1
|
Rong Y, Li N, Qiao X, Yang L, Han P, Meng Z, Gan H, Wu Z, Zhu X, Sun Y, Liu S, Dou G, Gu R. Icaritin exhibits potential drug-drug interactions through the inhibition of human UDP-glucuronosyltransferase in vitro. Biopharm Drug Dispos 2024; 45:149-158. [PMID: 38886878 DOI: 10.1002/bdd.2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17β-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (μM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (μM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.
Collapse
Affiliation(s)
- Yi Rong
- Office of Pharmacotoxicology, Center for Drug Evaluation, NMPA, Beijing, China
| | - Nanxi Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xuan Qiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Yang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Peng Han
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaoxia Zhu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Wu C, Luo M, Xie D, Zhong S, Xu J, Lu D. Kinetic Characterization of Estradiol Glucuronidation by Liver Microsomes and Expressed UGT Enzymes: The Effects of Organic Solvents. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00888-2. [PMID: 38472634 DOI: 10.1007/s13318-024-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND OBJECTIVE In vitro glucuronidation of 17β-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
4
|
Abstract
Homeostasis is a prerequisite for health. When homeostasis becomes disrupted, dysfunction occurs. This is especially the case for the gut microbiota, which under normal conditions lives in symbiosis with the host. As there are as many microbial cells in and on our body as human cells, it is unlikely they would not contribute to health or disease. The gut bacterial metabolism generates numerous beneficial metabolites but also uremic toxins and their precursors, which are transported into the circulation. Barrier function in the intestine, the heart, and the kidneys regulates metabolite transport and concentration and plays a role in inter-organ and inter-organism communication via small molecules. This communication is analyzed from the perspective of the remote sensing and signaling theory, which emphasizes the role of a large network of multispecific, oligospecific, and monospecific transporters and enzymes in regulating small-molecule homeostasis. The theory provides a systems biology framework for understanding organ cross talk and microbe-host communication involving metabolites, signaling molecules, nutrients, antioxidants, and uremic toxins. This remote small-molecule communication is critical for maintenance of homeostasis along the gut-heart-kidney axis and for responding to homeostatic perturbations. Chronic kidney disease is characterized by gut dysbiosis and accumulation of toxic metabolites. This slowly impacts the body, affecting the cardiovascular system and contributing to the progression of kidney dysfunction, which in its turn influences the gut microbiota. Preserving gut homeostasis and barrier functions or restoring gut dysbiosis and dysfunction could be a minimally invasive way to improve patient outcomes and quality of life in many diseases, including cardiovascular and kidney disease.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Sanjay K Nigam
- Department of Pediatrics (S.K.N.), University of California San Diego, La Jolla, CA
- Division of Nephrology, Department of Medicine (S.K.N.), University of California San Diego, La Jolla, CA
| | - Raymond Vanholder
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Francis Verbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| |
Collapse
|
5
|
Wang Q, Wen H, Ma S, Zhang Y. Polygonum multiflorum Thunb. Induces hepatotoxicity in SD rats and hepatocyte spheroids by Disrupting the metabolism of bilirubin and bile acid. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115461. [PMID: 35728710 DOI: 10.1016/j.jep.2022.115461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liver damage associated with Polygonum multiflorum Thunb. (P. multiflorum) and its preparations have aroused widespread concern. Opinions on the toxicity mechanisms and targets of P. multiflorum vary, and the toxic components are even more controversial. However, based on the current research results, we believed that any single component in P. multiflorum could not directly lead to liver injury, but may be the synergistic effect of multiple components. In addition, the toxicity mechanism also involved multiple targets. AIM OF THE STUDY This study aimed to elucidate the mechanism and target of the hepatotoxicity of P. multiflorum. MATERIALS AND METHODS In this study, the manifestations of liver injury triggered by P. multiflorum and the associated metabolic enzymes/transporters in the metabolic pathways of bilirubin and bile acid were investigated to elucidate the mechanism and target of the hepatotoxicity of P. multiflorum and related components. First, the hepatotoxicity and potential effect of P. multiflorum on both metabolic pathways were studied in rats administered P. multiflorum extracts (in 70% ethanol) for 42 days. Then, in vitro cultured hepatocyte spheroids were used to determine the hepatotoxicity of monomer components. RESULTS This revealed that P. multiflorum could simultaneously block bilirubin(BIL) and bile acid(BA) metabolism pathways, subsequently leading to liver damage. The targets and modes of action include reducing the activity of UGT1A1, the only metabolic enzyme of BIL, downregulating BIL and BA uptake transporters NTCP, OATP1B1, OATP1B3, efflux transporters MRP2, and BSEP, and upregulating efflux transporter MRP3. Furthermore, our data indicated that 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside (TSG) and emodin-8-O-β-D-glucoside (EG) are the main toxic components in P. multiflorum. TSG accounts for 3.71% of the total content of P. multiflorum. In addition to markedly downregulating UGT1A1, TSG can upregulate OATP1B1/3 and promote the uptakes of bilirubin and bile acid, producing synergistic toxicity. EG accounts for 0.29% of the total content and demonstrates direct hepatotoxicity and extensive substrate overlap with bilirubin and bile acids. It can affect these two metabolic pathways simultaneously, promoting the accumulation of both bilirubin and bile acid for further toxic effects. Emodin is other major component, accounting for 0.01% of the total content, and its hepatotoxicity mechanisms include direct toxicity and inhibitory effects on bilirubin metabolizing enzymes. However, emodin is mainly distributed in the kidneys, so its hepatotoxicity risk is relatively low. CONCLUSION The simultaneous blockade of bilirubin and bile acid metabolic pathways as the critical toxic mechanism of P. multiflorum-induced liver injury, and potential toxic components were TSG and EG.
Collapse
Affiliation(s)
- Qi Wang
- Beijing University of Chinese Medicine, Beijing, China; National Institutes for Food and Drug Control, Beijing, China
| | - Hairuo Wen
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China.
| | - Yujie Zhang
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Pang HL, Zhu GH, Zhou QH, Ai CZ, Zhu YD, Wang P, Dou TY, Xia YL, Ma H, Ge GB. Discovery and Characterization of the Key Constituents in Ginkgo biloba Leaf Extract With Potent Inhibitory Effects on Human UDP-Glucuronosyltransferase 1A1. Front Pharmacol 2022; 13:815235. [PMID: 35264954 PMCID: PMC8899474 DOI: 10.3389/fphar.2022.815235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Human UDP-glucuronosyltransferase 1A1 (hUGT1A1) is one of the most essential phase II enzymes in humans. Dysfunction or strong inhibition of hUGT1A1 may result in hyperbilirubinaemia and clinically relevant drug/herb-drug interactions (DDIs/HDIs). Recently, a high-throughput fluorescence-based assay was constructed by us to find the compounds/herbal extracts with strong inhibition against intracellular hUGT1A1. Following screening of over one hundred of herbal products, the extract of Ginkgo biloba leaves (GBL) displayed the most potent hUGT1A1 inhibition in HeLa-UGT1A1 cells (Hela cells overexpressed hUGT1A1). Further investigations demonstrated that four biflavones including bilobetin, isoginkgetin, sciadopitysin and ginkgetin, are key constituents responsible for hUGT1A1 inhibition in living cells. These biflavones potently inhibit hUGT1A1 in both human liver microsomes (HLM) and living cells, with the IC50 values ranging from 0.075 to 0.41 μM in living cells. Inhibition kinetic analyses and docking simulations suggested that four tested biflavones potently inhibit hUGT1A1-catalyzed NHPN-O-glucuronidation in HLM via a mixed inhibition manner, showing the Ki values ranging from 0.07 to 0.74 μM. Collectively, our findings uncover the key constituents in GBL responsible for hUGT1A1 inhibition and decipher their inhibitory mechanisms against hUGT1A1, which will be very helpful for guiding the rational use of GBL-related herbal products in clinical settings.
Collapse
Affiliation(s)
- Hui-Lin Pang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shangha, China
| | - Qi-Hang Zhou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shangha, China
| | - Chun-Zhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Ya-Di Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shangha, China
| | - Ping Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shangha, China
| | - Tong-Yi Dou
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yang-Liu Xia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Hong Ma
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shangha, China
| |
Collapse
|
7
|
Vidimce J, Pillay J, Ronda O, Boon A, Pennell E, Ashton KJ, Dijk TH, Wagner K, Verkade HJ, Bulmer AC. Sexual Dimorphism: increased sterol excretion leads to hypocholesterolaemia in female hyperbilirubinaemic Gunn rats. J Physiol 2022; 600:1889-1911. [PMID: 35156712 PMCID: PMC9310728 DOI: 10.1113/jp282395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract Circulating bilirubin is associated with reduced serum cholesterol concentrations in humans and in hyperbilirubinaemic Gunn rats. However, mechanisms contributing to hypocholesterolaemia remain unknown. Therefore, this study aimed to investigate cholesterol synthesis, transport and excretion in mutant Gunn rats. Adult Gunn and control rats were assessed for daily faecal sterol excretion using metabolic cages, and water was supplemented with [1‐13C]‐acetate to determine cholesterol synthesis. Bile was collected to measure biliary lipid secretion. Serum and liver were collected for biochemical analysis and for gene/protein expression using RT‐qPCR and western blot, respectively. Additionally, serum was collected and analysed from juvenile rats. A significant interaction of sex, age and phenotype on circulating lipids was found with adult female Gunn rats reporting significantly lower cholesterol and phospholipids. Female Gunn rats also demonstrated elevated cholesterol synthesis, greater biliary lipid secretion and increased total faecal cholesterol and bile acid excretion. Furthermore, they possessed increased hepatic low‐density lipoprotein (LDL) receptor and SREBP2 expression. In contrast, there were no changes to sterol metabolism in adult male Gunn rats. This is the first study to demonstrate elevated faecal sterol excretion in female hyperbilirubinaemic Gunn rats. Increased sterol excretion creates a negative intestinal sterol balance that is compensated for by increased cholesterol synthesis and LDL receptor expression. Therefore, reduced circulating cholesterol is potentially caused by increased hepatic uptake via the LDL receptor. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome). Key points Female adult hyperbilirubinaemic (Gunn) rats demonstrated lower circulating cholesterol, corroborating human studies that report a negative association between bilirubin and cholesterol concentrations. Furthermore, female Gunn rats had elevated sterol excretion creating a negative intestinal sterol balance that was compensated for by elevated cholesterol synthesis and increased hepatic low‐density lipoprotein (LDL) receptor expression. Therefore, elevated LDL receptor expression potentially leads to reduced circulating cholesterol levels in female Gunn rats providing an explanation for the hypocholesterolaemia observed in humans with elevated bilirubin levels. This study also reports a novel interaction of sex with the hyperbilirubinaemic phenotype on sterol metabolism because changes were only reported in females and not in male Gunn rats. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome).
Collapse
Affiliation(s)
- Josif Vidimce
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| | - Johara Pillay
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| | - Onne Ronda
- Pediatric Gastroenterology/Hepatology Dept. Pediatrics University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Ai‐Ching Boon
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| | - Evan Pennell
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| | - Kevin J. Ashton
- Faculty of Health Science and Medicine Bond University Gold Coast Australia
| | - Theo H. Dijk
- University of Groningen, University Medical Center Groningen Department of Laboratory Medicine Groningen The Netherlands
| | - Karl‐Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing University of Vienna Vienna Austria
| | - Henkjan J. Verkade
- Pediatric Gastroenterology/Hepatology Dept. Pediatrics University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Andrew C. Bulmer
- School of Pharmacy and Medical Sciences Griffith University Gold Coast Queensland Australia
| |
Collapse
|
8
|
Mullapudi TVR, Ravi PR, Thipparapu G. UGT1A1 and UGT1A3 activity and inhibition in human liver and intestinal microsomes and a recombinant UGT system under similar assay conditions using selective substrates and inhibitors. Xenobiotica 2021; 51:1236-1246. [PMID: 34698602 DOI: 10.1080/00498254.2021.1998732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro enzyme kinetics and inhibition data was compared for UGT1A1 and UGT1A3 isoforms under similar assay conditions using human liver microsomes (HLM), human intestinal microsomes (HIM) and recombinant UGT (rUGT) enzyme systems.UGT1A1 catalysed β-estradiol 3-β-D-glucuronide formation showed allosteric sigmoidal kinetics in all enzyme systems; while UGT1A3 catalysed CDCA 24-acyl-β-D-glucuronide formation exhibited Michaelis-Menten kinetics in HLM, substrate inhibition kinetics in HIM and rUGT systems. Corresponding Km or S50 concentrations of β-estradiol and CDCA were employed in the respective UGT inhibition studies.Atazanavir inhibited the production of β-estradiol 3-β-D-glucuronide with IC50 values of 0.54 µM and 0.16 µM in HLM and rUGT1A1, respectively. But its inhibition potential was not observed in HIM, indicating potential cross-talk with other high-affinity intestinal UGT isozymes. On the other hand, zafirlukast, a pan UGT inhibitor, exhibited moderate inhibition in HIM with an IC50 value of 16.70 µM. Lithocholic acid, inhibited the production of CDCA 24-acyl-β-D-glucuronide with IC50 values of 1.68, 1.84, and 12.42 µM in HLM, rUGT1A3, and HIM, respectively.These results indicated that HLM, HIM, and rUGTs may be used as complementary in vitro systems to evaluate hepatic and intestinal UGT mediated DDIs at the screening stage.
Collapse
Affiliation(s)
- T V Radhakrishna Mullapudi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India.,Drug Metabolism and Pharmacokinetics, PharmaJen Laboratories Private Limited, A209 Technology Business Incubator, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Punna Rao Ravi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Ganapathi Thipparapu
- Drug Metabolism and Pharmacokinetics, PharmaJen Laboratories Private Limited, A209 Technology Business Incubator, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
9
|
Jarrar Y, Lee SJ. The Functionality of UDP-Glucuronosyltransferase Genetic Variants and their Association with Drug Responses and Human Diseases. J Pers Med 2021; 11:jpm11060554. [PMID: 34198586 PMCID: PMC8231948 DOI: 10.3390/jpm11060554] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that metabolize endogenous fatty acids such as arachidonic acid metabolites, as well as many prescription drugs, such as opioids, antiepileptics, and antiviral drugs. The UGT1A and 2B genes are highly polymorphic, and their genetic variants may affect the pharmacokinetics and hence the responses of many drugs and fatty acids. This study collected data and updated the current view of the molecular functionality of genetic variants on UGT genes that impact drug responses and the susceptibility to human diseases. The functional information of UGT genetic variants with clinical associations are essential to understand the inter-individual variation in drug responses and susceptibility to toxicity.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Pharmacy, College of Pharmacy, Alzaytoonah University of Jordan, Amman 11733, Jordan;
| | - Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center, College of Medicine, Inje University, Busan 50834, Korea
- Correspondence: ; Tel.: +82-051-890-5911; Fax: +82-050-4290-5739
| |
Collapse
|
10
|
Vidimce J, Pillay J, Shrestha N, Dong LF, Neuzil J, Wagner KH, Holland OJ, Bulmer AC. Mitochondrial Function, Fatty Acid Metabolism, and Body Composition in the Hyperbilirubinemic Gunn Rat. Front Pharmacol 2021; 12:586715. [PMID: 33762933 PMCID: PMC7982585 DOI: 10.3389/fphar.2021.586715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Circulating bilirubin is associated with reduced adiposity in human and animal studies. A possible explanation is provided by in vitro data that demonstrates that bilirubin inhibits mitochondrial function and decreases efficient energy production. However, it remains unclear whether hyperbilirubinemic animals have similar perturbed mitochondrial function and whether this is important for regulation of energy homeostasis. Aim: To investigate the impact of unconjugated hyperbilirubinemia on body composition, and mitochondrial function in hepatic tissue and skeletal muscle. Materials and Methods: 1) Food intake and bodyweight gain of 14-week old hyperbilirubinemic Gunn (n = 19) and normobilirubinemic littermate (control; n = 19) rats were measured over a 17-day period. 2) Body composition was determined using dual-energy X-ray absorptiometry and by measuring organ and skeletal muscle masses. 3) Mitochondrial function was assessed using high-resolution respirometry of homogenized liver and intact permeabilized extensor digitorum longus and soleus fibers. 4) Liver tissue was flash frozen for later gene (qPCR), protein (Western Blot and citrate synthase activity) and lipid analysis. Results: Female hyperbilirubinemic rats had significantly reduced fat mass (Gunn: 9.94 ± 5.35 vs. Control: 16.6 ± 6.90 g, p < 0.05) and hepatic triglyceride concentration (Gunn: 2.39 ± 0.92 vs. Control: 4.65 ± 1.67 mg g-1, p < 0.01) compared to normobilirubinemic controls. Furthermore, hyperbilirubinemic rats consumed fewer calories daily (p < 0.01) and were less energetically efficient (Gunn: 8.09 ± 5.75 vs. Control: 14.9 ± 5.10 g bodyweight kcal-1, p < 0.05). Hepatic mitochondria of hyperbilirubinemic rats demonstrated increased flux control ratio (FCR) via complex I and II (CI+II) (Gunn: 0.78 ± 0.16 vs. Control: 0.62 ± 0.09, p < 0.05). Similarly, exogenous addition of 31.3 or 62.5 μM unconjugated bilirubin to control liver homogenates significantly increased CI+II FCR (p < 0.05). Hepatic PGC-1α gene expression was significantly increased in hyperbilirubinemic females while FGF21 and ACOX1 was significantly greater in male hyperbilirubinemic rats (p < 0.05). Finally, hepatic mitochondrial complex IV subunit 1 protein expression was significantly increased in female hyperbilirubinemic rats (p < 0.01). Conclusions: This is the first study to comprehensively assess body composition, fat metabolism, and mitochondrial function in hyperbilirubinemic rats. Our findings show that hyperbilirubinemia is associated with reduced fat mass, and increased hepatic mitochondrial biogenesis, specifically in female animals, suggesting a dual role of elevated bilirubin and reduced UGT1A1 function on adiposity and body composition.
Collapse
Affiliation(s)
- Josif Vidimce
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Johara Pillay
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Nirajan Shrestha
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Lan-Feng Dong
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
11
|
Compound heterozygous UGT1A1*28 and UGT1A1*6 or single homozygous UGT1A1*28 are major genotypes associated with Gilbert's syndrome in Chinese Han people. Gene 2021; 781:145526. [PMID: 33631237 DOI: 10.1016/j.gene.2021.145526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Gilbert's syndrome (GS) is a mild condition characterized by periods of hyperbilirubinemia, which results in variations in the UDP-glucuronosyltransferase 1 (UGT1A1) gene. Variant genotypes of UGT1A1 vary in different populations in the world. The present study aimed to determine the genotype of the UGT1A1 promoter and exon that are related to the serum total bilirubin (STB) level in the Chinese Han population. A total of 120 individuals diagnosed with GS (GS group) and 120 healthy individuals (non-GS group) were enrolled. Routine blood, liver function tests, and antibodies associated with autoimmune liver diseases were assessed. Blood samples were collected for DNA purification. Sequencing of the UGT1A1 promoter and exons was conducted for post segment amplification by PCR. Compound heterozygous UGT1A1*28 and UGT1A1*6 (25/120, 20.83%), single homozygous UGT1A1*28 (24/120, 20.00%) and single heterozygous UGT1A1*6 (18/120, 15.00%) were the most frequent genotypes in the GS group. However, single heterozygous UGT1A1*6 (30/120, 25.00%) and single heterozygous UGT1A1*28 (19/120, 15.83%) were the most frequent genotypes in the non-GS group. Further, the frequencies of single homozygous UGT1A1*28, compound heterozygous UGT1A1*28 and UGT1A1*6, and compound heterozygous UGT1A1*28, UGT1A1*6 and UGT1A1*27 were significantly higher in the GS group than those in the non-GS group. The STB levels of GS patients with the homozygous UGT1A1*28 genotype were remarkably higher than those of patients with other genotypes. Homozygous UGT1A1*28 and heterozygous UGT1A1*6 variants were associated with the highest and lowest risks of hyperbilirubinemia, respectively. Our study revealed that compound heterozygous UGT1A1*28 and UGT1A1*6, or single homozygous UGT1A1*28 are major genotypes associated with GS in Chinese Han people. These findings might facilitate the precise genomic diagnosis of Gilbert's syndrome.
Collapse
|
12
|
Seyed Khoei N, Carreras-Torres R, Murphy N, Gunter MJ, Brennan P, Smith-Byrne K, Mariosa D, Mckay J, O’Mara TA, Jarrett R, Hjalgrim H, Smedby KE, Cozen W, Onel K, Diepstra A, Wagner KH, Freisling H. Genetically Raised Circulating Bilirubin Levels and Risk of Ten Cancers: A Mendelian Randomization Study. Cells 2021; 10:394. [PMID: 33671849 PMCID: PMC7918902 DOI: 10.3390/cells10020394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Bilirubin, an endogenous antioxidant, may play a protective role in cancer development. We applied two-sample Mendelian randomization to investigate whether genetically raised bilirubin levels are causally associated with the risk of ten cancers (pancreas, kidney, endometrium, ovary, breast, prostate, lung, Hodgkin's lymphoma, melanoma, and neuroblastoma). The number of cases and their matched controls of European descent ranged from 122,977 and 105,974 for breast cancer to 1200 and 6417 for Hodgkin's lymphoma, respectively. A total of 115 single-nucleotide polymorphisms (SNPs) associated (p < 5 × 10-8) with circulating total bilirubin, extracted from a genome-wide association study in the UK Biobank, were used as instrumental variables. One SNP (rs6431625) in the promoter region of the uridine-diphosphoglucuronate glucuronosyltransferase1A1 (UGT1A1) gene explained 16.9% and the remaining 114 SNPs (non-UGT1A1 SNPs) explained 3.1% of phenotypic variance in circulating bilirubin levels. A one-standarddeviation increment in circulating bilirubin (≈ 4.4 µmol/L), predicted by non-UGT1A1 SNPs, was inversely associated with risk of squamous cell lung cancer and Hodgkin's lymphoma (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.73-0.99, P 0.04 and OR 0.64, 95% CI 0.42-0.99, p 0.04, respectively), which was confirmed after removing potential pleiotropic SNPs. In contrast, a positive association was observed with the risk of breast cancer after removing potential pleiotropic SNPs (OR 1.12, 95% CI 1.04-1.20, p 0.002). There was little evidence for robust associations with the other seven cancers investigated. Genetically raised bilirubin levels were inversely associated with risk of squamous cell lung cancer as well as Hodgkin's lymphoma and positively associated with risk of breast cancer. Further studies are required to investigate the utility of bilirubin as a low-cost clinical marker to improve risk prediction for certain cancers.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (N.S.K.); (K.-H.W.)
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L’Hospitalet de Llobregat, 8908 Barcelona, Spain;
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (N.M.); (M.J.G.)
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (N.M.); (M.J.G.)
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (P.B.); (K.S.-B.); (D.M.); (J.M.)
| | - Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (P.B.); (K.S.-B.); (D.M.); (J.M.)
| | - Daniela Mariosa
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (P.B.); (K.S.-B.); (D.M.); (J.M.)
| | - James Mckay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (P.B.); (K.S.-B.); (D.M.); (J.M.)
| | - Tracy A. O’Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, 4006 Brisbane, Australia
| | | | - Ruth Jarrett
- Institute of Infection, Immunity and Inflammation, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark;
- Department of Hematology, Finsen Centre, 2100 Copenhagen, Denmark
| | - Karin E. Smedby
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Hematology, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Wendy Cozen
- Departments of Preventive Medicine and Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA;
| | - Kenan Onel
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 60637, USA;
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands;
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (N.S.K.); (K.-H.W.)
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (N.M.); (M.J.G.)
| |
Collapse
|
13
|
Templeton I, Eichenbaum G, Sane R, Zhou J. Case Study 6: Deconvoluting Hyperbilirubinemia-Differentiating Between Hepatotoxicity and Reversible Inhibition of UGT1A1, MRP2, or OATP1B1 in Drug Development. Methods Mol Biol 2021; 2342:695-707. [PMID: 34272713 DOI: 10.1007/978-1-0716-1554-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
New molecular entities (NMEs) are evaluated using a rigorous set of in vitro and in vivo studies to assess their safety and suitability for testing in humans. Regulatory health authorities require that therapeutic and supratherapeutic doses be administered, by the intended route of administration, to two nonclinical species prior to human testing. The purpose of these studies is to identify potential target organ toxicity and to determine if the effects are reversible. Liver is a potential site for toxicity caused by orally administered NMEs due to high exposure during first pass after oral administration. A range of clinical chemistry analytes are routinely measured in both nonclinical and clinical studies to evaluate and monitor for hepatotoxicity. While bilirubin itself circulates within a wide range of concentrations in many animal species and humans, without causing adverse effects and possibly providing benefits, bilirubin is one of the few readily monitored circulating biomarkers that can provide insight into liver function. Therefore, any changes in plasma or urine bilirubin levels must be carefully evaluated. Changes in bilirubin may occur as a result of adaptive nontoxic changes or severe toxicity. Examples of adaptive nontoxic changes in liver function, which may elevate direct (conjugated) and/or indirect (unconjugated) bilirubin above baseline levels, include reversible inhibition of UGT1A1-mediated bilirubin metabolism and OATP1B1-, OATP1B3-, or MRP2-mediated transport. Alternatively, hepatocellular necrosis, hypoalbuminuria, or cholestasis may also lead to elevation of bilirubin; in some cases, these effects may be irreversible.This chapter aims to demonstrate application of enzyme kinetic principles in understanding the risk of bilirubin elevation through inhibition of multiple processes-involving both enzymes and transporters. In the sections that follow, we first provide a brief summary of bilirubin formation and disposition. Two case examples are then provided to illustrate the enzyme kinetic studies needed for risk assessment and for identifying the mechanisms of bilirubin elevation. Caveats of methods and data interpretation are discussed in these case studies. The data presented in this chapter is unpublished at the time of compilation of this book. It has been incorporated in this chapter to provide a sense of complexities in enzyme kinetics to the reader.
Collapse
Affiliation(s)
| | - Gary Eichenbaum
- Translational Science and Safety, Office of the Chief Medical Officer, Johnson & Johnson, Raritan, NJ, USA
| | - Rucha Sane
- Department of Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Jin Zhou
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
14
|
Zhou J, Argikar UA, Miners JO. Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). Methods Mol Biol 2021; 2342:301-338. [PMID: 34272700 DOI: 10.1007/978-1-0716-1554-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bisubstrate reaction that requires the aglycone and the cofactor, UDP-GlcUA. Accumulating evidence suggests that the bisubstrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modeling of glucuronidation reactions in vitro, UDP-GlcUA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for during experimental design and data interpretation. While the assessment of drug-drug interactions resulting from UGT inhibition has been challenging in the past, the increasing availability of UGT enzyme-selective substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of drug-drug interaction potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often underpredicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation. Physiologically based pharmacokinetic (PBPK) modeling has also shown to be of value for predicting PK of drugs eliminated by glucuronidation.
Collapse
Affiliation(s)
- Jin Zhou
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Upendra A Argikar
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| | - John O Miners
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
15
|
Negative correlation of high serum bilirubin with cancer development in adults without hepatobiliary disease. Eur J Cancer Prev 2020; 30:69-75. [DOI: 10.1097/cej.0000000000000643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
17
|
Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by kinase inhibitors: Effects of dabrafenib, ibrutinib, nintedanib, trametinib and BIBF 1202. Biochem Pharmacol 2019; 169:113616. [DOI: 10.1016/j.bcp.2019.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023]
|
18
|
Lv X, Xia Y, Finel M, Wu J, Ge G, Yang L. Recent progress and challenges in screening and characterization of UGT1A1 inhibitors. Acta Pharm Sin B 2019; 9:258-278. [PMID: 30972276 PMCID: PMC6437557 DOI: 10.1016/j.apsb.2018.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) is an important conjugative enzyme in mammals that is responsible for the conjugation and detoxification of both endogenous and xenobiotic compounds. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in metabolic disorders of endobiotic metabolism. Therefore, both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recommended assaying the inhibitory potential of drugs under development on the human UGT1A1 prior to approval. This review focuses on the significance, progress and challenges in discovery and characterization of UGT1A1 inhibitors. Recent advances in the development of UGT1A1 probes and their application for screening UGT1A1 inhibitors are summarized and discussed in this review for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been prepared and analyzed. Challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide guidance for rational use of drugs/herbs in order to avoid the occurrence of adverse effects via UGT1A1 inhibition, as well as presenting methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating investigations on UGT1A1-ligand interactions.
Collapse
|
19
|
Torres Hernandez AX, Weeramange CJ, Desman P, Fatino A, Haney O, Rafferty RJ. Efforts in redesigning the antileukemic drug 6-thiopurine: decreasing toxic side effects while maintaining efficacy. MEDCHEMCOMM 2018; 10:169-179. [PMID: 30774864 DOI: 10.1039/c8md00463c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/15/2018] [Indexed: 01/14/2023]
Abstract
6-Thiopurine (6TP) is a currently prescribed drug in the treatment of diseases ranging from Crohn's disease to acute lymphocytic leukemia. While its potent mode of action is through incorporation into DNA as a thiol mimic of deoxyguanosine, severe toxicities are associated with its administration which hinder the potential therapeutic application. We have previously reported in vitro that the oxidative metabolites of 6TP, specifically 6-thiouric acid (6TU, K i 7 μM), are potent inhibitors of UDP-glucose dehydrogenase (UDPGDH), an enzyme that is responsible for the formation of UDP-glucuronic acid (UDPGA), an essential substrate that is used in detoxification processes in the liver. An in vivo investigation was undertaken to probe if 6TU inhibits UDPGDH in rat hepatocytes, and it was observed that 6TU does greatly suppress the conjugation of bilirubin with UDPGA. The failed excretion of bilirubin is linked to a majority of the reported toxicities associated with 6TP administration. Efforts were undertaken for the construction of 6TP analogs, substituted at the C8 position, to reduce inhibition of UDPGDH while retaining therapeutic efficacy. Three new 6TP analogs bearing a halogen (Br, Cl, and F) at the C8 position have been achieved over five-synthetic steps in overall yields of 16 to 32%. Each of these analogs were shown to have reduced inhibition towards UDPGDH, with K i values of 192, 163, 215 μM, respectively. In addition, the bromine, chlorine, and fluorine analogs were shown to possess cytotoxicity towards the REH cell line (acute lymphocytic leukemia) having IC50 values of 9.54 μM (±0.97), 3.95 μM (±1.94), and 4.71 μM (±1.40), respectively. These three new 6TP analogs represent the first steps in the redesign of this potent anticancer agent into a better drug that possesses reduced toxic side effects while retaining therapeutic potency.
Collapse
Affiliation(s)
- Arnaldo X Torres Hernandez
- Department of Chemistry , Pontifical Catholic University of Puerto Rico , 2250 Boulevard Luis A. Ferré Aguayo, Suite 626 , Ponce , PR 00717-0777 , Puerto Rico.,Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Chamitha J Weeramange
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Prathibha Desman
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Anthony Fatino
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Olivia Haney
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Ryan J Rafferty
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| |
Collapse
|
20
|
Qosa H, Avaritt BR, Hartman NR, Volpe DA. In vitro UGT1A1 inhibition by tyrosine kinase inhibitors and association with drug-induced hyperbilirubinemia. Cancer Chemother Pharmacol 2018; 82:795-802. [PMID: 30105461 DOI: 10.1007/s00280-018-3665-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Hyperbilirubinemia has been observed in patients treated with tyrosine kinase inhibitor (TKI) drugs. Therefore, it would be beneficial to understand whether there is a relationship between inhibition of uridine-5'-diphosphate glucuronosyltransferase (UGT) 1A1 activity and observed bilirubin elevations in TKI drug-treated patients. UGT1A1 is responsible for the glucuronidation of bilirubin which leads to its elimination in the bile. METHODS To examine this question, an in vitro glucuronidation assay was developed to determine the inhibitory effect of TKI drugs employing human liver microsomes (HLM) with varying UGT1A1 activity. Utilizing β-estradiol as the UGT1A1 probe substrate, 20 TKI drugs were evaluated at concentrations that represent clinical plasma levels. Adverse event reports were searched to generate an empirical Bayes geometric mean (EGBM) score for clinical hyperbilirubinemia with the TKI drugs. RESULTS Erlotinib, nilotinib, regorafenib, pazopanib, sorafenib and vemurafenib had IC50 values that were lower than their clinical steady-state Cmax concentrations. These TKI drugs had high incidences of hyperbilirubinemia and higher EBGM scores. The IC50 values and Cmax/IC50 ratios correlated well with EBGM scores for hyperbilirubinemia (P < 0.005). For the TKI drugs with higher incidence of hyperbilirubinemia in Gilbert syndrome patients, who have reduced UGT1A1 activity, six of eight had smaller ratios in the low UGT1A1 activity microsomes than the wild-type microsomes for drugs, indicating greater sensitivity to the drugs in this phenotype. CONCLUSIONS These results suggest that in vitro UGT1A1 inhibition assays have the potential to predict clinical hyperbilirubinemia.
Collapse
Affiliation(s)
- Hisham Qosa
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Brittany R Avaritt
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
- Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Neil R Hartman
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Donna A Volpe
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA.
| |
Collapse
|
21
|
Wagner KH, Shiels RG, Lang CA, Seyed Khoei N, Bulmer AC. Diagnostic criteria and contributors to Gilbert's syndrome. Crit Rev Clin Lab Sci 2018; 55:129-139. [PMID: 29390925 DOI: 10.1080/10408363.2018.1428526] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Hyperbilirubinemia is a well-known condition in the clinical setting; however, the causes of elevated serum bilirubin are diverse, as are the clinical ramifications of this condition. For example, diagnoses of individuals vary depending on whether they exhibit an unconjugated or conjugated hyperbilirubinemia. Diagnoses can include conditions of disordered bilirubin metabolism (Gilbert's, Crigler-Najjar, Rotor, or Dubin-Johnson syndromes) or an acquired disease, including alcoholic/non-alcoholic fatty liver disease, hepatotropic hepatitis, cirrhosis, or hepato-biliary malignancy. Assessment of bilirubin concentrations is typically conducted as part of routine liver function testing. Mildly elevated total bilirubin with normal serum activities of liver transaminases, biliary damage markers, and red blood cell counts, however, may indicate the presence of Gilbert's syndrome (GS), a benign condition that is present in ∼5-10% of the population. In this case, mildly elevated unconjugated bilirubin in GS is strongly associated with "reduced" prevalence of chronic diseases, particularly cardiovascular diseases (CVD) and type 2 diabetes mellitus (and associated risk factors), as well as CVD-related and all-cause mortality. These reports challenge the dogma that bilirubin is simply a potentially neurotoxic by-product of heme catabolism and emphasize the importance of understanding its potential beneficial physiologic and detrimental pathophysiologic effects, in order to appropriately consider bilirubin test results within the clinical laboratory setting. With this information, we hope to improve the understanding of disorders of bilirubin metabolism, emphasize the diagnostic importance of these conditions, and outline the potential impact GS may have on resistance to disease.
Collapse
Affiliation(s)
- Karl-Heinz Wagner
- a Department of Nutritional Sciences and Research Platform Active Ageing , University of Vienna , Vienna , Austria
| | - Ryan G Shiels
- b School of Medical Science and Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| | - Claudia Anna Lang
- a Department of Nutritional Sciences and Research Platform Active Ageing , University of Vienna , Vienna , Austria
| | - Nazlisadat Seyed Khoei
- a Department of Nutritional Sciences and Research Platform Active Ageing , University of Vienna , Vienna , Austria
| | - Andrew C Bulmer
- b School of Medical Science and Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| |
Collapse
|
22
|
Inhibition of UDP-glucose dehydrogenase by 6-thiopurine and its oxidative metabolites: Possible mechanism for its interaction within the bilirubin excretion pathway and 6TP associated liver toxicity. J Pharm Biomed Anal 2017; 151:106-115. [PMID: 29324279 DOI: 10.1016/j.jpba.2017.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/24/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
6-Thiopurine (6TP) is an actively prescribed drug in the treatment of various diseases ranging from Crohn's disease and other inflammatory diseases to acute lymphocytic leukemia and non-Hodgkin's leukemia. While 6TP has beneficial therapeutic uses, severe toxicities are also reported with its use, such as jaundice and liver toxicity. While numerous investigations into the mode in which toxicity originates has been undertaken. None have investigated the effects of inhibition towards UDP-Glucose Dehydrogenase (UDPGDH), an oxidative enzyme responsible for UDP-glucuronic acid (UDPGA) formation or UDP-Glucuronosyl transferase (UGT1A1), which is responsible for the conjugation of bilirubin with UDPGA for excretion. Failure to excrete bilirubin leads to jaundice and liver toxicity. We proposed that either 6TP or its primary oxidative excretion metabolites inhibit one or both of these enzymes, resulting in the observed toxicity from 6TP administration. Inhibition analysis of these purines revealed that 6-thiopurine has weak to no inhibition towards UDPGDH with a Ki of 288 μM with regard to varying UDP-glucose, but 6-thiouric (primary end metabolite, fully oxidized at carbon 2 and 8, and highly retained by the body) has a near six-fold increased inhibition towards UDPGDH with a Ki of 7 μM. Inhibition was also observed by 6-thioxanthine (oxidized at carbon 2) and 8-OH-6TP with Ki values of 54 and 14 μM, respectively. Neither 6-thiopurine or its excretion metabolites were shown to inhibit UGT1A1. Our results show that the C2 and C8 positions of 6TP are pivotal in said inhibition towards UDPGDH and have no effect upon UGT1A1, and that blocking C8 could lead to new analogs with reduced, if not eliminated jaundice and liver toxicities.
Collapse
|
23
|
Lv X, Feng L, Ai CZ, Hou J, Wang P, Zou LW, Cheng J, Ge GB, Cui JN, Yang L. A Practical and High-Affinity Fluorescent Probe for Uridine Diphosphate Glucuronosyltransferase 1A1: A Good Surrogate for Bilirubin. J Med Chem 2017; 60:9664-9675. [PMID: 29125289 DOI: 10.1021/acs.jmedchem.7b01097] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study aimed to develop a practical and high-affinity fluorescent probe for uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), a key conjugative enzyme responsible for the elimination and detoxification of many potentially harmful compounds. Several substrates derived from N-butyl-4-phenyl-1,8-naphthalimide were designed and synthesized on the basis of the substrate preference of UGT1A1 and the principle of photoinduced electron transfer (PET). Following the preliminary screening, substrate 2 was found with a high specificity and high affinity toward UGT1A1, while such biotransformation brought remarkable changes in fluorescence emission. Both inhibition kinetic analyses and molecular docking simulations demonstrated that 2 could bind on UGT1A1 at the same ligand-binding site as bilirubin. Furthermore, this newly developed probe was successfully used for sensing UGT1A1 activities and the high-throughput screening of UGT1A1 modulators in complex biological samples. In conclusion, a practical and high-affinity fluorescent probe for UGT1A1 was designed and well-characterized, which could serve as a good surrogate for bilirubin to investigate UGT1A1-ligand interactions.
Collapse
Affiliation(s)
- Xia Lv
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China.,College of Life Science, Dalian Minzu University , Dalian 116600, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Lei Feng
- Dalian Medical University , Dalian 116044, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Chun-Zhi Ai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Jie Hou
- Dalian Medical University , Dalian 116044, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Ping Wang
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Jie Cheng
- Center for Drug Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20903, United States
| | - Guang-Bo Ge
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Jing-Nan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Ling Yang
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| |
Collapse
|
24
|
Ma G, Zhang Y, Chen W, Tang Z, Xin X, Yang P, Liu X, Cai W, Hu M. Inhibition of Human UGT1A1-Mediated Bilirubin Glucuronidation by Polyphenolic Acids Impact Safety of Popular Salvianolic Acid A/B-Containing Drugs and Herbal Products. Mol Pharm 2017; 14:2952-2966. [PMID: 28603997 DOI: 10.1021/acs.molpharmaceut.7b00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bilirubin-related adverse reactions (ADR, e.g., jaundice and hyperbilirubinemia) induced by herbs rich in certain polyphenolic acids are widely reported. However, the causes and the mechanisms underlying these ADR are not well understood. The purpose of this article is to determine the mechanism by which certain polyphenolic acids inhibit UGT1A1-mediated bilirubin glucuronidation, leading to jaundice or hyperbilirubinemia. We investigated in vitro inhibitory effects on bilirubin glucuronidation of salvianolic acid A (SAA), salvianolic acid B (SAB), danshensu (DSS), protocatechuic aldehyde (PA), and rosmarinic acid (RA), as well as two Salvia miltiorrhiza injections (DSI and CDI) rich in polyphenolic acids. The results showed that average formation rates of three bilirubin glucuronides displayed a significant difference (p < 0.05) and the formation of monoglucuronide was favored regardless if an inhibitor was present or not. SAA, SAB, DSI, and CDI, but not DSS, PA, and RA, significantly inhibited human UGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibitory mechanism. Average IC50 values of SAA, SAB, DSI, and CDI-mediated inhibition of bilirubin glucuronidation were bilirubin concentration-dependent, and their values (against total bilirubin glucuronidation) were in the range 0.44 ± 0.02 to 0.86 ± 0.04 μg/mL (for SAA), 4.22 ± 0.30 to 12.50 ± 0.93 μg/mL (for SAB), 9.29 ± 0.76 to 18.82 ± 0.63 μg/mL (for DSI), and 9.18 ± 2.00 to 22.36 ± 1.39 μg/mL (for CDI), respectively. In conclusion, SAA and its analog SAB are the main ingredients responsible for inhibition of bilirubin glucuronidation by DSI and CDI, whose use is associated with many high bilirubin-related ADR.
Collapse
Affiliation(s)
- Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Ying Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Wenyan Chen
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Zhifang Tang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Xiaoming Xin
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Ping Yang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Xiaoqin Liu
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , 1441 Moursund Street, Houston, Texas 77030, United States
| |
Collapse
|
25
|
Shebley M, Liu J, Kavetskaia O, Sydor J, de Morais SM, Fischer V, Nijsen MJMA, Bow DAJ. Mechanisms and Predictions of Drug-Drug Interactions of the Hepatitis C Virus Three Direct-Acting Antiviral Regimen: Paritaprevir/Ritonavir, Ombitasvir, and Dasabuvir. Drug Metab Dispos 2017; 45:755-764. [PMID: 28483778 DOI: 10.1124/dmd.116.074518] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
To assess drug-drug interaction (DDI) potential for the three direct-acting antiviral (3D) regimen of ombitasvir, dasabuvir, and paritaprevir, in vitro studies profiled drug-metabolizing enzyme and transporter interactions. Using mechanistic static and dynamic models, DDI potential was predicted for CYP3A, CYP2C8, UDP-glucuronosyltransferase (UGT) 1A1, organic anion-transporting polypeptide (OATP) 1B1/1B3, breast cancer resistance protein (BCRP), and P-glycoprotein (P-gp). Perpetrator static model DDI predictions for metabolizing enzymes were within 2-fold of the clinical observations, but additional physiologically based pharmacokinetic modeling was necessary to achieve the same for drug transporters. When perpetrator interactions were assessed, ritonavir was responsible for the strong increase in exposure of sensitive CYP3A substrates, whereas paritaprevir (an OATP1B1/1B3 inhibitor) greatly increased the exposure of sensitive OATP1B1/1B3 substrates. The 3D regimen drugs are UGT1A1 inhibitors and are predicted to moderately increase plasma exposure of sensitive UGT1A1 substrates. Paritaprevir, ritonavir, and dasabuvir are BCRP inhibitors. Victim DDI predictions were qualitatively in line with the clinical observations. Plasma exposures of the 3D regimen were reduced by strong CYP3A inducers (paritaprevir and ritonavir; major CYP3A substrates) but were not affected by strong CYP3A4 inhibitors, since ritonavir (a CYP3A inhibitor) is already present in the regimen. Strong CYP2C8 inhibitors increased plasma exposure of dasabuvir (a major CYP2C8 substrate), OATP1B1/1B3 inhibitors increased plasma exposure of paritaprevir (an OATP1B1/1B3 substrate), and P-gp or BCRP inhibitors (all compounds are substrates of P-gp and/or BCRP) increased plasma exposure of the 3D regimen. Overall, the comprehensive mechanistic assessment of compound disposition along with mechanistic and PBPK approaches to predict victim and perpetrator DDI liability may enable better clinical management of nonstudied drug combinations with the 3D regimen.
Collapse
Affiliation(s)
- Mohamad Shebley
- Drug Metabolism, Pharmacokinetics, and Bioanalysis (M.S., J.L., O.K., J.S., S.M.d.M., V.F., M.J.M.A.N., D.A.J.B.) and Clinical Pharmacology and Pharmacometrics (M.S.), AbbVie Inc., North Chicago, Illinois
| | - Jinrong Liu
- Drug Metabolism, Pharmacokinetics, and Bioanalysis (M.S., J.L., O.K., J.S., S.M.d.M., V.F., M.J.M.A.N., D.A.J.B.) and Clinical Pharmacology and Pharmacometrics (M.S.), AbbVie Inc., North Chicago, Illinois
| | - Olga Kavetskaia
- Drug Metabolism, Pharmacokinetics, and Bioanalysis (M.S., J.L., O.K., J.S., S.M.d.M., V.F., M.J.M.A.N., D.A.J.B.) and Clinical Pharmacology and Pharmacometrics (M.S.), AbbVie Inc., North Chicago, Illinois
| | - Jens Sydor
- Drug Metabolism, Pharmacokinetics, and Bioanalysis (M.S., J.L., O.K., J.S., S.M.d.M., V.F., M.J.M.A.N., D.A.J.B.) and Clinical Pharmacology and Pharmacometrics (M.S.), AbbVie Inc., North Chicago, Illinois
| | - Sonia M de Morais
- Drug Metabolism, Pharmacokinetics, and Bioanalysis (M.S., J.L., O.K., J.S., S.M.d.M., V.F., M.J.M.A.N., D.A.J.B.) and Clinical Pharmacology and Pharmacometrics (M.S.), AbbVie Inc., North Chicago, Illinois
| | - Volker Fischer
- Drug Metabolism, Pharmacokinetics, and Bioanalysis (M.S., J.L., O.K., J.S., S.M.d.M., V.F., M.J.M.A.N., D.A.J.B.) and Clinical Pharmacology and Pharmacometrics (M.S.), AbbVie Inc., North Chicago, Illinois
| | - Marjoleen J M A Nijsen
- Drug Metabolism, Pharmacokinetics, and Bioanalysis (M.S., J.L., O.K., J.S., S.M.d.M., V.F., M.J.M.A.N., D.A.J.B.) and Clinical Pharmacology and Pharmacometrics (M.S.), AbbVie Inc., North Chicago, Illinois
| | - Daniel A J Bow
- Drug Metabolism, Pharmacokinetics, and Bioanalysis (M.S., J.L., O.K., J.S., S.M.d.M., V.F., M.J.M.A.N., D.A.J.B.) and Clinical Pharmacology and Pharmacometrics (M.S.), AbbVie Inc., North Chicago, Illinois
| |
Collapse
|
26
|
Yang N, Sun R, Liao X, Aa J, Wang G. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine. Pharmacol Res 2017; 121:169-183. [PMID: 28479371 DOI: 10.1016/j.phrs.2017.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are the primary phase II enzymes catalyzing the conjugation of glucuronic acid to the xenobiotics with polar groups for facilitating their clearance. The UGTs belong to a superfamily that consists of diverse isoforms possessing distinct but overlapping metabolic activity. The abnormality or deficiency of UGTs in vivo is highly associated with some diseases, efficacy and toxicity of drugs, and precisely therapeutic personality. Despite the great effects and fruitful results achieved, to date, the expression and functions of individual UGTs have not been well clarified, the inconsistency of UGTs is often observed in human and experimental animals, and the complex regulation factors affecting UGTs have not been systematically summarized. This article gives an overview of updated reports on UGTs involving the various regulatory factors in terms of the genetic, environmental, pathological, and physiological effects on the functioning of individual UGTs, in turn, the dysfunction of UGTs induced disease risk and endo- or xenobiotic metabolism-related toxicity. The complex cross-talk effect of UGTs with internal homeostasis is systematically summarized and discussed in detail, which would be of great importance for personalized precision medicine.
Collapse
Affiliation(s)
- Na Yang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Liao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
27
|
Miners JO, Chau N, Rowland A, Burns K, McKinnon RA, Mackenzie PI, Tucker GT, Knights KM, Kichenadasse G. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia. Biochem Pharmacol 2017; 129:85-95. [DOI: 10.1016/j.bcp.2017.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023]
|
28
|
Kotsampasakou E, Escher SE, Ecker GF. Linking organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1 and OATP1B3) interaction profiles to hepatotoxicity - The hyperbilirubinemia use case. Eur J Pharm Sci 2017; 100:9-16. [PMID: 28063966 DOI: 10.1016/j.ejps.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/26/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Hyperbilirubinemia is a pathological condition of excessive accumulation of conjugated or unconjugated bilirubin in blood. It has been associated with neurotoxicity and non-neural organ dysfunctions, while it can also be a warning of liver side effects. Hyperbilirubinemia can either be a result of overproduction of bilirubin due to hemolysis or dyserythropoiesis, or the outcome of impaired bilirubin elimination due to liver transporter malfunction or inhibition. There are several reports in literature that inhibition of organic anion transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) might lead to hyperbilirubinemia. In this study we created a set of classification models for hyperbilirubinemia, which, besides physicochemical descriptors, also include the output of classification models of human OATP1B1 and 1B3 inhibition. Models were based on either human data derived from public toxicity reports or animal data extracted from the eTOX database VITIC. The generated models showed satisfactory accuracy (68%) and area under the curve (AUC) for human data and 71% accuracy and 70% AUC for animal data. However, our results did not indicate strong association between OATP inhibition and hyperbilirubinemia, neither for humans nor for animals.
Collapse
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Sylvia E Escher
- Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
29
|
Tosevska A, Franzke B, Hofmann M, Vierheilig I, Schober-Halper B, Oesen S, Neubauer O, Wessner B, Wagner KH. Circulating cell-free DNA, telomere length and bilirubin in the Vienna Active Ageing Study: exploratory analysis of a randomized, controlled trial. Sci Rep 2016; 6:38084. [PMID: 27905522 PMCID: PMC5131485 DOI: 10.1038/srep38084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Telomere length (TL) in blood cells is widely used in human studies as a molecular marker of ageing. Circulating cell-free DNA (cfDNA) as well as unconjugated bilirubin (UCB) are dynamic blood constituents whose involvement in age-associated diseases is largely unexplored. To our knowledge, there are no published studies integrating all three parameters, especially in individuals of advanced age. Here we present a secondary analysis from the Vienna Active Aging Study (VAAS), a randomized controlled intervention trial in institutionalized elderly individuals (n = 101). Using an exploratory approach we combine three blood-based molecular markers (TL, UCB and cfDNA) with a range of primary and secondary outcomes from the intervention. We further look at the changes occurring in these parameters after 6-month resistance exercise training with or without supplementation. A correlation between UCB and TL was evident at baseline (p < 0.05), and both were associated with increased chromosomal anomalies such as nucleoplasmatic bridges and nuclear buds (p < 0.05). Of the three main markers explored in this paper, only cfDNA decreased significantly (p < 0.05) after 6-month training and dietary intervention. No clear relationship could be established between cfDNA and either UCB or TL. The trial was registered at ClinicalTrials.gov (NCT01775111).
Collapse
Affiliation(s)
- Anela Tosevska
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marlene Hofmann
- Centre for Sport Science and University Sports, Department of Sport and Exercise Physiology, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| | - Immina Vierheilig
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Barbara Schober-Halper
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Stefan Oesen
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Oliver Neubauer
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Tissue Repair and Regeneration Group, 60 Musk Avenue, Kelvin Grove Campus, Brisbane, QLD 4059, Australia
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Centre for Sport Science and University Sports, Department of Sport and Exercise Physiology, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
30
|
Lapham K, Novak J, Marroquin LD, Swiss R, Qin S, Strock CJ, Scialis R, Aleo MD, Schroeter T, Eng H, Rodrigues AD, Kalgutkar AS. Inhibition of Hepatobiliary Transport Activity by the Antibacterial Agent Fusidic Acid: Insights into Factors Contributing to Conjugated Hyperbilirubinemia/Cholestasis. Chem Res Toxicol 2016; 29:1778-1788. [DOI: 10.1021/acs.chemrestox.6b00262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | - Shuzhen Qin
- Biological
Screening and Assay Development, Cyprotex, Watertown, Massachusetts 02472, United States
| | - Christopher J. Strock
- Biological
Screening and Assay Development, Cyprotex, Watertown, Massachusetts 02472, United States
| | | | | | | | | | | | - Amit S. Kalgutkar
- Pharmacokinetics,
Dynamics, and Metabolism Department, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Longer telomeres in chronic, moderate, unconjugated hyperbilirubinaemia: insights from a human study on Gilbert's Syndrome. Sci Rep 2016; 6:22300. [PMID: 26926838 PMCID: PMC4772088 DOI: 10.1038/srep22300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Bilirubin (BR) is a natural endogenous compound with a potent bioactivity. Gilbert’s Syndrome (GS) is a benign hereditary condition of increased unconjugated bilirubin (UCB) in serum and serves as a convenient model for studying the effects of BR in humans. In absence of liver disease, increased UCB levels are inversely associated to all-cause mortality risk, especially from cardiovascular diseases (CVDs). On the other hand, telomere malfunction is linked to a higher risk of CVDs. To our knowledge, there is no data on whether UCB is linked to telomere length in healthy or diseased individuals In the present study we have observed a relationship between mildly increased serum UCB and telomere length. We used an in vivo approach, assessing telomere length in PBMCs from individuals with GS (n = 60) and matched healthy controls (n = 60). An occurrence of longer telomeres was observed in male individuals chronically exposed to increased UCB, as well as in Gunn rats, an animal model of unconjugated hyperbilirubinaemia. Previously identified differences in immunomodulation and redox parameters in individuals with GS, such as IL-6, IL-1β and ferric reducing ability of plasma, were confirmed and proposed as possible contributors to the occurrence of longer telomeres in GS.
Collapse
|
32
|
Miyake Y, Hirose R, Isobe T, Hanioka N. Molecular cloning and functional analysis of minipig UDP-glucuronosyltransferase 1A6. Xenobiotica 2015; 46:193-9. [PMID: 26134041 DOI: 10.3109/00498254.2015.1060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. UDP-glucuronosyltransferase 1A6 (UGT1A6) plays important roles in the glucuronidation of numerous drugs, environmental pollutants, and endogenous substances. Minipigs have been used as experimental animals in pharmacological and toxicological studies because many of their physiological characteristics are similar to those of humans. The aim of the present study was to examine similarities and differences in the enzymatic properties of UGT1A6 between humans and minipigs. 2. Minipig UGT1A6 (mpUGT1A6) cDNA was cloned by the RACE method, and the corresponding proteins were expressed in insect cells. The enzymatic function of mpUGT1A6 was analyzed by the kinetics of serotonin glucuronidation. 3. Amino acid homology between human UGT1A6 (hUGT1A6) and mpUGT1A6 was 79.9%. The kinetics of serotonin glucuronidation by recombinant hUGT1A6 and mpUGT1A6 enzymes fit the Michaelis-Menten equation. The Km, Vmax, and CLint values of hUGT1A6 were 10.5 mM, 4.04 nmol/min/mg protein, and 0.39 µL/min/mg protein, respectively. The Km value of mpUGT1A6 was similar to that of hUGT1A6, whereas the Vmax and CLint values of mpUGT1A6 were approximately 2-fold higher than those of hUGT1A6. 4. These results suggest that the enzymatic properties of UGT1A6 enzymes are moderately different between humans and minipigs.
Collapse
Affiliation(s)
- Yuuka Miyake
- a Faculty of Pharmaceutical Sciences , Okayama University , Okayama , Japan and
| | - Riho Hirose
- a Faculty of Pharmaceutical Sciences , Okayama University , Okayama , Japan and
| | - Takashi Isobe
- b Department of Biochemical Toxicology , Yokohama University of Pharmacy , Yokohama , Japan
| | - Nobumitsu Hanioka
- b Department of Biochemical Toxicology , Yokohama University of Pharmacy , Yokohama , Japan
| |
Collapse
|
33
|
Lv X, Ge GB, Feng L, Troberg J, Hu LH, Hou J, Cheng HL, Wang P, Liu ZM, Finel M, Cui JN, Yang L. An optimized ratiometric fluorescent probe for sensing human UDP-glucuronosyltransferase 1A1 and its biological applications. Biosens Bioelectron 2015; 72:261-7. [PMID: 25988789 DOI: 10.1016/j.bios.2015.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 01/10/2023]
Abstract
This study aimed to develop a practical ratiometric fluorescent probe for highly selective and sensitive detection of human UDP-glucuronosyltransferase 1A1 (UGT1A1), one of the most important phase II enzymes. 4-Hydroxy-1,8-naphthalimide (HN) was selected as the fluorophore for this study because it possesses intramolecular charge transfer (ICT) feature and displays outstanding optical properties. A series of N-substituted derivatives with various hydrophobic, acidic and basic groups were designed and synthesized to evaluate the selectivity of HN derivatives toward UGT1A1. Our results demonstrated that the introduction of an acidic group to HN could significantly improve the selectivity of UGT1A1. Among the synthesized fluorescent probes, NCHN (N-3-carboxy propyl-4-hydroxy-1,8-naphthalimide) displayed the best combination of selectivity, sensitivity and ratiometric fluorescence response following UGT1A1-catalyzed glucuronidation. UGT1A1-catalyzed NCHN-4-O-glucuronidation generated a single fluorescent product with a high quantum yield (Φ=0.688) and brought remarkable changes in both color and fluorescence in comparison with the parental substrate. The newly developed probe has been successfully applied for sensitive measurements of UGT1A1 activities in human liver preparations, as well as for rapid screening of UGT1A1 modulators, using variable enzyme sources. Furthermore, its potential applications for live imaging of endogenous UGT1A1in cells have also been demonstrated.
Collapse
Affiliation(s)
- Xia Lv
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guang-Bo Ge
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Lei Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Johanna Troberg
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Liang-Hai Hu
- College of Life Science, Jilin University, Changchun, China
| | - Jie Hou
- Dalian Medical University, Dalian 116044, China
| | | | - Ping Wang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhao-Ming Liu
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jing-Nan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China.
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
34
|
Zhu L, Xiao L, Xia Y, Zhou K, Wang H, Huang M, Ge G, Wu Y, Wu G, Yang L. Diethylstilbestrol can effectively accelerate estradiol-17-O-glucuronidation, while potently inhibiting estradiol-3-O-glucuronidation. Toxicol Appl Pharmacol 2015; 283:109-16. [PMID: 25596428 DOI: 10.1016/j.taap.2015.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 01/17/2023]
Abstract
This in vitro study investigates the effects of diethylstilbestrol (DES), a widely used toxic synthetic estrogen, on estradiol-3- and 17-O- (E2-3/17-O) glucuronidation, via culturing human liver microsomes (HLMs) or recombinant UDP-glucuronosyltransferases (UGTs) with DES and E2. DES can potently inhibit E2-3-O-glucuronidation in HLM, a probe reaction for UGT1A1. Kinetic assays indicate that the inhibition follows a competitive inhibition mechanism, with the Ki value of 2.1±0.3μM, which is less than the possible in vivo level. In contrast to the inhibition on E2-3-O-glucuronidation, the acceleration is observed on E2-17-O-glucuronidation in HLM, in which cholestatic E2-17-O-glucuronide is generated. In the presence of DES (0-6.25μM), Km values for E2-17-O-glucuronidation are located in the range of 7.2-7.4μM, while Vmax values range from 0.38 to 1.54nmol/min/mg. The mechanism behind the activation in HLM is further demonstrated by the fact that DES can efficiently elevate the activity of UGT1A4 in catalyzing E2-17-O-glucuronidation. The presence of DES (2μM) can elevate Vmax from 0.016 to 0.81nmol/min/mg, while lifting Km in a much lesser extent from 4.4 to 11μM. Activation of E2-17-O-glucuronidation is well described by a two binding site model, with KA, α, and β values of 0.077±0.18μM, 3.3±1.1 and 104±56, respectively. However, diverse effects of DES towards E2-3/17-O-glucuronidation are not observed in liver microsomes from several common experimental animals. In summary, this study issues new potential toxic mechanisms for DES: potently inhibiting the activity of UGT1A1 and powerfully accelerating the formation of cholestatic E2-17-O-glucuronide by UGT1A4.
Collapse
Affiliation(s)
- Liangliang Zhu
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Ling Xiao
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Yangliu Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kun Zhou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Huili Wang
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Minyi Huang
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Guangbo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yan Wu
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Ganlin Wu
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Ling Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
35
|
Sukasem C, Atasilp C, Chansriwong P, Chamnanphon M, Puangpetch A, Sirachainan E. Development of Pyrosequencing Method for Detection of UGT1A1 Polymorphisms in Thai Colorectal Cancers. J Clin Lab Anal 2014; 30:84-9. [PMID: 25545261 DOI: 10.1002/jcla.21820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND UGT1A1 is a polymorphic enzyme that has been associated with irinotecan drug metabolisms. We developed a pyrosequencing method to detect allele frequency and genotype of UGT1A1 polymorphisms (UGT1A1*28 and UGT1A1*6) in Thai colorectal cancer patients. METHOD A pyrosequencing method was designed to determine UGT1A1 genetic polymorphisms including UGT1A1*28 (A[TA]7TAA) and UGT1A1*6 (211G>A) in 91 Thai colorectal cancers. RESULT Genotyping by the pyrosequencing technique was 100% concordant with capillary electrophoresis sequencing. The allele frequencies for UGT1A1 genetic polymorphisms were *1/*1 (54.95%), *1/*6 (13.19%), *1/*28 (25.27%), *28/*6 (4.40%), and *28/*28 (2.20%). No homozygous mutation UGT1A1*6 was found in our population. CONCLUSIONS We developed a rapid, reliable, more cost-effective, and simple assay to detect UGT1A1 genetic polymorphisms in routine practice before initiating irinotecan therapy. The UGT1A1*28 and UGT1A1*6 alleles were found to be similar in the Asian populations.
Collapse
Affiliation(s)
- Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Chalirmporn Atasilp
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Pichai Chansriwong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Montri Chamnanphon
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Ekapob Sirachainan
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bi-substrate reaction that requires the aglycone and a cofactor, UDPGA. Accumulating evidence suggests that the bi-substrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modelling of glucuronidation reactions in vitro, UDPGA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for in experimental design and data interpretation. Assessing drug-drug interactions (DDIs) involving UGT inhibition remains challenging. However, the increasing availability of UGT enzyme-specific substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of DDI potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often under-predicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation (IVIVE).
Collapse
|
37
|
Liu SL, Zhang SY, Wang MJ, Jiang H, Yang YX, Chen L. Demethylzeylasteral exhibits dose-dependent inhibitory behaviour towards estradiol glucuronidation. Eur J Drug Metab Pharmacokinet 2014; 39:99-102. [PMID: 23807732 DOI: 10.1007/s13318-013-0147-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/15/2013] [Indexed: 02/05/2023]
Abstract
The disturbance of estradiol level might induce the occurence of some diseases, including cancer. Estradiol is mainly metabolized through the conjugation reactions, including the sulfation and glucuronidation reactions. The present study tried to evaluate the inhibition of estradiol glucuronidation by the major ingredients of Tripterygium wilfordii Hook F. demethylzeylasteral. Selective ion monitoring at negative ion mode ([M⁺ H⁻] = 447) was employed to monitor the two glucuronides of estradiol. The reaction rate was determined through comparison of peak area of these two glucuronides. Lineweaver-Burk plot and Dixon plot were utilized to determine the inhibition kinetic type, and the inhibition kinetic parameters (K i) were calculated using the second plot. Competitive inhibition of demethylzeylasteral towards the formation of two glucuronides of estradiol was demonstrated, and the K i values were calculated to be 453.3 and 110.9 μM, respectively. All these results will remind us the risk of elevated serum concentrations of estradiol due to the inhibition of estradiol glucuronidation by demethylzeylasteral.
Collapse
Affiliation(s)
- Su-Lin Liu
- Intervention Therapy Department, First Affiliated Hospital of Shantou University Medical College, Shantou, China,
| | | | | | | | | | | |
Collapse
|
38
|
Simultaneous determination of bilirubin and its glucuronides in liver microsomes and recombinant UGT1A1 enzyme incubation systems by HPLC method and its application to bilirubin glucuronidation studies. J Pharm Biomed Anal 2014; 92:149-59. [DOI: 10.1016/j.jpba.2014.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
|
39
|
Li RY, Cao ZG, Zhang JR, Li Y, Wang RT. Decreased Serum Bilirubin Is Associated With Silent Cerebral Infarction. Arterioscler Thromb Vasc Biol 2014; 34:946-51. [DOI: 10.1161/atvbaha.113.303003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective—
The presence of silent cerebral infarction (SCI) increases the risk of transient ischemia attack, symptomatic stroke, cardiovascular disease, and dementia. Total bilirubin (TB) levels were demonstrated to be decreased in carotid intima–media thickness, cardiovascular disease, stroke, and peripheral arterial disease. However, little information is available concerning the correlation between TB and SCI.
Approach and Results—
A cross-sectional study was conducted to evaluate the association between TB and SCI in 2865 subjects (1831 men and 1034 women) undergoing medical checkup. The participants with SCI had lower TB levels than those without SCI. The subjects with a low TB had a higher prevalence of SCI. Moreover, partial correlation showed that TB levels were tightly correlated with brachial-ankle pulse wave velocity after adjusting for confounding covariates (
r
=−0.149;
P
<0.001). Multivariate logistic regression analysis revealed that higher TB was associated with a lower risk of SCI (odds ratio, 0.925; 95% confidence interval, 0.897–0.954;
P
<0.001).
Conclusions—
TB is a novel biochemical indicator for SCI regardless of classical cardiovascular risk factors. Early measurement of TB may be useful to assess the risk of SCI.
Collapse
Affiliation(s)
- Rui-Yan Li
- From the Departments of Neurosurgery (R.-Y.L.), Interventional Radiology (Z.-G.C.), and Geriatrics (J.-R.Z., Y.L., R.-T.W.) and International Physical Examination and Healthy Center (Y.L.), the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhi-Gang Cao
- From the Departments of Neurosurgery (R.-Y.L.), Interventional Radiology (Z.-G.C.), and Geriatrics (J.-R.Z., Y.L., R.-T.W.) and International Physical Examination and Healthy Center (Y.L.), the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ji-Rong Zhang
- From the Departments of Neurosurgery (R.-Y.L.), Interventional Radiology (Z.-G.C.), and Geriatrics (J.-R.Z., Y.L., R.-T.W.) and International Physical Examination and Healthy Center (Y.L.), the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- From the Departments of Neurosurgery (R.-Y.L.), Interventional Radiology (Z.-G.C.), and Geriatrics (J.-R.Z., Y.L., R.-T.W.) and International Physical Examination and Healthy Center (Y.L.), the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui-Tao Wang
- From the Departments of Neurosurgery (R.-Y.L.), Interventional Radiology (Z.-G.C.), and Geriatrics (J.-R.Z., Y.L., R.-T.W.) and International Physical Examination and Healthy Center (Y.L.), the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
40
|
Yamamoto K, Mukai M, Nagaoka K, Hayashi K, Hichiya H, Okada K, Murata M, Shigeyama M, Narimatsu S, Hanioka N. Functional characterization of cynomolgus monkey UDP-glucuronosyltransferase 1A9. Eur J Drug Metab Pharmacokinet 2014; 39:195-202. [DOI: 10.1007/s13318-014-0177-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
|
41
|
Templeton I, Eichenbaum G, Sane R, Zhou J. Case study 5. Deconvoluting hyperbilirubinemia: differentiating between hepatotoxicity and reversible inhibition of UGT1A1, MRP2, or OATP1B1 in drug development. Methods Mol Biol 2014; 1113:471-483. [PMID: 24523126 DOI: 10.1007/978-1-62703-758-7_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
New molecular entities (NMEs) are evaluated using a rigorous set of in vitro and in vivo studies to assess their safety and suitability for testing in humans. Regulatory health authorities require that therapeutic and supratherapeutic doses be administered, by the intended route of administration, to two nonclinical species prior to human testing (ICH Expert Working Group. The international conference on harmonization of technical requirements for registration of pharmaceuticals for human use (ICH); Multidisciplinary guidelines; Nonclinical safety studies (M3). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf , 2009). The purpose of these studies is to identify potential target organ toxicity and to determine if the effects are reversible. Liver is a potential site for toxicity caused by orally administered NMEs due to high exposure during first pass after oral administration. A range of clinical chemistry analytes are routinely measured in both nonclinical and clinical studies to evaluate and monitor for hepatotoxicity. While bilirubin itself circulates within a wide range of concentrations in many animal species and humans, without causing adverse effects and possibly providing benefits (Sedlak and Snyder. Pediatrics 113(6):1776-1782, 2004), bilirubin is one of the few readily monitored circulating biomarkers that can provide insight into liver function. Therefore, any changes in plasma or urine bilirubin levels must be carefully evaluated. Changes in bilirubin may occur as a result of adaptive nontoxic changes or severe toxicity. Examples of adaptive nontoxic changes in liver function, which may elevate direct (conjugated) and/or indirect (unconjugated) bilirubin above baseline levels, include reversible inhibition of UGT1A1-mediated bilirubin metabolism and OATP1B1-, OATP1B3-, or MRP2-mediated transport (Keogh. Adv Pharmacol 63:1-42, 2012). Alternatively, hepatocellular necrosis, hypoalbuminuria, or cholestasis may also lead to elevation of bilirubin; in some cases, these effects may be irreversible (FDA/CDER. Guidance for industry drug-induced liver injury: premarketing clinical evaluation. http://www.fda.gov/downloads/Drugs/…/Guidances/UCM174090.pdf , 2012).This chapter aims to demonstrate application of enzyme kinetic principles in understanding the risk of bilirubin elevation through inhibition of multiple processes-involving both enzymes and transporters. In the sections that follow, we first provide a brief summary of bilirubin formation and disposition. Two case examples are then provided to illustrate the enzyme kinetic studies needed for risk assessment and for identifying the mechanisms of bilirubin elevation. Caveats of methods and data interpretation are discussed in these case studies. The data presented in this chapter is unpublished at the time of compilation of this book. It has been incorporated in this chapter to provide a sense of complexities in enzyme kinetics to the reader.
Collapse
Affiliation(s)
- Ian Templeton
- Drug Safety Sciences, Janssen Research and Development, Spring House, PA, USA
| | | | | | | |
Collapse
|
42
|
Ai L, Zhu L, Yang L, Ge G, Cao Y, Liu Y, Fang Z, Zhang Y. Selectivity for inhibition of nilotinib on the catalytic activity of human UDP-glucuronosyltransferases. Xenobiotica 2013; 44:320-5. [DOI: 10.3109/00498254.2013.840750] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Xu B, Gao S, Wu B, Yin T, Hu M. Absolute quantification of UGT1A1 in various tissues and cell lines using isotope label-free UPLC-MS/MS method determines its turnover number and correlates with its glucuronidation activities. J Pharm Biomed Anal 2013; 88:180-90. [PMID: 24055854 DOI: 10.1016/j.jpba.2013.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 02/07/2023]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferase (UGT)1A1 is a major phase II metabolism enzyme responsible for glucuronidation of drugs and endogenous compounds. The purpose of this study was to determine the expression level of UGT1A1 in human liver microsomes and human cell lines by using an isotope label-free LC-MS/MS method. A Waters Ultra performance liquid chromatography (UPLC) system coupled with an API 5500Qtrap mass spectrometer was used for the analysis. Two signature peptides (Pep-1, and Pep-2) were employed to quantify UGT1A1 by multiple reaction monitoring (MRM) approach. Standard addition method was used to validate the assay to account for the matrix effect. 17β-Estradiol was used as the marker substrate to determine UGT1A1 activities. The validated method has a linear range of 200-0.0195nM for both signature peptides. The precision, accuracy, and matrix effect were in acceptable ranges. UGT1A1 expression levels were then determined using 8 individual human liver microsomes, a pooled human liver microsomes, three UGT1A1 genotyped human liver microsomes, and four cell lines (Caco-2, MCF-7, Hela, and HepG2). The correlations study showed that the UGT1A1 protein levels were strongly correlated with its glucuronidation activities in human liver microsomes (R(2)=0.85) and in microsomes prepared from cell lines (R(2)=0.95). Isotope-labeled peptides were not necessary for LC-MS/MS quantitation of proteins. The isotope label-free absolute quantification method used here had good accuracy, sensitivity, linear range, and reproducibility, and were used successfully for the accurate determination of UGT1A1 from tissues and cell lines.
Collapse
Affiliation(s)
- Beibei Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
44
|
Protection from age-related increase in lipid biomarkers and inflammation contributes to cardiovascular protection in Gilbert's syndrome. Clin Sci (Lond) 2013; 125:257-64. [PMID: 23566065 DOI: 10.1042/cs20120661] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent epidemiological and clinical data show protection from CVD (cardiovascular disease), all-cause mortality and cancer in subjects with GS (Gilbert's syndrome), which is characterized by a mildly elevated blood bilirubin concentration. The established antioxidant effect of bilirubin, however, contributes only in part to this protection. Therefore we investigated whether mildly elevated circulating UCB (unconjugated bilirubin) is associated with altered lipid metabolism. The study was performed on GS and age- and gender-matched healthy subjects (n=59 per group). Full lipoprotein profile, TAG (triacylglycerols), Apo (apolipoprotein)-A1, Apo-B, lipoprotein(a), the subfractions of LDL (low-density lipoprotein) and selected pro-inflammatory mediators were analysed. A hyperbilirubinaemic rodent model (Gunn rats, n=40) was investigated to further support the presented human data. GS subjects had significantly (P<0.05) improved lipid profile with reduced total cholesterol, LDL-C (LDL-cholesterol), TAG, low- and pro-atherogenic LDL subfractions (LDL-1+LDL-2), Apo-B, Apo-B/Apo-A1 ratio and lower IL-6 (interleukin 6) and SAA (serum amyloid A) concentrations (P=0.094). When the control and GS groups were subdivided into younger and older cohorts, older GS subjects demonstrated reduced lipid variables (total cholesterol and LDL-C, TAG and LDL-C subfractions, Apo-B/Apo-A1 ratio; P<0.05; Apo-B: P<0.1) compared with controls. These data were supported by lipid analyses in the rodent model showing that Gunn rat serum had lower total cholesterol (2.29±0.38 compared with 1.27±0.72 mM; P<0.001) and TAG (1.66±0.67 compared with 0.99±0.52 mM; P<0.001) concentrations compared with controls. These findings indicate that the altered lipid profile and the reduced pro-inflammatory status in hyperbilirubinaemic subjects, particularly in the older individuals, probably contribute additionally to the commonly accepted beneficial antioxidant effects of bilirubin in humans.
Collapse
|
45
|
Chang JH, Plise E, Cheong J, Ho Q, Lin M. Evaluating the In Vitro Inhibition of UGT1A1, OATP1B1, OATP1B3, MRP2, and BSEP in Predicting Drug-Induced Hyperbilirubinemia. Mol Pharm 2013; 10:3067-75. [DOI: 10.1021/mp4001348] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jae H. Chang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Emile Plise
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Jonathan Cheong
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Quynh Ho
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Molly Lin
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| |
Collapse
|
46
|
Yasar U, Greenblatt DJ, Guillemette C, Court MH. Evidence for regulation of UDP-glucuronosyltransferase (UGT) 1A1 protein expression and activity via DNA methylation in healthy human livers. J Pharm Pharmacol 2013; 65:874-83. [PMID: 23647681 PMCID: PMC6195312 DOI: 10.1111/jphp.12053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Interindividual variability in glucuronidation of bilirubin and drugs by UDP-glucuronosyltransferase 1A1 (UGT1A1) is considerable and only partially explained by genetic polymorphisms and enzyme inducers. Here we determined whether a well-known epigenetic modification, cytosine methylation, explains a proportion of this variability in human liver. METHODS UGT1A1 phenotypes, including UGT1A1 protein and bilirubin glucuronidation, and UGT1A1*28 genotype were determined using a human liver bank (n = 46). Methylation levels were quantified at 5 CpG sites associated with known transcription factor response elements in the UGT1A1 promoter and distal enhancer, as well as a CpG-rich island 1.5 kb further upstream. KEY FINDINGS Individual CpG sites showed considerable methylation variability between livers, ranging from 10- to 29-fold variation with average methylation levels from 25 to 41%. Multivariate regression analysis identified *28/*28 genotype, -4 CpG site methylation and alcohol history as significant predictors of UGT1A1 protein content. Exclusion of livers with *28/*28 genotype or alcohol history revealed positive correlations of -4 CpG methylation with bilirubin glucuronidation (R = 0.73, P < 0.00001) and UGT1A1 protein content (R = 0.54, P = 0.008). CONCLUSION These results suggest that differential methylation of the -4 CpG site located within a known USF response element may explain a proportion of interindividual variability in hepatic glucuronidation by UGT1A1.
Collapse
Affiliation(s)
- Umit Yasar
- Comparative and Molecular Pharmacogenomics Laboratory, Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | |
Collapse
|
47
|
Li Y, Meng SY, Meng CC, Yu WG, Wang RT. Decreased serum bilirubin is associated with arterial stiffness in men. Nutr Metab Cardiovasc Dis 2013; 23:375-381. [PMID: 22118956 DOI: 10.1016/j.numecd.2011.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/10/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS The brachial-ankle pulse wave velocity (baPWV) is a marker for early atherosclerotic changes. Serum total bilirubin (TB) is an effective antioxidant and has been associated with carotid intima-media thickness, cardiovascular disease, stroke and peripheral arterial disease, all of which may be caused by arteriosclerosis. This study aimed to investigate the association of TB with arterial stiffness. METHODS AND RESULTS In this cross-sectional study, we investigated the relationship between TB and baPWV in 2207 participants (1331 men, 876 women) in a general health examination. Different metabolic parameters were compared across TB quartiles. Age-adjusted mean values of baPWV gradually decreased with TB quartiles in men (Q1 = 1348, Q2 = 1266, Q3 = 1215, and Q4 = 1154 cm/s). However, the age-adjusted means of baPWV had no significance in women according to TB quartiles. Univariate analysis showed that age, smoking status, BMI, SBP, DBP, AST, ALT, GGT, TB, TG, and HDL-C were significantly associated with baPWV in men, whereas only age, BMI, SBP, DBP, TG and FPG were significantly associated with baPWV in women. In addition, BMI, SBP, TB, age, TG, and AST were significant factors in the multivariate model with baPWV in men; only BMI and FPG were significant factors with baPWV in women. CONCLUSION The findings show that serum total bilirubin concentration is negatively correlated to arterial stiffness in Chinese men. Early detection of abnormal bilirubin levels could potentially serve as an early biomarker for arterial stiffness.
Collapse
Affiliation(s)
- Y Li
- Department of Geriatrics, The Second Affiliated Hospital, Harbin Medical University, NO.246 Xuefu ST, Nangang District, Harbin 150086, Heilongjiang, China
| | | | | | | | | |
Collapse
|
48
|
Manevski N, Troberg J, Svaluto-Moreolo P, Dziedzic K, Yli-Kauhaluoma J, Finel M. Albumin stimulates the activity of the human UDP-glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the effects are enzyme and substrate dependent. PLoS One 2013; 8:e54767. [PMID: 23372764 PMCID: PMC3553014 DOI: 10.1371/journal.pone.0054767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/14/2012] [Indexed: 12/05/2022] Open
Abstract
Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s Km, increasing its Vmax, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ Km are concerned. In the cases of Vmax values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to Vmax increases. Additionally, the BSA effects may be UGT subfamily dependent since Km decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large Vmax increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs.
Collapse
Affiliation(s)
- Nenad Manevski
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
49
|
Uremic toxins inhibit renal metabolic capacity through interference with glucuronidation and mitochondrial respiration. Biochim Biophys Acta Mol Basis Dis 2013; 1832:142-50. [DOI: 10.1016/j.bbadis.2012.09.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/10/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022]
|
50
|
Miyake Y, Mayumi K, Jinno H, Tanaka-Kagawa T, Narimatsu S, Hanioka N. cDNA Cloning and Functional Analysis of Minipig Uridine Diphosphate-Glucuronosyltransferase 1A1. Biol Pharm Bull 2013; 36:452-61. [DOI: 10.1248/bpb.b12-00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuuka Miyake
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Kei Mayumi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Hideto Jinno
- Division of Environmental Chemistry, National Institute of Health Sciences
| | | | - Shizuo Narimatsu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nobumitsu Hanioka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|