consistent with saturation of transporter-mediated efflux. In contrast, lung partitioning decreased in a dose-dependent manner (0.43 at 400 mg/kg to 0.25 at 800 mg/kg) suggesting saturation of active uptake. L-lactate administration decreased K p values in liver, striatum, and hippocampus and increased K p values in lung and spleen. GHB demonstrates tissue-specific nonlinear distribution consistent with the involvement of monocarboxylate transporters. These observed complexities are likely due to the involvement of MCT1 and 4 with different affinities and directionality for GHB transport.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214, USA. .,Department of Pharmaceutics & Medicinal Chemistry, Thomas J Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California, 95211, USA.
| | - Bridget L Morse
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214, USA.,Investigative Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Kristin E Follman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214, USA
| |
Collapse
|
8
|
Morse BL, Chadha GS, Felmlee MA, Follman KE, Morris ME. Effect of chronic γ-hydroxybutyrate (GHB) administration on GHB toxicokinetics and GHB-induced respiratory depression. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 43:686-693. [PMID: 28662343 DOI: 10.1080/00952990.2017.1339055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND γ-hydroxybutyrate (GHB) has a high potential for illicit use; overdose of this compound results in sedation, respiratory depression and death. Tolerance to the hypnotic/sedative and electroencephalogram effects of GHB occurs with chronic GHB administration; however, tolerance to respiratory depression has not been evaluated. GHB toxicodynamic effects are mediated predominantly by GABAB receptors. Chronic treatment may affect monocarboxylate transporters (MCTs) and alter the absorption, renal clearance and brain uptake of GHB. OBJECTIVES To determine effects of chronic GHB dosing on GHB toxicokinetics, GHB-induced respiratory depression, and MCT expression. METHODS Rats were administered GHB 600 mg/kg intravenously daily for 5 days. Plasma, urine and tissue samples and respiratory measurements were obtained on days 1 and 5. Plasma and urine were analyzed for GHB by LC/MS/MS and tissue samples for expression of MCT1, 2 and 4 and their accessory proteins by QRT-PCR. RESULTS No differences in GHB pharmacokinetics or respiratory depression were observed between days 1 and 5. Opposing changes in MCT1 and MCT4 mRNA expression were observed in kidney samples on day 5 compared to GHB-naïve animals, and MCT4 expression was increased in the intestine. CONCLUSIONS The lack of tolerance observed with GHB-induced respiratory depression, in contrast to the tolerance reported for the sedative/hypnotic and electroencephalogram effects, suggests that different GABAB receptor subtypes may be involved in different GABAB-mediated toxicodynamic effects of GHB. Chronic or binge users of GHB may be at no less risk for fatality from respiratory arrest with a GHB overdose than with a single dose of GHB.
Collapse
Affiliation(s)
- Bridget L Morse
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Investigative Drug Disposition, Transporters & Pharmacogenomics , Eli Lilly and Company , Indianapolis , IN , USA
| | - Gurkishan S Chadha
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,c School of Pharmacy , University of New England , Biddeford , ME , USA
| | - Melanie A Felmlee
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,d Department of Pharmaceutics & Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences , University of the Pacific , Stockton , CA , USA
| | - Kristin E Follman
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Marilyn E Morris
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| |
Collapse
|
9
|
Dave RA, Morris ME. Semi-mechanistic kidney model incorporating physiologically-relevant fluid reabsorption and transporter-mediated renal reabsorption: pharmacokinetics of γ-hydroxybutyric acid and L-lactate in rats. J Pharmacokinet Pharmacodyn 2015; 42:497-513. [PMID: 26341876 DOI: 10.1007/s10928-015-9441-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Abstract
This study developed a semi-mechanistic kidney model incorporating physiologically-relevant fluid reabsorption and transporter-mediated active reabsorption. The model was applied to data for the drug of abuse γ-hydroxybutyric acid (GHB), which exhibits monocarboxylate transporter (MCT1/SMCT1)-mediated renal reabsorption. The kidney model consists of various nephron segments--proximal tubules, Loop-of-Henle, distal tubules, and collecting ducts--where the segmental fluid flow rates, volumes, and sequential reabsorption were incorporated as functions of the glomerular filtration rate. The active renal reabsorption was modeled as vectorial transport across proximal tubule cells. In addition, the model included physiological blood, liver, and remainder compartments. The population pharmacokinetic modeling was performed using ADAPT5 for GHB blood concentration-time data and cumulative amount excreted unchanged into urine data (200-1000 mg/kg IV bolus doses) from rats [Felmlee et al (PMID: 20461486)]. Simulations assessed the effects of inhibition (R = [I]/KI = 0-100) of renal reabsorption on systemic exposure (AUC) and renal clearance of GHB. Visual predictive checks and other model diagnostic plots indicated that the model reasonably captured GHB concentrations. Simulations demonstrated that the inhibition of renal reabsorption significantly increased GHB renal clearance and decreased AUC. Model validation was performed using a separate dataset. Furthermore, our model successfully evaluated the pharmacokinetics of L-lactate using data obtained from Morse et al (PMID: 24854892). In conclusion, we developed a semi-mechanistic kidney model that can be used to evaluate transporter-mediated active renal reabsorption of drugs by the kidney.
Collapse
Affiliation(s)
- Rutwij A Dave
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
10
|
Thiesen L, Kehler J, Clausen RP, Frølund B, Bundgaard C, Wellendorph P. In Vitro and In Vivo Evidence for Active Brain Uptake of the GHB Analog HOCPCA by the Monocarboxylate Transporter Subtype 1. J Pharmacol Exp Ther 2015; 354:166-74. [PMID: 25986445 DOI: 10.1124/jpet.115.224543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 01/03/2023] Open
Abstract
γ-Hydroxybutyric acid (GHB) is a recreational drug, a clinically prescribed drug in narcolepsy and alcohol dependence, and an endogenous substance that binds to both high- and low-affinity sites in the brain. For studying the molecular mechanisms and the biologic role of the GHB high-affinity binding sites, ligands with high and specific affinity are essential. The conformationally restricted GHB analog HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid) is one such compound. The objective of this study was to investigate the transport of HOCPCA across the blood-brain barrier in vitro and in vivo and to investigate the hypothesis that HOCPCA, like GHB, is a substrate for the monocarboxylate transporters (MCTs). For in vitro uptake studies, MCT1, -2, and -4 were recombinantly expressed in Xenopus laevis oocytes, and the previously reported radioligand [(3)H]HOCPCA was used as substrate. HOCPCA inhibited the uptake of the endogenous MCT substrate l-[(14)C]lactate, and [(3)H]HOCPCA was shown to act as substrate for MCT1 and 2 (Km values in the low- to mid-millimolar range). Introducing single-point amino acid mutations into positions essential for MCT function supported that HOCPCA binds to the endogenous substrate pocket of MCTs. MCT1-mediated brain entry of HOCPCA (10 mg/kg s.c.) was further confirmed in vivo in mice by coadministration of increasing doses of the MCT inhibitor AR-C141990 [(R)-5-(3-hydroxypyrrolidine-1-carbonyl)-1-isobutyl-3-methyl-6-(quinolin-4-ylmethyl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione], which inhibited brain penetration of HOCPCA in a dose-dependent manner (ID50 = 4.6 mg/kg). Overall, our study provides evidence that MCT1 is an important brain entry site for HOCPCA and qualifies for future in vivo studies with HOCPCA.
Collapse
Affiliation(s)
- Louise Thiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (L.T., R.P.C., B.F., P.W.); and Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej, Valby, Denmark (J.K., C.B.)
| | - Jan Kehler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (L.T., R.P.C., B.F., P.W.); and Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej, Valby, Denmark (J.K., C.B.)
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (L.T., R.P.C., B.F., P.W.); and Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej, Valby, Denmark (J.K., C.B.)
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (L.T., R.P.C., B.F., P.W.); and Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej, Valby, Denmark (J.K., C.B.)
| | - Christoffer Bundgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (L.T., R.P.C., B.F., P.W.); and Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej, Valby, Denmark (J.K., C.B.)
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (L.T., R.P.C., B.F., P.W.); and Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej, Valby, Denmark (J.K., C.B.)
| |
Collapse
|
11
|
Vijay N, Morse BL, Morris ME. A Novel Monocarboxylate Transporter Inhibitor as a Potential Treatment Strategy for γ-Hydroxybutyric Acid Overdose. Pharm Res 2014; 32:1894-906. [PMID: 25480120 DOI: 10.1007/s11095-014-1583-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/20/2014] [Indexed: 01/07/2023]
Abstract
PURPOSE Monocarboxylate transporter (MCT) inhibition represents a potential treatment strategy for γ-hydroxybutyric acid (GHB) overdose by blocking its renal reabsorption in the kidney. This study further evaluated the effects of a novel, highly potent MCT inhibitor, AR-C155858, on GHB toxicokinetics/toxicodynamics (TK/TD). METHODS Rats were administered GHB (200, 600 or 1500 mg/kg i.v. or 1500 mg/kg po) with and without AR-C155858. Breathing frequency was continuously monitored using whole-body plethysmography. Plasma and urine samples were collected up to 8 h. The effect of AR-C155858 on GHB brain/plasma partitioning was also assessed. RESULTS AR-C155858 treatment significantly increased GHB renal and total clearance after intravenous GHB administration at all the GHB doses used in this study. GHB-induced respiratory depression was significantly improved by AR-C155858 as demonstrated by an improvement in the respiratory rate. AR-C155858 treatment also resulted in a significant reduction in brain/plasma partitioning of GHB (0.1 ± 0.03) when compared to GHB alone (0.25 ± 0.02). GHB CLR and CLoral (CL/F) following oral administration were also significantly increased following AR-C155858 treatment (from 1.82 ± 0.63 to 5.74 ± 0.86 and 6.52 ± 0.88 to 10.2 ± 0.75 ml/min/kg, respectively). CONCLUSION The novel and highly potent MCT inhibitor represents a potential treatment option for GHB overdose.
Collapse
Affiliation(s)
- Nisha Vijay
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 352 Kapoor Hall, Buffalo, New York, 14214-8033, USA
| | | | | |
Collapse
|
12
|
Vijay N, Morris ME. Effect of 3,4-methylenedioxymethamphetamine on the toxicokinetics and sedative effects of the drug of abuse, γ-hydroxybutyric acid. J Pharm Sci 2014; 103:3310-5. [PMID: 25174723 DOI: 10.1002/jps.24122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/12/2022]
Abstract
γ-Hydroxybutyric acid (GHB) is widely abused in combination with other club drugs such as 3,4-methylenedioxymethamphetamine (MDMA). The objectives of this study were to characterize the effects of MDMA on GHB toxicokinetics/toxicodynamics (TK/TD) and evaluate the use of monocarboxylate transporter (MCT) inhibition as a potential treatment strategy for GHB overdose when GHB is abused with MDMA. Rats were administered GHB 400 mg/kg i.v. alone or with MDMA (5 mg/kg i.v). Effects of MDMA and of the MCT inhibitor, l-lactate, on GHB TK and sedative effects were evaluated. The results of this study demonstrated no significant effect of MDMA on GHB TK or TD. GHB plasma concentrations were unchanged, and GHB concentration-effect relationships, based on plasma and brain concentrations and the return-to-righting reflex (RRR), were similar in the presence and absence of MDMA. l-Lactate administration resulted in a significant decrease in the sedative effect (RRR) of GHB when it was coadministered with MDMA. Our results indicate that MDMA does not affect the TK/TD of GHB at the doses used in this study, and MCT inhibition using l-lactate, an effective overdose treatment strategy for GHB alone, is also effective for GHB overdose when GHB is coingested with MDMA.
Collapse
Affiliation(s)
- Nisha Vijay
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, 14214-8033
| | | |
Collapse
|
13
|
Morse BL, Morris ME. Toxicokinetics/Toxicodynamics of γ-hydroxybutyrate-ethanol intoxication: evaluation of potential treatment strategies. J Pharmacol Exp Ther 2013; 346:504-13. [PMID: 23814094 DOI: 10.1124/jpet.113.206250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
γ-Hydroxybutyrate (GHB), a common drug of abuse, is often coingested with ethanol. Increasing renal clearance via monocarboxylate transporter (MCT) inhibition represents a potential therapeutic strategy in GHB overdose, as does inhibition of GABAB receptors. In this study, we investigate toxicokinetic/toxicodynamic interactions between GHB-ethanol and efficacy of treatment options for GHB-ethanol intoxication in rats. Sedation was assessed using the endpoint of return-to-righting reflex. Respiration was assessed using plethysmography. Coadministration of 2.0 g/kg ethanol i.v. with 600 mg/kg GHB i.v. increased sleep time compared with GHB alone. Administration of ethanol to steady-state concentrations of 0.1-0.2% and 0.3-0.4% (w/v) did not affect toxicokinetics of 600 mg/kg GHB i.v., or respiratory rate, but did result in significantly lower peak tidal volumes compared with GHB alone. Oral administration of 2.5 g/kg ethanol had no significant effect on toxicokinetics of 1500 mg/kg orally administered GHB. Pretreatment with specific receptor inhibitors indicated no effect of GABAA receptor inhibition on sleep time or respiratory depression in GHB-ethanol intoxication. GABAB receptor inhibition partially prevented sedation and completely prevented respiratory depression. Ethanol increased fatality when administered at 0.1-0.2% (4 of 10) and 0.3-0.4% (9 of 10) versus 1500 mg/kg GHB i.v. alone (0 of 10). Treatment with the MCT inhibitor, l-lactate, significantly decreased sleep time after GHB-ethanol and decreased fatality at 0.1-0.2% (0 of 10) and 0.3-0.4% ethanol (5 of 10). Treatment with a GABAB receptor antagonist completely prevented fatality at 0.3-0.4% (0 of 10). These data indicate that ethanol potentiates the sedative and respiratory depressant effects of GHB, increasing the risk of fatality. MCT and GABAB receptor inhibition represent potentially effective treatments in GHB-ethanol intoxication.
Collapse
Affiliation(s)
- Bridget L Morse
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|
14
|
Morse BL, Morris ME. Effects of monocarboxylate transporter inhibition on the oral toxicokinetics/toxicodynamics of γ-hydroxybutyrate and γ-butyrolactone. J Pharmacol Exp Ther 2013; 345:102-10. [PMID: 23392755 DOI: 10.1124/jpet.112.202796] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Respiratory depression and death secondary to respiratory arrest have occurred after oral overdoses of γ-hydroxybutyrate (GHB) and its precursor γ-butyrolactone (GBL). GHB is a substrate for monocarboxylate transporters (MCTs), and increasing GHB renal clearance or decreasing GHB absorption via MCT inhibition represents a potential treatment strategy for GHB/GBL overdose. In these studies, GHB and GBL were administered in doses of 1.92, 5.77, and 14.4 mmol/kg orally with and without MCT inhibition to determine effects of this treatment strategy on the oral toxicokinetics and toxicodynamics of GHB and GBL. The competitive MCT inhibitor l-lactate was administered by intravenous infusion starting 1 hour after GHB and GBL administration. Oral administration of l-lactate and the MCT inhibitor luteolin was also evaluated. Respiratory depression was measured using plethysmography. Intravenous l-lactate, but not oral treatments, significantly increased GHB renal and/or oral clearances. At the low dose of GHB and GBL, i.v. l-lactate increased GHB renal clearance. Due to the increased contribution of renal clearance to total clearance at the moderate dose, increased renal clearance translated to an increase in oral clearance. At the highest GHB dose, oral clearance was increased without a significant change in renal clearance. The lack of effect of i.v. l-lactate on renal clearance after a high oral GHB dose suggests possible effects of i.v. l-lactate on MCT-mediated absorption. The resulting increases in oral clearance improved respiratory depression. Intravenous l-lactate also reduced mortality with the high GBL dose. These data indicate i.v. l-lactate represents a potential treatment strategy in oral overdose of GHB and GBL.
Collapse
Affiliation(s)
- Bridget L Morse
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|
15
|
Roiko SA, Vijay N, Felmlee MA, Morris ME. Brain extracellular γ-hydroxybutyrate concentrations are decreased by L-lactate in rats: role in the treatment of overdoses. Pharm Res 2013; 30:1338-48. [PMID: 23319173 DOI: 10.1007/s11095-013-0973-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/03/2013] [Indexed: 11/27/2022]
Abstract
PURPOSE L-lactate represents a potential treatment for GHB overdose by inhibiting GHB renal reabsorption mediated by monocarboxylate transporters. Our objective was to assess the dose-dependence of L-lactate treatment, with and without D-mannitol, on GHB toxicokinetics/toxicodynamics (TK/TD). METHODS Rats were administered GHB 600 mg/kg i.v. with L-lactate (low and high doses), D-mannitol, or L-lactate (low dose) with D-mannitol. GHB-induced sleep time and GHB plasma, urine and brain extracellular fluid (ECF) concentrations (by LC/MS/MS) were determined. The effect of L-lactate and D-mannitol on the uptake and efflux of GHB was assessed in rat brain endothelial RBE4 cells. RESULTS L-lactate treatment increased GHB renal clearance from 1.4 ± 0.1 ml/min/kg (control) to 2.4 ± 0.2 and 4.7 ± 0.5 ml/min/kg after low and high doses, respectively, and reduced brain ECF AUC values to 65 and 25% of control. Sleep time was decreased from 137 ± 12 min (control) to 91 ± 16 and 55 ± 5 min (low and high L-lactate, respectively). D-mannitol did not alter GHB TK/TD and did not alter L-lactate's effects on GHB TK/TD. L-lactate, but not D-mannitol, inhibited GHB uptake, and increased GHB efflux from RBE4 cells. CONCLUSIONS L-lactate decreases plasma and brain ECF concentrations of GHB, decreasing sedative/hypnotic effects.
Collapse
Affiliation(s)
- Samuel A Roiko
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences, State University of New York, Buffalo, Buffalo, New York 14214-8033, USA
| | | | | | | |
Collapse
|
16
|
Morse BL, Vijay N, Morris ME. γ-Hydroxybutyrate (GHB)-induced respiratory depression: combined receptor-transporter inhibition therapy for treatment in GHB overdose. Mol Pharmacol 2012; 82:226-35. [PMID: 22561075 DOI: 10.1124/mol.112.078154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Overdose of γ-hydroxybutyrate (GHB) frequently causes respiratory depression, occasionally resulting in death; however, little is known about the dose-response relationship or effects of potential overdose treatment strategies on GHB-induced respiratory depression. In these studies, the parameters of respiratory rate, tidal volume, and minute volume were measured using whole-body plethysmography in rats administered GHB. Intravenous doses of 200, 600, and 1500 mg/kg were administered to assess the dose-dependent effects of GHB on respiration. To determine the receptors involved in GHB-induced respiratory depression, a specific GABA(B) receptor antagonist, (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH50911), and a specific GABA(A) receptor antagonist, bicuculline, were administered before GHB. The potential therapeutic strategies of receptor inhibition and monocarboxylate transporter (MCT) inhibition were assessed by inhibitor administration 5 min after GHB. The primary effect of GHB on respiration was a dose-dependent decrease in respiratory rate, accompanied by an increase in tidal volume, resulting in little change in minute volume. Pretreatment with 150 mg/kg SCH50911 completely prevented the decrease in respiratory rate, indicating agonism at GABA(B) receptors to be primarily responsible for GHB-induced respiratory depression. Administration of 50 mg/kg SCH50911 after GHB completely reversed the decrease in respiratory rate; lower doses had partial effects. Administration of the MCT inhibitor l-lactate increased GHB renal and total clearance, also improving respiratory rate. Administration of 5 mg/kg SCH50911 plus l-lactate further improved respiratory rate compared with the same dose of either agent alone, indicating that GABA(B) and MCT inhibitors, alone and in combination, represent potential treatment options for GHB-induced respiratory depression.
Collapse
Affiliation(s)
- Bridget L Morse
- University at Buffalo, 352 Kapoor Hall, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
17
|
Roiko SA, Felmlee MA, Morris ME. Brain uptake of the drug of abuse γ-hydroxybutyric acid in rats. Drug Metab Dispos 2011; 40:212-8. [PMID: 22019629 DOI: 10.1124/dmd.111.041749] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous compound and a substrate for the ubiquitous monocarboxylate transporter (MCT) family. GHB is also a drug of abuse due to its sedative/hypnotic and euphoric effects, with overdoses resulting in toxicity and death. The goal of this study was to characterize the distribution of GHB into the brain using in vivo microdialysis and in vitro uptake studies and to determine concentration-effect relationships for GHB in a rat animal model. GHB was administered to rats (400, 600, and 800 mg/kg i.v.), and blood, dialysate, and urine were collected for 6 h post-GHB administration. The GHB plasma and extracellular fluid (ECF) concentration-time profiles revealed that GHB concentrations in ECF closely followed plasma GHB concentrations. Sleep time increased in a dose-dependent manner (91 ± 18, 134 ± 11, and 168 ± 13 min, for GHB 400, 600, and 800 mg/kg, respectively). GHB partitioning into brain ECF was not significantly different at 400, 600, and 800 mg/kg. GHB uptake in rat and human brain endothelial cells exhibited concentration dependence. The concentration-dependent uptake of GHB at pH 7.4 was best-fit to a single-transporter model [K(m) = 18.1 mM (human), 23.3 mM (rat), V(max) = 248 and 258 pmol · mg(-1) · min(-1) for human and rat, respectively]. These findings indicate that although GHB distribution into the brain is mediated via MCT transporters, it is not capacity-limited over the range of doses studied in this investigation.
Collapse
Affiliation(s)
- Samuel A Roiko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 527 Hochstetter Hall, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
18
|
Morse BL, Felmlee MA, Morris ME. γ-Hydroxybutyrate blood/plasma partitioning: effect of physiologic pH on transport by monocarboxylate transporters. Drug Metab Dispos 2011; 40:64-9. [PMID: 21976619 DOI: 10.1124/dmd.111.041285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The drug of abuse γ-hydroxybutyrate (GHB) displays nonlinear renal clearance, which has been attributed to saturable renal reabsorption by monocarboxylate transporters (MCTs) present in the kidney. MCT1 is also present in red blood cells (RBCs); however, the significance of this transporter on the blood/plasma partitioning of GHB is unknown. The purpose of this research was to characterize the transport of GHB across the RBC membrane and assess GHB blood/plasma partitioning in vivo in the presence and absence of a competitive MCT inhibitor, l-lactate. In vitro experiments were performed using freshly isolated rat erythrocytes at pH values of 6.5 and 7.4. Inhibition with p-chloromercuribenzene sulfonate and 4,4'-diisothiocyanostilbene-2,2'-disulfonate were used to determine the contribution of MCT1 and band 3, respectively, on GHB uptake. For in vivo experiments, rats were administered GHB (400-1500 mg/kg) with and without l-lactate. In vitro experiments demonstrated that GHB is transported across the RBC membrane primarily by MCT1 at relevant in vivo concentrations. The K(m) for MCT1 was lower at pH 6.5 than that at pH 7.4, 2.2 versus 17.0 mM, respectively. The in vivo blood/plasma partitioning of GHB displayed linearity across all concentrations. l-Lactate coadministration increased GHB renal clearance but had no effect on the blood/plasma ratio. Unlike its MCT-mediated transport in the intestine and kidneys, GHB blood/plasma partitioning appears to be linear and is unaffected by l-lactate. These findings can be attributed, at least in part, to differences in physiologic pH at different sites of MCT-mediated transport.
Collapse
Affiliation(s)
- Bridget L Morse
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
19
|
Felmlee MA, Krzyzanski W, Morse BL, Morris ME. Use of a local sensitivity analysis to inform study design based on a mechanistic toxicokinetic model for γ-hydroxybutyric acid. AAPS JOURNAL 2011; 13:240-54. [PMID: 21387146 DOI: 10.1208/s12248-011-9264-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/21/2011] [Indexed: 11/30/2022]
Abstract
γ-Hydroxybutyric acid (GHB), a drug of abuse, demonstrates complex toxicokinetics with capacity-limited metabolism and active renal reabsorption. The objectives of the present study were to conduct a local sensitivity analysis of a mechanistic model for the active renal reabsorption of GHB and to use the results to inform the design of future studies aimed at developing therapeutic strategies for treating GHB overdoses. A local sensitivity analysis was used to assess the influence of parameter perturbations on model outputs (plasma concentrations and urinary excretion of GHB). Further, a sensitivity index was calculated for each perturbed parameter to assess the specific segments of the time course that are critical to parameter estimation. Model outputs were simulated for rats dosed with 200, 400, 600, and 1,000 mg/kg GHB intravenously and individual parameters were perturbed by two-, five-, and tenfold higher and lower than the nominal value. Model outputs were sensitive to perturbations in clearance and volume parameters. In contrast, model outputs were found to be insensitive to changes in distributional parameters suggesting that additional tissue distribution data is required. Based on the sensitivity analysis the 1,000-mg/kg GHB dose can be eliminated from future studies as the parameters can be adequately estimated from the lower doses. To further validate the use of this model, dose-specific sampling schedules were designed based on model predictions for doses of 600 and 1,500 mg/kg. These sampling schedules were able to adequately capture the inflection point and terminal elimination phase of the plasma concentration-time profiles obtained.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, 14260, USA
| | | | | | | |
Collapse
|
20
|
Morris ME, Morse BL, Baciewicz GJ, Tessena MM, Acquisto NM, Hutchinson DJ, Dicenzo R. Monocarboxylate Transporter Inhibition with Osmotic Diuresis Increases γ-Hydroxybutyrate Renal Elimination in Humans: A Proof-of-Concept Study. ACTA ACUST UNITED AC 2011; 1:1000105. [PMID: 24772380 DOI: 10.4172/2161-0495.1000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVE The purpose of the current study was to demonstrate proof-of-concept that monocarboxylate transporter (MCT) inhibition with L-lactate combined with osmotic diuresis increases renal clearance of γ-hydroxybutyrate (GHB) in human subjects. GHB is a substrate for human and rodent MCTs, which are responsible for GHB renal reabsorption, and this therapy increases GHB renal clearance in rats. METHODS Ten healthy volunteers were administered GHB orally as sodium oxybate 50 mg/kg (4.5 gm maximum dose) on two different study days. On study day 1, GHB was administered alone. On study day 2, treatment of L-lactate 0.125 mmol/kg and mannitol 200 mg/kg followed by L-lactate 0.75 mmol/kg/hr was administered intravenously 30 minutes after GHB ingestion. Blood and urine were collected for 6 hours, analyzed for GHB, and pharmacokinetic and statistical analyses performed. RESULTS L-lactate/mannitol administration significantly increased GHB renal clearance compared to GHB alone, 439 vs. 615 mL/hr (P=0.001), and increased the percentage of GHB dose excreted in the urine, 2.2 vs. 3.3% (P=0.021). Total clearance was unchanged. CONCLUSIONS MCT inhibition with L-lactate combined with osmotic diuresis increases GHB renal elimination in humans. No effect on total clearance was observed in this study due to the negligible contribution of renal clearance to total clearance at this low GHB dose. Considering the nonlinear renal elimination of GHB, further research in overdose cases is warranted to assess the efficacy of this treatment strategy for increasing renal and total clearance at high GHB doses.
Collapse
Affiliation(s)
- Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY (Morris and Morse)
| | - Bridget L Morse
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY (Morris and Morse)
| | - Gloria J Baciewicz
- Department of Psychiatry, University of Rochester Medical Center, University of Rochester, Rochester, NY (Baciewicz and Tessena)
| | - Matthew M Tessena
- Department of Psychiatry, University of Rochester Medical Center, University of Rochester, Rochester, NY (Baciewicz and Tessena)
| | - Nicole M Acquisto
- Departments of Pharmacy and Emergency Medicine, University of Rochester Medical Center, University of Rochester, Rochester, NY (Acquisto)
| | - David J Hutchinson
- Department of Pharmacy Practice, School of Pharmacy, St. John Fisher College, Rochester, NY (Hutchinson)
| | - Robert Dicenzo
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY (DiCenzo)
| |
Collapse
|
21
|
Felmlee MA, Wang Q, Cui D, Roiko SA, Morris ME. Mechanistic toxicokinetic model for gamma-hydroxybutyric acid: inhibition of active renal reabsorption as a potential therapeutic strategy. AAPS JOURNAL 2010; 12:407-16. [PMID: 20461486 DOI: 10.1208/s12248-010-9197-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/16/2010] [Indexed: 02/06/2023]
Abstract
gamma-Hydroxybutyric acid (GHB), a drug of abuse, exhibits saturable renal clearance and capacity-limited metabolism. The objectives of this study were to construct a mechanistic toxicokinetic (TK) model describing saturable renal reabsorption and capacity-limited metabolism of GHB and to predict the effects of inhibition of renal reabsorption on GHB TK in the plasma and urine. GHB was administered by iv bolus (200-1,000 mg/kg) to male Sprague-Dawley rats and plasma and urine samples were collected for up to 6 h post-dose. GHB concentrations were determined by LC/MS/MS. GHB plasma concentration and urinary excretion were well-described by a TK model incorporating plasma and kidney compartments, along with two tissue and two ultrafiltrate compartments. The estimate of the Michaelis-Menten constant for renal reabsorption (K (m,R)) was 0.46 mg/ml which is consistent with in vitro estimates of monocarboxylate transporter (MCT)-mediated uptake of GHB (0.48 mg/ml). Simulation studies assessing inhibition of renal reabsorption of GHB demonstrated increased time-averaged renal clearance and GHB plasma AUC, independent of the inhibition mechanism assessed. Co-administration of GHB (600 mg/kg iv) and L: -lactate (330 mg/kg iv bolus plus 121 mg/kg/h iv infusion), a known inhibitor of MCTs, resulted in a significant decrease in GHB plasma AUC and an increase in time-averaged renal clearance, consistent with the model simulations. These results suggest that inhibition of renal reabsorption of GHB is a viable therapeutic strategy for the treatment of GHB overdoses. Furthermore, the mechanistic TK model provides a useful in silico tool for the evaluation of potential therapeutic strategies.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
22
|
Felmlee MA, Roiko SA, Morse BL, Morris ME. Concentration-effect relationships for the drug of abuse gamma-hydroxybutyric acid. J Pharmacol Exp Ther 2010; 333:764-71. [PMID: 20215411 DOI: 10.1124/jpet.109.165381] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Hydroxybutyric acid (GHB) is an endogenous neurotransmitter that is abused because of its sedative/hypnotic and euphoric effects. The objectives of this study were to evaluate the concentration-effect relationships of GHB in plasma, cerebrospinal fluid (CSF), brain (whole and discrete brain regions), and brain frontal cortex extracellular fluid. This information is crucial for future studies to evaluate effects of therapeutic interventions on the toxicodynamics of GHB. GHB (200-1000 mg/kg) was administered intravenously to rats, and plasma and frontal cortex microdialysate samples were collected for up to 6 h after the dose, or plasma, CSF, and brain (whole, frontal cortex, striatum, and hippocampus) concentrations were determined at the offset of its sedative/hypnotic effect [return to righting reflex (RRR)]. GHB-induced changes in the brain neurotransmitters gamma-aminobutyric acid (GABA) and glutamate were also determined. GHB, GABA, and glutamate concentrations were measured by liquid chromatography/tandem mass spectrometry. GHB-induced sleep time significantly increased in a dose-dependent manner (20-fold increase from 200 to 1000 mg/kg). GHB concentrations in plasma (300-400 microg/ml), whole brain (70 microg/g), discrete brain regions (80-100 microg/g), and brain microdialysate (29-39 microg/ml) correlated with RRR. In contrast, CSF GHB and GABA and glutamate concentrations in discrete brain regions exhibited no relationship with RRR. Our results suggest that GHB-induced sedative/hypnotic effects are mediated directly by GHB and that at high GHB doses, GABA formation from GHB may not contribute to the observed sedative/hypnotic effect. These results support the use of a clinical GHB detoxification strategy aimed at decreasing plasma and brain GHB concentrations after GHB overdoses.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, New York, USA
| | | | | | | |
Collapse
|
23
|
Lam WK, Felmlee MA, Morris ME. Monocarboxylate transporter-mediated transport of gamma-hydroxybutyric acid in human intestinal Caco-2 cells. Drug Metab Dispos 2009; 38:441-7. [PMID: 19952290 DOI: 10.1124/dmd.109.030775] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The objectives of this study were to determine mRNA expression of monocarboxylate transporters (MCT) and to evaluate intestinal transport of the MCT substrates gamma-hydroxybutyrate (GHB) and d-lactate in human intestinal Caco-2 cells. The presence of mRNA for MCT1, 2, 3, and 4 was observed in Caco-2 cells. The uptake of both GHB and d-lactate in Caco-2 cells was demonstrated to be pH- and concentration-dependent and sodium-independent. The uptake of GHB and d-lactate was best described by a Michaelis-Menten equation with passive diffusion (GHB: K(m) = 17.6 +/- 10.5 mM, V(max) = 17.3 +/- 11.7 nmol/min/mg, and P = 0.38 +/- 0.15 microl/min/mg; and d-lactate: K(m) = 6.0 +/- 2.9 mM, V(max) = 35.0 +/- 18.4 nmol/min/mg, and P = 1.3 +/- 0.6 microl/min/mg). The uptake of GHB and d-lactate was significantly decreased by the known MCT inhibitor alpha-cyano-4-hydroxycinnamate and the MCT substrates GHB and d-lactate but not by the organic cation tetraethylammonium chloride. Directional flux studies with both GHB and d-lactate suggested the involvement of carrier-mediated transport with the permeability in the apical to basolateral direction higher than that in the basolateral to apical direction. These findings confirm the presence of MCT1-4 in Caco-2 cells and demonstrate GHB and d-lactate transport characteristics consistent with proton-dependent MCT-mediated transport.
Collapse
Affiliation(s)
- Wing Ki Lam
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York, USA
| | | | | |
Collapse
|
24
|
Cui D, Morris ME. The drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): characterization of SMCT-mediated uptake and inhibition. Drug Metab Dispos 2009; 37:1404-10. [PMID: 19389857 DOI: 10.1124/dmd.109.027169] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gamma-hydroxybutyric acid (GHB), a drug of abuse, is a substrate of monocarboxylate transporters (MCTs). Sodium-coupled monocarboxylate transporter 1 (SMCT1; SLC5A8) is expressed in kidney, thyroid gland, neurons, and intestinal tract and exhibits substrate specificity similar to that of the proton-dependent MCT (SLC16A) family. The role of SMCT1 in GHB disposition has not been determined. In this study we characterized the driving force, transport kinetics, and inhibitors of GHB uptake, as well as expression of SMCT and MCT isoforms, in rat thyroid follicular (FRTL-5) cells. GHB, as well as the monocarboxylates butyrate and d-lactate, exhibited sodium-dependent uptake at pH 7.4, which could be described with a simple Michaelis-Menten equation plus a diffusional component [K(m) 0.68 +/- 0.30 mM, V(max) 3.50 +/- 1.58 nmol . mg(-1) . min(-1), and diffusional clearance (P) 0.25 +/- 0.08 microl . mg(-1) . min(-1)]. In the absence of sodium, GHB uptake was significantly increased at lower pH, suggesting proton-gradient dependent transport. Reverse transcriptase-polymerase chain reaction and Western analyses demonstrated the expression of SMCT1, MCT1, and MCT2 in FRTL-5 cells, supporting the activity results. Sodium-dependent GHB uptake in FRTL-5 cells was inhibited by MCT substrates (d-lactate, l-lactate, pyruvate, and butyrate), nonsteroidal anti-inflammatory drugs (ibuprofen, ketoprofen, and naproxen), and probenecid. IC(50) values for l-lactate, ibuprofen, ketoprofen, and probenecid were 101, 31.6, 64.4, and 380 muM, respectively. All four inhibitors also significantly inhibited GHB uptake in rat MCT1 gene-transfected MDA/MB231 cells, suggesting they are not specific for SMCT1. Luteolin and alpha-cyano-4-hydroxycinnimate represent specific proton-dependent MCT inhibitors. Our findings indicate that GHB is a substrate for both sodium- and proton-dependent MCTs and identified specific inhibitors of MCTs.
Collapse
Affiliation(s)
- Dapeng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | | |
Collapse
|