1
|
Tirendi S, Domenicotti C, Bassi AM, Vernazza S. Genetics and Glaucoma: the state of the art. Front Med (Lausanne) 2023; 10:1289952. [PMID: 38152303 PMCID: PMC10751926 DOI: 10.3389/fmed.2023.1289952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Although genetic background contributes differently to rare early-onset glaucoma (before age 40) or common adult-onset glaucoma, it is now considered an important factor in all major forms of the disease. Genetic and genomic studies, including GWAS, are contributing to identifying novel loci associated with glaucoma or to endophenotypes across ancestries to enrich the knowledge about glaucoma genetic susceptibility. Moreover, new high-throughput functional genomics contributes to defining the relevance of genetic results in the biological pathways and processes involved in glaucoma pathogenesis. Such studies are expected to advance significantly our understanding of glaucoma's genetic basis and provide new druggable targets to treat glaucoma. This review gives an overview of the role of genetics in the pathogenesis or risk of glaucoma.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
2
|
Saad M, Zhang R, Cucchiarini A, Mehawej C, Mergny JL, Mroueh M, Faour WH. G-quadruplex forming sequences in the genes coding for cytochrome P450 enzymes and their potential roles in drug metabolism. Biochimie 2023; 214:45-56. [PMID: 37660977 DOI: 10.1016/j.biochi.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
The majority of drugs are metabolized by cytochrome P450 (CYP) enzymes, primarily belonging to the CYP1, CYP2 and CYP3 families. Genetic variations are the main cause of inter-individual differences in drug response, which constitutes a major concern in pharmacotherapy. G-quadruplexes (G4s), are non-canonical DNA and RNA secondary structures formed by guanine-rich sequences. G4s have been implicated in cancer and gene regulation. In this study, we investigated putative G4-forming sequences (PQSs) in the CYP genes. Our findings reveal a high density of PQSs in the full genes of CYP family 2. Moreover, we observe an increased density of PQSs in the promoters of CYP family 1 genes compared to non-CYP450 genes. Importantly, stable PQSs were also identified in all studied CYP genes. Subsequently, we assessed the impact of the most frequently reported genetic mutations in the selected genes and the possible effect of these mutations on G4 formation as well as on the thermodynamic stability of predicted G4s. We found that 4 SNPs overlap G4 sequences and lead to mutated DNA and RNA G4 forming sequences in their context. Notably, the mutation in the CYP2C9 gene, which is associated with impaired (S)-warfarin metabolism in patients, alters a G4 sequence. We then demonstrated that at least 10 of the 13 chosen cytochrome P450 G4 candidates form G-quadruplex structures in vitro, using a combination of spectroscopic methods. In conclusion, our findings indicate the potential role of G-quadruplexes in the regulation of cytochrome genes, and emphasize the importance of G-quadruplexes in drug metabolism.
Collapse
Affiliation(s)
- Mona Saad
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rongxin Zhang
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France.
| | - Mohamad Mroueh
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
3
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
4
|
Chong CS, Limviphuvadh V, Maurer-Stroh S. Global spectrum of population-specific common missense variation in cytochrome P450 pharmacogenes. Hum Mutat 2021; 42:1107-1123. [PMID: 34153149 DOI: 10.1002/humu.24243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/12/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Next-generation sequencing technology has afforded the discovery of many novel variants that are of significance to inheritable pharmacogenomics (PGx) traits but a large proportion of them have unknown consequences. These include missense variants resulting in single amino acid substitutions in cytochrome P450 (CYP) proteins that can impair enzyme function, leading to altered drug efficacy and toxicity. While most unknown variants are rare, an overlooked minority are variants that are collectively rare but enriched in specific populations. Here, we analyzed sequence variation data in 141,456 individuals from across eight study populations in gnomAD for 38 CYP genes to identify such variants in addition to common variants. By further comparison with data from two PGx-specific databases (PharmVar and PharmGKB) and ClinVar, we identified 234 missense variants in 35 CYP genes, of which 107 were unknown to these databases. Most unknown variants (n = 83) were population-specific common variants and several (n = 7) were found in important CYP pharmacogenes (CYP2D6, CYP4F2, and CYP2C19). Overall, 29% (n = 31) of 107 unknown variants were predicted to affect CYP enzyme function although further biochemical characterization is necessary. These variants may elucidate part of the unexplained interpopulation differences observed in drug response.
Collapse
Affiliation(s)
- Cheng-Shoong Chong
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Navapour L, Mogharrab N. In silico screening and analysis of nonsynonymous SNPs in human CYP1A2 to assess possible associations with pathogenicity and cancer susceptibility. Sci Rep 2021; 11:4977. [PMID: 33654112 PMCID: PMC7925555 DOI: 10.1038/s41598-021-83696-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Cytochrome P450 1A2 (CYP1A2) is one of the main hepatic CYPs involved in metabolism of carcinogens and clinically used drugs. Nonsynonymous single nucleotide polymorphisms (nsSNPs) of this enzyme could affect cancer susceptibility and drug efficiency. Hence, identification of human CYP1A2 pathogenic nsSNPs could be of great importance in personalized medicine and pharmacogenetics. Here, 176 nsSNPs of human CYP1A2 were evaluated using a variety of computational tools, of which 18 nsSNPs were found to be associated with pathogenicity. Further analysis suggested possible association of 9 nsSNPs (G73R, G73W, R108Q, R108W, E168K, E346K, R431W, F432S and R456H) with the risk of hepatocellular carcinoma. Molecular dynamics simulations revealed higher overall flexibility, decreased intramolecular hydrogen bonds and lower content of regular secondary structures for both cancer driver variants G73W and F432S when compared to the wild-type structure. In case of F432S, loss of the conserved hydrogen bond between Arg137 and heme propionate oxygen may affect heme stability and the observed significant rise in fluctuation of the CD loop could modify CYP1A2 interactions with its redox partners. Together, these findings propose CYP1A2 as a possible candidate for hepatocellular carcinoma and provide structural insights into how cancer driver nsSNPs could affect protein structure, heme stability and interaction network.
Collapse
Affiliation(s)
- Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Ajadi MB, Soremekun OS, Adewumi AT, Kumalo HM, Soliman MES. Functional Analysis of Single Nucleotide Polymorphism in ZUFSP Protein and Implication in Pathogenesis. Protein J 2021; 40:28-40. [PMID: 33512633 DOI: 10.1007/s10930-021-09962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 11/25/2022]
Abstract
Researches have revealed that functional non-synonymous Single Nucleotide Polymorphism (nsSNPs) present in the Zinc-finger with UFM1-Specific Peptidase domain protein (ZUFSP) may be involved in genetic instability and carcinogenesis. For the first time, we employed in-silico approach using predictive tools to identify and validate potential nsSNPs that could be pathogenic. Our result revealed that 8 nsSNPs (rs 112738382, rs 140094037, rs 201652589, rs 201847265, rs 202076827, rs 373634906, rs 375114528, rs 772591104) are pathogenic after being subjected to rigorous filtering process. The structural impact of the nsSNPs on ZUFSP structure indicated that the nsSNPs affect the stability of the protein by lowering ZUFSP protein stability. Furthermore, conservation analysis showed that rs 201652589, rs 140094037, rs 201847265, and rs 772591104 were highly conserved. Interestingly, the protein-protein affinity between ZUFSP and Ubiquitin was altered rs 201652589, rs 140094037, rs 201847265, and rs 772591104 had a binding affinity of - 0.46, - 0.83, - 1.62, and - 1.12 kcal/mol respectively. Our study has been able to identify potential nsSNPs that could be used as genetic biomarkers for some diseases arising as a result of aberration in the ZUFSP structure, however, being a predictive study, the identified nsSNPs need to be experimentally investigated.
Collapse
Affiliation(s)
- Mary B Ajadi
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban, 4000, South Africa
- Chemical Pathology Department, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, PMB 4400, Osogbo, Nigeria
| | - Opeyemi S Soremekun
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Adeniyi T Adewumi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Hezekiel M Kumalo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban, 4000, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
7
|
Mathur R, Sharma L, Dhabhai B, Menon AM, Sharma A, Sharma NK, Dakal TC. Predicting the functional consequences of genetic variants in co-stimulatory ligand B7-1 using in-silico approaches. Hum Immunol 2020; 82:103-120. [PMID: 33358455 DOI: 10.1016/j.humimm.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this research is to identify and characterize deleterious genetic variants in the co-stimulatory ligand B7-1, also known as the human cluster of differentiation CD80 marker. The B7-1 ligand and the major histocompatibility complex class II (MHC II) molecules are the main determinants that provide B-cells the required competency to act as antigen presenting cells. For this, participation of both MHC class II molecules and CD80 is required. The interaction of the CD80 ligand with CD28 on the surface 7 of TH cells plays a key role in the activation of TH cells and progression of B cells through the S phase, hence, leading to their proliferation in mitosis. A set of 2313 genetic variants in the B7-1 ligand have been mapped and retrieved from dbSNP database. Subsequently, 150 non-synonymous single nucleotide polymorphisms (nsSNPs) were mapped and subjected to the sequence and structural homology based predictions, which were further analyzed for protein stability and the disease phenotypes. Finally, we identified 7 potentially damaging nsSNPs in the B7-1 ligand that may affect its interaction with the cognitive receptor CD28, hence, may also interfere with TH cell activation and B cell proliferation. We propose that subsequent experimental analyses (stability, expression and interactions) on these proteins can provide a deep understanding about the effect of these variants on the structure and function of CD80.
Collapse
Affiliation(s)
- Riya Mathur
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Loveena Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Athira M Menon
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Amit Sharma
- Department of Integrated Oncology, University Hospital Bonn, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Raj., India
| | - Tikam Chand Dakal
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India.
| |
Collapse
|
8
|
Kim YC, Jeong BH. In Silico Evaluation of Acetylation Mimics in the 27 Lysine Residues of Human Tau Protein. Curr Alzheimer Res 2020; 16:379-387. [PMID: 30907318 DOI: 10.2174/1567205016666190321161032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Various neurodegenerative diseases, including Alzheimer's disease (AD), are related to abnormal hyperphosphorylated microtubule-associated protein tau accumulation in brain lesions. Recent studies have focused on toxicity caused by another post-translational modification (PTM), acetylation of the lysine (K) residues of tau protein. Because there are numerous acetylation sites, several studies have introduced mimics of tau acetylation using amino acid substitutions from lysine to glutamine (Q). However, human tau protein contains over 20 acetylation sites; thus, investigation of the effects of an acetylated tau is difficult. OBJECTIVE Here, the authors in silico evaluated acetylation effects using SIFT, PolyPhen-2 and PROVEAN which can estimate the effects of amino acid substitutions based on the sequence homology or protein structure in tau isoforms. In addition, they also investigated 27 acetylation effects on the amyloid formation of tau proteins using Waltz. RESULTS 15 acetylation mimics were estimated to be the most detrimental, which indicates that there may be novel pathogenic acetylation sites in the human tau protein. Interestingly, the deleterious effect of acetylation mimics was different according to the type of isoforms. Furthermore, all acetylation mimics were predicted to be a region of amyloid formation at the codons 274-279 of human tau protein. Notably, acetylation mimic of codon 311 (K311Q) induced the formation of an additional amyloid region located on codons 306-311 of the human tau protein. CONCLUSION To the best of our knowledge, this is the first simultaneous in-silico evaluation of the acetylation state of 27 human tau protein residues.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 570-390, Korea.,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 570-390, Korea.,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| |
Collapse
|
9
|
Single Nucleotide Polymorphisms in 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase ( CYP27B1) Gene: The Risk of Malignant Tumors and Other Chronic Diseases. Nutrients 2020; 12:nu12030801. [PMID: 32197412 PMCID: PMC7146376 DOI: 10.3390/nu12030801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
: Vitamin D is widely known for its roles in the promotion of apoptosis and differentiation, with simultaneous inhibition of proliferation, inflammation, angiogenesis, invasion, and metastasis. Modern literature lacks complete information on polymorphisms in CYP27B1, the only enzyme capable of vitamin D activation. This review presents gathered data that relate to genetic variants in CYP27B1 gene in correlation to multiple diseases, mostly concerning colorectal, prostate, breast, lung, and pancreatic cancers, as well as on other pathologies, such as non-Hodgkin's lymphoma, oral lichen planus, or multiple sclerosis.
Collapse
|
10
|
Tanwar H, Kumar DT, Doss CGP, Zayed H. Bioinformatics classification of mutations in patients with Mucopolysaccharidosis IIIA. Metab Brain Dis 2019; 34:1577-1594. [PMID: 31385193 PMCID: PMC6858298 DOI: 10.1007/s11011-019-00465-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Mucopolysaccharidosis (MPS) IIIA, also known as Sanfilippo syndrome type A, is a severe, progressive disease that affects the central nervous system (CNS). MPS IIIA is inherited in an autosomal recessive manner and is caused by a deficiency in the lysosomal enzyme sulfamidase, which is required for the degradation of heparan sulfate. The sulfamidase is produced by the N-sulphoglucosamine sulphohydrolase (SGSH) gene. In MPS IIIA patients, the excess of lysosomal storage of heparan sulfate often leads to mental retardation, hyperactive behavior, and connective tissue impairments, which occur due to various known missense mutations in the SGSH, leading to protein dysfunction. In this study, we focused on three mutations (R74C, S66W, and R245H) based on in silico pathogenic, conservation, and stability prediction tool studies. The three mutations were further subjected to molecular dynamic simulation (MDS) analysis using GROMACS simulation software to observe the structural changes they induced, and all the mutants exhibited maximum deviation patterns compared with the native protein. Conformational changes were observed in the mutants based on various geometrical parameters, such as conformational stability, fluctuation, and compactness, followed by hydrogen bonding, physicochemical properties, principal component analysis (PCA), and salt bridge analyses, which further validated the underlying cause of the protein instability. Additionally, secondary structure and surrounding amino acid analyses further confirmed the above results indicating the loss of protein function in the mutants compared with the native protein. The present results reveal the effects of three mutations on the enzymatic activity of sulfamidase, providing a molecular explanation for the cause of the disease. Thus, this study allows for a better understanding of the effect of SGSH mutations through the use of various computational approaches in terms of both structure and functions and provides a platform for the development of therapeutic drugs and potential disease treatments.
Collapse
Affiliation(s)
- Himani Tanwar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - D Thirumal Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
Pharmacogenes (PGx-genes): Current understanding and future directions. Gene 2019; 718:144050. [DOI: 10.1016/j.gene.2019.144050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022]
|
12
|
Kwapiszewska G, Johansen AKZ, Gomez-Arroyo J, Voelkel NF. Role of the Aryl Hydrocarbon Receptor/ARNT/Cytochrome P450 System in Pulmonary Vascular Diseases. Circ Res 2019; 125:356-366. [PMID: 31242807 DOI: 10.1161/circresaha.119.315054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE CYPs (cytochrome p450) are critically involved in the metabolism of xenobiotics and toxins. Given that pulmonary hypertension is strongly associated with environmental exposure, we hypothesize that CYPs play a role in the development and maintenance of pathological vascular remodeling. OBJECTIVE We sought to identify key CYPs that could link drug or hormone metabolism to the development of pulmonary hypertension. METHODS AND RESULTS We searched in Medline (PubMed) database, as well as http://www.clinicaltrials.gov, for CYPs associated with many key aspects of pulmonary arterial hypertension including, but not limited to, severe pulmonary hypertension, estrogen metabolism, inflammation mechanisms, quasi-malignant cell growth, drug susceptibility, and metabolism of the pulmonary arterial hypertension-specific drugs. CONCLUSIONS We postulate a hypothesis where the AhR (aryl hydrocarbon receptor) mediates aberrant cell growth via expression of different CYPs associated with estrogen metabolism and inflammation.
Collapse
Affiliation(s)
- Grazyna Kwapiszewska
- From the Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria (G.K.)
| | - Anne Katrine Z Johansen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (A.K.Z.J.)
| | - Jose Gomez-Arroyo
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, OH (J.G.-A.)
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Hospital Research Foundation, OH (J.G.-A.)
| | - Norbert F Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, the Netherlands (N.F.V.)
| |
Collapse
|
13
|
Ahmad T, Valentovic MA, Rankin GO. Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem Pharmacol 2018; 153:196-204. [PMID: 29458047 DOI: 10.1016/j.bcp.2018.02.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 01/11/2023]
Abstract
Methadone is a synthetic, long-acting opioid with a single chiral center forming two enantiomers, (R)-methadone and (S)-methadone, each having specific pharmacological actions. Concentrations of (R)- and (S)-methadone above therapeutic levels have the ability to cause serious, life-threatening, and fatal side effects. This toxicity can be due in part to the pharmacogenetics of an individual, which influences the pharmacokinetic and pharmacodynamic properties of the drug. Methadone is primarily metabolized in the liver by cytochrome P450 (CYP) enzymes, predominately by CYP2B6, followed by CYP3A4, 2C19, 2D6, and to a lesser extent, CYP2C18, 3A7, 2C8, 2C9, 3A5, and 1A2. Single nucleotide polymorphisms (SNPs) located within CYPs have the potential to play an important role in altering methadone metabolism and pharmacodynamics. Several SNPs in the CYP2B6, 3A4, 2C19, 2D6, and 3A5 genes result in increases in methadone plasma concentrations, decreased N-demethylation, and decreased methadone clearance. In particular, carriers of CYP2B6*6/*6 may have a greater risk for detrimental adverse effects, as methadone metabolism and clearance are diminished in these individuals. CYP2B6*4, on the other hand, has been observed to decrease plasma concentrations of methadone due to increased methadone clearance. The involvement, contribution, and understanding the role of SNPs in CYP2B6, and other CYP genes, in methadone metabolism can improve the therapeutic uses of methadone in patient outcome and the development of personalized medicine.
Collapse
Affiliation(s)
- Taha Ahmad
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755-9310, USA
| | - Monica A Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755-9310, USA
| | - Gary O Rankin
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755-9310, USA.
| |
Collapse
|
14
|
Worthey EA. Analysis and Annotation of Whole-Genome or Whole-Exome Sequencing Derived Variants for Clinical Diagnosis. ACTA ACUST UNITED AC 2017; 95:9.24.1-9.24.28. [PMID: 29044471 DOI: 10.1002/cphg.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last 10 years, next-generation sequencing (NGS) has transformed genomic research through substantial advances in technology and reduction in the cost of sequencing, and also in the systems required for analysis of these large volumes of data. This technology is now being used as a standard molecular diagnostic test in some clinical settings. The advances in sequencing have come so rapidly that the major bottleneck in identification of causal variants is no longer the sequencing or analysis (given access to appropriate tools), but rather clinical interpretation. Interpretation of genetic findings in a complex and ever changing clinical setting is scarcely a new challenge, but the task is increasingly complex in clinical genome-wide sequencing given the dramatic increase in dataset size and complexity. This increase requires application of appropriate interpretation tools, as well as development and application of appropriate methodologies and standard procedures. This unit provides an overview of these items. Specific challenges related to implementation of genome-wide sequencing in a clinical setting are discussed. © 2017 by John Wiley & Sons, Inc.
Collapse
|
15
|
Dakal TC, Kala D, Dhiman G, Yadav V, Krokhotin A, Dokholyan NV. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Sci Rep 2017; 7:6525. [PMID: 28747718 PMCID: PMC5529537 DOI: 10.1038/s41598-017-06575-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/14/2017] [Indexed: 01/19/2023] Open
Abstract
Here we report an in-silico approach for identification, characterization and validation of deleterious non-synonymous SNPs (nsSNPs) in the interleukin-8 gene using three steps. In first step, sequence homology-based genetic analysis of a set of 50 coding SNPs associated with 41 rsIDs using SIFT (Sorting Intolerant from Tolerant) and PROVEAN (Protein Variation Effect Analyzer) identified 23 nsSNPs to be putatively damaging/deleterious in at least one of the two tools used. Subsequently, structure-homology based PolyPhen-2 (Polymorphism Phenotyping) analysis predicted 9 of 23 nsSNPs (K4T, E31A, E31K, S41Y, I55N, P59L, P59S, L70P and V88D) to be damaging. According to the conditional hypothesis for the study, only nsSNPs that score damaging/deleterious prediction in both sequence and structural homology-based approach will be considered as 'high-confidence' nsSNPs. In step 2, based on conservation of amino acid residues, stability analysis, structural superimposition, RSMD and docking analysis, the possible structural-functional relationship was ascertained for high-confidence nsSNPs. Finally, in a separate analysis (step 3), the IL-8 deregulation has also appeared to be an important prognostic marker for detection of patients with gastric and lung cancer. This study, for the first time, provided in-depth insights on the effects of amino acid substitutions on IL-8 protein structure, function and disease association.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, 303007, Rajasthan, India.
| | - Deepak Kala
- University Institute of Biopharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India
| | - Gourav Dhiman
- University Institute of Biopharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, 123029, Haryana, India
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
16
|
Desai S, Wood-Trageser M, Matic J, Chipkin J, Jiang H, Bachelot A, Dulon J, Sala C, Barbieri C, Cocca M, Toniolo D, Touraine P, Witchel S, Rajkovic A. MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2017; 102:576-582. [PMID: 27802094 PMCID: PMC5413161 DOI: 10.1210/jc.2016-2565] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/26/2016] [Indexed: 01/06/2023]
Abstract
Objective To assess the frequency of variants, including biallelic pathogenic variants, in minichromosome maintenance 8 (MCM8) and minichromosome maintenance 9 (MCM9), other genes related to MCM8-MCM9, and DNA damage repair (DDR) pathway in participants with primary ovarian insufficiency (POI). Design MCM8, MCM9, and genes encoding DDR proteins that have been implicated in reproductive aging were sequenced among POI participants. Setting Academic research institution. Participants All were diagnosed with POI prior to age 40 years and presented with elevated follicle-stimulating hormone levels. Interventions None. Main Outcome Measures We identified nucleotide variants in MCM8, MCM9, and genes thought to be involved in the DNA damage response pathway and/or implicated in reproductive aging. Results MCM8 was sequenced in 155 POI participants, whereas MCM9 was sequenced in 151 participants. Three of 155 (2%) participants carried possibly damaging heterozygous variants in MCM8, whereas 7 of 151 (5%) individuals carried possibly damaging heterozygous variants in MCM9. One participant carried a novel homozygous variant, c.1651C>T, p.Gln551*, in MCM9, which is predicted to introduce a premature stop codon in exon 9. Biallelic damaging heterozygous variants in both MCM8 and MCM9 were identified in 1 participant. Of a total of 10 participants carrying damaging heterozygous variants in either MCM8 or MCM9, 2 individuals carried heterozygous damaging variants in genes associated with either MCM8 or MCM9 or the DDR pathway. Conclusions We identified a significant number of potentially damaging and novel variants in MCM8 and MCM9 among participants with POI and examined multiallelic association with variants in DDR and MCM8-MCM9 interactome genes.
Collapse
Affiliation(s)
- Swapna Desai
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Michelle Wood-Trageser
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jelena Matic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jaqueline Chipkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Huaiyang Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Anne Bachelot
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la croissance et Centre des Pathologies gynécologiques Rares, ICAN, 75651 Paris, Cedex 13 France
| | - Jerome Dulon
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la croissance et Centre des Pathologies gynécologiques Rares, ICAN, 75651 Paris, Cedex 13 France
| | - Cinzia Sala
- San Raffaele Research Institute, Milano, 20132 Italy
| | | | - Massimiliano Cocca
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo,” University of Trieste, Trieste, 34137 Italy
| | | | - Philippe Touraine
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la croissance et Centre des Pathologies gynécologiques Rares, ICAN, 75651 Paris, Cedex 13 France
| | - Selma Witchel
- Department of Endocrinology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; and
- Department of Human Genetics, University of Pittsburgh, Pennsylvania 15261
| |
Collapse
|
17
|
Ghosh M, Sodhi SS, Sharma N, Mongre RK, Kim N, Singh AK, Lee SJ, Kim DC, Kim SW, Lee HK, Song KD, Jeong DK. An integrated in silico approach for functional and structural impact of non- synonymous SNPs in the MYH1 gene in Jeju Native Pigs. BMC Genet 2016; 17:35. [PMID: 26847462 PMCID: PMC4741023 DOI: 10.1186/s12863-016-0341-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/25/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND This study was performed to identify the non- synonymous polymorphisms in the myosin heavy chain 1 gene (MYH1) association with skeletal muscle development in economically important Jeju Native Pig (JNP) and Berkshire breeds. Herein, we present an in silico analysis, with a focus on (a) in silico approaches to predict the functional effect of non-synonymous SNP (nsSNP) in MYH1 on growth, and (b) molecular docking and dynamic simulation of MYH1 to predict the effects of those nsSNP on protein-protein association. RESULTS The NextGENe (V 2.3.4.) tool was used to identify the variants in MYH1 from JNP and Berkshire using RNA seq. Gene ontology analysis of MYH1 revealed significant association with muscle contraction and muscle organ development. The 95 % confidence intervals clearly indicate that the mRNA expression of MYH1 is significantly higher in the Berkshire longissimus dorsi muscle samples than JNP breed. Concordant in silico analysis of MYH1, the open-source software tools identified 4 potential nsSNP (L884T, K972C, N981G, and Q1285C) in JNP and 1 nsSNP (H973G) in Berkshire pigs. Moreover, protein-protein interactions were studied to investigate the effect of MYH1 mutations on association with hub proteins, and MYH1 was found to be closely associated with the protein myosin light chain, phosphorylatable, fast skeletal muscle MYLPF. The results of molecular docking studies on MYH1 (native and 4 mutants) and MYLFP demonstrated that the native complex showed higher electrostatic energy (-466.5 Kcal mol(-1)), van der Walls energy (-87.3 Kcal mol(-1)), and interaction energy (-835.7 Kcal mol(-1)) than the mutant complexes. Furthermore, the molecular dynamic simulation revealed that the native complex yielded a higher root-mean-square deviation (0.2-0.55 nm) and lower root-mean-square fluctuation (approximately 0.08-0.3 nm) as compared to the mutant complexes. CONCLUSIONS The results suggest that the variants at L884T, K972C, N981G, and Q1285C in MYH1 in JNP might represent a cause for the poor growth performance for this breed. This study is a pioneering in-depth in silico analysis of polymorphic MYH1 and will serve as a valuable resource for further targeted molecular diagnosis and population-based studies conducted for improving the growth performance of JNP.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Neelesh Sharma
- Sher-e-Kashmir University of Agricultural Sciences and Technology, R.S. Pura, Jammu, India.
| | - Raj Kumar Mongre
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Nameun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Amit Kumar Singh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Dae Cheol Kim
- Livestock Promotion Institute, Jeju Special Self-governing Province, Jeju-Do, 690-756, Republic of Korea.
| | - Sung Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Administration, Namwon, Republic of Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| |
Collapse
|
18
|
Khurana JK, Reeder JE, Shrimpton AE, Thakar J. GESPA: classifying nsSNPs to predict disease association. BMC Bioinformatics 2015. [PMID: 26206375 PMCID: PMC4513380 DOI: 10.1186/s12859-015-0673-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. RESULTS GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. CONCLUSIONS GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.
Collapse
Affiliation(s)
- Jay K Khurana
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Jay E Reeder
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA.
| | - Antony E Shrimpton
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA. .,Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
19
|
Ali Mohamoud HS, Manwar Hussain MR, El-Harouni AA, Shaik NA, Qasmi ZU, Merican AF, Baig M, Anwar Y, Asfour H, Bondagji N, Al-Aama JY. First comprehensive in silico analysis of the functional and structural consequences of SNPs in human GalNAc-T1 gene. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:904052. [PMID: 24723968 PMCID: PMC3960557 DOI: 10.1155/2014/904052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 02/03/2023]
Abstract
GalNAc-T1, a key candidate of GalNac-transferases genes family that is involved in mucin-type O-linked glycosylation pathway, is expressed in most biological tissues and cell types. Despite the reported association of GalNAc-T1 gene mutations with human disease susceptibility, the comprehensive computational analysis of coding, noncoding and regulatory SNPs, and their functional impacts on protein level, still remains unknown. Therefore, sequence- and structure-based computational tools were employed to screen the entire listed coding SNPs of GalNAc-T1 gene in order to identify and characterize them. Our concordant in silico analysis by SIFT, PolyPhen-2, PANTHER-cSNP, and SNPeffect tools, identified the potential nsSNPs (S143P, G258V, and Y414D variants) from 18 nsSNPs of GalNAc-T1. Additionally, 2 regulatory SNPs (rs72964406 and #x26; rs34304568) were also identified in GalNAc-T1 by using FastSNP tool. Using multiple computational approaches, we have systematically classified the functional mutations in regulatory and coding regions that can modify expression and function of GalNAc-T1 enzyme. These genetic variants can further assist in better understanding the wide range of disease susceptibility associated with the mucin-based cell signalling and pathogenic binding, and may help to develop novel therapeutic elements for associated diseases.
Collapse
Affiliation(s)
- Hussein Sheikh Ali Mohamoud
- Human Genetics Research Centre, Division of Biomedical Sciences (BMS), Saint George's University of London (SGUL), London, UK
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Ramzan Manwar Hussain
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf A. El-Harouni
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zaheer Ulhaq Qasmi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Amir Feisal Merican
- Institute of Biological Sciences and Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare (CRYSTAL, UM), University of Malaya, Kuala Lumpur, Malaysia
| | - Mukhtiar Baig
- Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Asfour
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabeel Bondagji
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Al-Ibrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Worthey EA. Analysis and annotation of whole-genome or whole-exome sequencing-derived variants for clinical diagnosis. CURRENT PROTOCOLS IN HUMAN GENETICS 2013; 79:9.24.1-9.24.24. [PMID: 24510652 DOI: 10.1002/0471142905.hg0924s79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the last several years, next-generation sequencing (NGS) has transformed genomic research through substantial advances in technology and reduction in the cost of sequencing, and also in the systems required for analysis of these large volumes of data. This technology is now being used as a standard molecular diagnostic test under particular circumstances in some clinical settings. The advances in sequencing have come so rapidly that the major bottleneck in identification of causal variants is no longer the sequencing but rather the analysis and interpretation. Interpretation of genetic findings in a clinical setting is scarcely a new challenge, but the task is increasingly complex in clinical genome-wide sequencing given the dramatic increase in dataset size and complexity. This increase requires the development of novel or repositioned analysis tools, methodologies, and processes. This unit provides an overview of these items. Specific challenges related to implementation in a clinical setting are discussed.
Collapse
Affiliation(s)
- Elizabeth A Worthey
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.,The Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Computer Science, University of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Penney RB, Lundgreen A, Yao-Borengasser A, Koroth-Edavana V, Williams S, Wolff R, Slattery ML, Kadlubar S. Lack of correlation between in silico projection of function and quantitative real-time PCR-determined gene expression levels in colon tissue. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2013; 6:99-103. [PMID: 24101876 PMCID: PMC3791675 DOI: 10.2147/pgpm.s49199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There are a number of in silico programs that use algorithms and external web sources to predict the effect of single nucleotide polymorphisms (SNPs). While many of these programs have been shown to predict accurately the effect of SNPs in functional areas of the gene, such as 5' upstream or coding regions, empiric research may be warranted to confirm the functional consequences of SNPs that are predicted to have little to no effect. We compared predictions from FASTSNP (Function Analysis and Selection Tool for Single Nucleotide Polymorphism) and F-SNP (Functional Single Nucleotide Polymorphism) with experimentally derived genotype-phenotype correlations to determine the accuracy of these programs in predicting SNP functionality. We used normal colon tissue to evaluate 24 TagSNPs within six genes. Two of 16 SNPs that were predicted to have no functional effect in FASTSNP were significantly associated with gene expression. Only one of the eight SNPs that were predicted to have a low to high effect was significantly associated with gene expression. While the two in silico programs that were used were similar in their results for the SNPs predicted by FASTSNP to have no effect, of SNPs with scores from low to high, there were three that received an F-SNP score below what is considered functionally significant. In silico programs can fail to identify functional SNPs, supporting a continuing role for empiric analysis of SNP function. Laboratory analysis is necessary to identify causal SNPs accurately, establish biological plausibility of the effect, and ultimately inform cancer prevention strategies.
Collapse
Affiliation(s)
- Rosalind B Penney
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Martiny VY, Miteva MA. Advances in molecular modeling of human cytochrome P450 polymorphism. J Mol Biol 2013; 425:3978-92. [PMID: 23856621 DOI: 10.1016/j.jmb.2013.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated. Of the drugs involved in ADR, 56% are metabolized by polymorphic phase I metabolizing enzymes, 86% among them being CYP. Here, we review the major CYP polymorphic forms, their impact for drug response and current advances in molecular modeling of CYP polymorphism. We focus on recent studies exploring CYP polymorphism performed by the use of sequence-based and/or protein-structure-based computational approaches. The importance of understanding the molecular mechanisms related to CYP polymorphism and drug response at the atomic level is outlined.
Collapse
Affiliation(s)
- Virginie Y Martiny
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, Inserm UMR-S 973, 35 rue Helene Brion, 75013 Paris, France; Inserm, U973, F-75205 Paris, France
| | | |
Collapse
|
23
|
Radloff R, Gras A, Zanger UM, Masquelier C, Arumugam K, Karasi JC, Arendt V, Seguin-Devaux C, Klein K. Novel CYP2B6 enzyme variants in a Rwandese population: functional characterization and assessment of in silico prediction tools. Hum Mutat 2013; 34:725-34. [PMID: 23418033 DOI: 10.1002/humu.22295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/05/2013] [Indexed: 01/11/2023]
Abstract
Cytochrome P450 CYP2B6 is a highly polymorphic enzyme that metabolizes numerous drugs, pesticides, and environmental toxins. Sequence analysis of a Rwandese population identified eight functionally uncharacterized nonsynonymous variants c.329G>T (p.G110V), c.341T>C (p.I114T), c.444G>T (p.E148D), c.548T>G (p.V183G), c.637T>C (p.F213L), c.758G>A (p.R253H), c.835G>C (p.A279P), and c.1459C>A (p.R487S), and five novel alleles termed CYP2B6*33 to CYP2B6*37 were assigned. Recombinant expression in COS-1 cells and functional characterization using the antidepressant bupropion and the antiretroviral efavirenz (EFV) as substrates demonstrated complete or almost complete loss-of-function for variants p.G110V, p.I114T, p.V183G, and p.F213L, whereas p.E148D, p.R253H, p.A279P, and p.R487S variants were functional. The data were used to assess the predictive power of eight online available functional prediction programs for amino-acid changes. Although none of the programs correctly predicted the functionality of all variants, substrate docking simulation analyses indicated similar conformational changes by all four deleterious mutations within the enzyme's active site, thus explaining lack of enzymatic function for both substrates. Because low-activity alleles of CYP2B6 are associated with impaired EFV metabolism and adverse drug response, these results are of potential utility for personalized treatment strategies in HIV/AIDS therapy.
Collapse
Affiliation(s)
- Robert Radloff
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jacobs ET, Van Pelt C, Forster RE, Zaidi W, Hibler EA, Galligan MA, Haussler MR, Jurutka PW. CYP24A1 and CYP27B1 polymorphisms modulate vitamin D metabolism in colon cancer cells. Cancer Res 2013; 73:2563-73. [PMID: 23423976 DOI: 10.1158/0008-5472.can-12-4134] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin D is a well-studied agent for cancer chemoprevention and treatment. Its chief circulating metabolite, 25-hydroxyvitamin D, is converted into the active hormone 1,25-dihydroxyvitamin D (1,25D) by the cytochrome P450 enzyme CYP27B1 in kidney and other tissues. 1,25D is then deactivated by CYP24A1 and ultimately catabolized. Colorectal carcinoma cells express CYP27B1 and CYP24A1 that locally regulate 1,25D with potential implications for its impact on carcinogenesis. While 1,25D inhibits cancer growth, the effects of polymorphic variations in genes encoding proteins involved in 1,25D homeostasis are poorly understood. Using an RXR-VDR mammalian two-hybrid (M2H) biologic assay system, we measured vitamin D metabolite uptake and activation of the vitamin D receptor (VDR) pathway in colon cancer cells that expressed one of five CYP27B1 single-nucleotide polymorphisms (SNP) or four CYP24A1 SNPs. Compared with the wild-type control, four of five CYP27B1 SNPs reduced enzymatic activity, whereas one (V166L) increased activity. For CYP24A1, all tested SNPs reduced enzyme activity. Quantitative real-time PCR analyses supported the results of M2H experiments. The observed SNP-directed variation in CYP functionality indicated that vitamin D homeostasis is complex and may be influenced by genetic factors. A comprehensive understanding of 1,25D metabolism may allow for a more personalized approach toward treating vitamin D-related disorders and evaluating risk for carcinogenesis.
Collapse
Affiliation(s)
- Elizabeth T Jacobs
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang T, Zhou Q, Pang Y, Wang Y, Jin C, Huo J, Liu LA, Wei D. CYP-nsSNP: a specialized database focused on effect of non-synonymous SNPs on function of CYPs. Interdiscip Sci 2012; 4:83-9. [PMID: 22843230 DOI: 10.1007/s12539-012-0125-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/25/2012] [Accepted: 04/17/2012] [Indexed: 01/07/2023]
Abstract
The cytochrome P450 (CYP) enzymes play the central role in synthesis of endogenous substances and metabolism of xenobiotics. The substitution of single amino acid caused by non-synonymous single nucleotide polymorphism (nsSNP) will lead to the change in enzymatic activity of CYP isozymes, especially the drugmetabolizing ability. CYP-nsSNP is a specialized database focused on the effect of nsSNPs on enzymatic activity of CYPs. Its unique feature lies in providing the qualitative and quantitative description of the CYP variants in terms of enzymatic activity. In addition, the database also offers the general information about nsSNP and compounds that are involved in corresponding enzymatic reaction. The current CYP-nsSNP can be accessible at http://cypdatabase.sjtu.edu.cn/ and includes more than 300 genetic variants of 12 CYP isozymes together with about 100 compounds. In order to keep the accuracy of information within database, all experimental data were collected from the scientific literatures, and the users who conducted research to identify the novel CYP variants are encouraged to contribute their data. Therefore, CYP-nsSNP can be considered as a valuable source for experimental and computational studies of impact of genetic polymorphism on the function of CYPs.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Microbial Metabolism, Ministry of Education, Luc Montagnier Biomedical Research Institute, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Steroid 21-hydroxylase gene mutational spectrum in 50 Tunisian patients: characterization of three novel polymorphisms. Gene 2012; 507:20-6. [PMID: 22841790 DOI: 10.1016/j.gene.2012.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/09/2012] [Accepted: 07/17/2012] [Indexed: 11/23/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease of steroid biosynthesis in humans. More than 90% of all CAH cases are caused by mutations of the 21-hydroxylase gene (CYP21A2), and approximately 75% of the defective CYP21A2 genes are generated through an intergenic recombination with the neighboring CYP21A1P pseudogene. In this study, the CYP21A2 gene was genotyped in 50 patients in Tunisia with the clinical diagnosis of 21-hydroxylase deficiency. CYP21A2 mutations were identified in 87% of the alleles. The most common point mutation in our population was the pseudogene specific variant p.Q318X (26%). Three novel single nucleotide polymorphism (SNP) loci were identified in the CYP21A2 gene which seems to be specific for the Tunisian population. The overall concordance between genotype and phenotype was 98%. With this study the molecular basis of CAH has been characterized, providing useful results for clinicians in terms of prediction of disease severity, genetic and prenatal counseling.
Collapse
|
27
|
Hao DC, Xiao B, Xiang Y, Dong XW, Xiao PG. Deleterious nonsynonymous single nucleotide polymorphisms in human solute carriers: the first comparison of three prediction methods. Eur J Drug Metab Pharmacokinet 2012; 38:53-62. [DOI: 10.1007/s13318-012-0095-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/20/2012] [Indexed: 11/24/2022]
|
28
|
Hao DC, Feng Y, Xiao R, Xiao PG. Non-neutral nonsynonymous single nucleotide polymorphisms in human ABC transporters: the first comparison of six prediction methods. Pharmacol Rep 2012; 63:924-34. [PMID: 22001980 DOI: 10.1016/s1734-1140(11)70608-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/07/2011] [Indexed: 11/28/2022]
Abstract
Nonsynonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptibility to disease and altered drug/xenobiotic response. Abundant nsSNPs have been found in genes coding for human ATP-binding cassette (ABC) transporters, but there is little known about the relationship between the genotype and phenotype of nsSNPs in these membrane proteins. In addition, it is unknown which prediction method is better suited for the prediction of non-neutral nsSNPs of ABC transporters. We have identified 2,172 validated nsSNPs in 49 human ABC transporter genes from the Ensembl genome database and the NCBI SNP database. Using six different algorithms, 41 to 52% of nsSNPs in ABC transporter genes were predicted to have functional impacts on protein function. Predictions largely agreed with the available experimental annotations. Overall, 78.5% of non-neutral nsSNPs were predicted correctly as damaging by SNAP, which together with SIFT and PolyPhen, was superior to the prediction methods Pmut, PhD-SNP, and Panther. This study also identified any amino acids that were likely to be functionally critical but have not yet been studied experimentally. There was significant concordance between the predicted results of SIFT and PolyPhen. Evolutionarily non-neutral (destabilizing) amino acid substitutions are predicted to be the basis for the pathogenic alteration of ABC transporter activity that is associated with disease susceptibility and altered drug/xenobiotic response.
Collapse
Affiliation(s)
- Da Cheng Hao
- Laboratory of Biotechnology, College of Environment, Dalian Jiaotong University, Dalian 116028, China.
| | | | | | | |
Collapse
|
29
|
Ben Charfeddine I, Riepe FG, Kahloul N, Kulle AE, Adala L, Mamaï O, Amara A, Mili A, Amri F, Saad A, Holterhus PM, Gribaa M. Two novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11β hydroxylase deficiency in a Tunisian family. Gen Comp Endocrinol 2012; 175:514-8. [PMID: 22210247 DOI: 10.1016/j.ygcen.2011.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
Steroid 11β hydroxylase deficiency (11β-OHD) (OMIM # 202010) is the second most common form of congenital adrenal hyperplasia (CAH), accounting for 5-8% of all cases. It is an autosomal recessive enzyme defect impairing the biosynthesis of cortisol. The CYP11B1 gene encoding this enzyme is located on chromosome 8q22, approximately 40kb from the highly homologous CYP11B2 gene encoding for the aldosterone synthase. Virilization and hypertension are the main clinical characteristics of this disease. In Tunisia, the incidence of 11β-OHD appears higher due to a high rate of consanguinity (17.5% of congenital adrenal hyperplasia). The identical presentation of genital ambiguity (females) and pseudo-precocious puberty (males) can lead to misdiagnosis with 21 hydroxylase deficiency. The clinical hallmark of 11β hydroxylase deficiency is variable, and biochemical identification of elevated precursor metabolites is not usually available. In order to clarify the underlying mechanism causing 11β-OHD, we performed the molecular genetic analysis of the CYP11B1 gene in a female patient diagnosed as classical 11β-OHD. The nucleotide sequence of the patient's CYP11B1 revealed two novel mutations in exon 4: a missense mutation that converts codon AGT (serine) to ATT (isoleucine) (c.650G>T; p.S217I) combined with an insertion of a thymine at the c.652-653 position (c.652_653insT). This insertion leads to a reading frame shift, multiple incorrect codons, and a premature stop in codon 258, that drastically affects normal protein function leading to a severe phenotype with ambiguous genitalia of congenital adrenal hyperplasia due to 11β hydroxylase deficiency.
Collapse
Affiliation(s)
- Ilhem Ben Charfeddine
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Street Ibn El Jazzar, 4000 Sousse, Tunisia. ilhem_bc@yahoo
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mullins JGL. Structural modelling pipelines in next generation sequencing projects. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 89:117-67. [PMID: 23046884 DOI: 10.1016/b978-0-12-394287-6.00005-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our capacity to reliably predict protein structure from sequence is steadily improving due to the increased numbers and better targeting of protein structures being experimentally determined by structural genomics projects, along with the development of better modeling methodologies. Template-based (homology) modeling and de novo modeling methods are being combined to fill in remaining gaps in template coverage, and powerful automated structural modeling pipelines are being applied to large data sets of protein sequences. The improved quality of 3D models of proteins has led to their routine use in assessing the functional impact of nonsynonymous single nucleotide polymorphisms (nsSNPs) in specific protein systems, with the development of approaches that may be applied in a predictive fashion to nsSNPs emerging from next-generation sequencing projects. The challenges encountered in deriving functionally meaningful deductions from structural modeling can be quite different for proteins of different protein functional classes. The specific challenges to the assessment of the structural and functional impact of nsSNPs in globular proteins such as binding and regulatory proteins, structural proteins, and enzymes are discussed, as well as membrane transport proteins and ion channels. The mapping of reliable predictions of the structural and functional impact of SNPs, generated from automated modeling pipelines, on to protein-protein interaction networks will facilitate new approaches to understanding complex polygenic disorders and predisposition to disease.
Collapse
Affiliation(s)
- Jonathan G L Mullins
- Genome and Structural Bioinformatics, Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea, Wales, UK.
| |
Collapse
|
31
|
Ohlsson A, Guthenberg C, Holme E, von Döbeln U. Profound biotinidase deficiency: a rare disease among native Swedes. J Inherit Metab Dis 2010; 33 Suppl 3:S175-80. [PMID: 20224900 DOI: 10.1007/s10545-010-9065-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 01/31/2023]
Abstract
Biotinidase deficiency is an autosomal recessive metabolic disorder included in many newborn screening programmes. Prior to the introduction of screening for biotinidase deficiency in Sweden in 2002, the disorder was almost unknown, with only one case diagnosed clinically. Biotinidase activity was measured in dried blood spots with a semiquantitative method using biotin-6-amidoquinoline as substrate. The cutoff value was set at 25% (later lowered to 20%) of the mean activity of all samples measured on that day. The disorder was confirmed by quantitative determination of biotinidase activity in plasma and DNA analyses. Over a period of 6 years, 13 patients were identified among 637,452 screened newborns and 5,068 adoptive/immigrant children. None of the patients had clinical symptoms at the time of diagnosis. Six patients had profound biotinidase deficiency, with an activity of 0-5% of normal in plasma. Four of these patients were born to parents who were first cousins of Middle Eastern or African origin. Eighteen gene alterations were identified, nine of which have not previously been described: seven mutations p.L83S (c.248T > C), p.R148H (c.443G > A), p.N202I (c.605A > T), p.I255T (c.764T > C), p.N402S (c.1205A > G), p.L405P (c.1214T > C), p.G445R (c.1333G > A) and two silent mutations p.L71L (c.211C > T) and p.L215L (c.645C > T). The predicted severity of the novel mutations was analyzed by sorting intolerant from tolerant (SIFT) and polymorphism phenotyping (PolyPhen), predicting p.L83S, p.L405P and p.G445R as severe mutations. Due to the high rate of immigrants since 1990 from non-Nordic countries, the incidence of biotinidase deficiency is similar to that found in many other Western countries.
Collapse
Affiliation(s)
- Annika Ohlsson
- Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm SE-141 86, Sweden.
| | | | | | | |
Collapse
|
32
|
Phenotype prediction of nonsynonymous single nucleotide polymorphisms in human phase II drug/xenobiotic metabolizing enzymes: perspectives on molecular evolution. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1252-62. [DOI: 10.1007/s11427-010-4062-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 05/27/2010] [Indexed: 12/18/2022]
|
33
|
Wang LL, Liu YH, Meng LL, Li CG, Zhou SF. Phenotype prediction of non-synonymous single-nucleotide polymorphisms in human ATP-binding cassette transporter genes. Basic Clin Pharmacol Toxicol 2010; 108:94-114. [PMID: 20849526 DOI: 10.1111/j.1742-7843.2010.00627.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A large number of non-synonymous single-nucleotide polymorphisms (nsSNPs) have been found in human genome, but there is poor knowledge on the relationship between the genotype and phenotype of these nsSNPs. Human ATP-binding cassette (ABC) transporters are able to transport a number of important substrates including endogenous and exogenous compounds. This study aimed to predict the phenotypical impact of nsSNPs of human ABC transporter genes, and the predicted results were further validated by reported phenotypical data from site-directed mutagenesis and clinical genetic studies. One thousand and six hundred thirty-two nsSNPs were found from 49 human ABC transporter genes. Using the PolyPhen and SIFT algorithms, 41.8-53.6% of nsSNPs in ABC transporter genes were predicted to have an impact on protein function. The prediction accuracy was up to 63-85% when compared with known phenotypical data from in vivo and in vitro studies. There was a significant concordance between the prediction results using SIFT and PolyPhen. Of nsSNPs predicted as deleterious, the prediction scores by SIFT and PolyPhen were significantly related to the number of nsSNPs with known phenotypes confirmed by experimental and human studies. The amino acid substitution variants are supposed to be the pathogenetic basis of increased susceptibility to certain diseases with Mendelian or complex inheritance, altered drug resistance and altered drug clearance and response. Predicting the phenotypic consequence of nsSNPs using computational algorithms may provide a better understanding of genetic differences in susceptibility to diseases and drug response. The prediction of nsSNPs in human ABC transporter genes would be useful hints for further genotype-phenotype studies.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Institute of Reproductive and Child Health, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
34
|
Wang LL, Yang AK, Li Y, Liu JP, Zhou SF. Phenotype prediction of deleterious nonsynonymous single nucleotide polymorphisms in human alcohol metabolism-related genes: a bioinformatics study. Alcohol 2010; 44:425-38. [PMID: 20804942 DOI: 10.1016/j.alcohol.2010.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 05/16/2010] [Accepted: 05/16/2010] [Indexed: 11/28/2022]
Abstract
Nonsynonymous single nucleotide polymorphisms (nsSNPs) are thought as potential disease modifiers because they alter the encoded amino acid sequence and are likely to affect the function of the proteins accounting for susceptibility to disease. Distinguishing the functionally significant nsSNPs from tolerant nsSNPs is helpful to characterize the genetic basis of human diseases and assess individual susceptibility to diseases. Many nsSNPs have been found in alcohol metabolism-related genes but there is poor knowledge on the relationship between the genotype and phenotype of nsSNPs in these genes. In this study, we have identified a total of 203 nsSNPs in 29 human alcohol metabolism-related genes from the National Center for Biotechnology Information (NCBI) dbSNP and SWISS-Prot databases. Using the PolyPhen and SIFT algorithms, 43% of nsSNPs in alcohol metabolism-related genes were predicted to have functional impacts on protein function with a significant concordance of the prediction results between the two algorithms. The prediction accuracy is about 77-81% of all the nsSNPs based on the results of in vivo and in vitro studies. These amino acid substitutions are supposed to be the pathogenetic basis for the alteration of metabolism enzyme activity and the association with disease susceptivity. The phenotype of nsSNPs predicted as deleterious needs to be clarified in further studies and the prediction of nsSNPs in human alcohol metabolism-related genes would be useful hints for further genotype-phenotype studies on the individual difference in susceptivity to alcohol-related diseases.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Nutrition and Food Hygiene, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Shu-Feng Zhou
- Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Victoria, Australia.
| |
Collapse
|
36
|
Di YM, Chan E, Wei MQ, Liu JP, Zhou SF. Prediction of deleterious non-synonymous single-nucleotide polymorphisms of human uridine diphosphate glucuronosyltransferase genes. AAPS JOURNAL 2009; 11:469-80. [PMID: 19572200 DOI: 10.1208/s12248-009-9126-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/15/2009] [Indexed: 01/15/2023]
Abstract
UDP glucuronosyltransferases (UGTs) are an important class of Phase II enzymes involved in the metabolism and detoxification of numerous xenobiotics including therapeutic drugs and endogenous compounds (e.g. bilirubin). To date, there are 21 human UGT genes identified, and most of them contain single-nucleotide polymorphisms (SNPs). Non-synonymous SNPs (nsSNPs) of the human UGT genes may cause absent or reduced enzyme activity and polymorphisms of UGT have been found to be closely related to altered drug clearance and/or drug response, hyperbilirubinemia, Gilbert's syndrome, and Crigler-Najjar syndrome. However, it is unlikely to study the functional impact of all identified nsSNPs in humans using laboratory approach due to its giant number. We have investigated the potential for bioinformatics approach for the prediction of phenotype based on known nsSNPs. We have identified a total of 248 nsSNPs from human UGT genes. The two algorithms tools, sorting intolerant from tolerant (SIFT) and polymorphism phenotyping (PolyPhen), were used to predict the impact of these nsSNPs on protein function. SIFT classified 35.5% of the UGT nsSNPs as "deleterious"; while PolyPhen identified 46.0% of the UGT nsSNPs as "potentially damaging" and "damaging". The results from the two algorithms were highly associated. Among 63 functionally characterized nsSNPs in the UGTs, 24 showed altered enzyme expression/activities and 45 were associated with disease susceptibility. SIFT and Polyphen had a correct prediction rate of 57.1% and 66.7%, respectively. These findings demonstrate the potential use of bioinformatics techniques to predict genotype-phenotype relationships which may constitute the basis for future functional studies.
Collapse
Affiliation(s)
- Yuan Ming Di
- Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|