1
|
Miao YS, Wang JY, Zhuang RR, Huo XK, Yi ZC, Sun XN, Yu ZL, Tian XG, Ning J, Feng L, Ma XC, Lv X. A high-affinity fluorescent probe for human uridine-disphosphate glucuronosyltransferase 1A9 function monitoring under environmental pollutant exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133439. [PMID: 38218035 DOI: 10.1016/j.jhazmat.2024.133439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Uridine-disphosphate glucuronosyltransferase 1A9 (UGT1A9), an important detoxification and inactivation enzyme for toxicants, regulates the exposure level of environmental pollutants in the human body and induces various toxicological consequences. However, an effective tool for high-throughput monitoring of UGT1A9 function under exposure to environmental pollutants is still lacking. In this study, 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (DDAO) was found to exhibit excellent specificity and high affinity towards human UGT1A9. Remarkable changes in absorption and fluorescence signals after reacting with UGT1A9 were observed, due to the intramolecular charge transfer (ICT) mechanism. Importantly, DDAO was successfully applied to monitor the biological functions of UGT1A9 in response to environmental pollutant exposure not only in microsome samples, but also in living cells by using a high-throughput screening method. Meanwhile, the identified pollutants that disturb UGT1A9 functions were found to significantly influence the exposure level and retention time of bisphenol S/bisphenol A in living cells. Furthermore, the molecular mechanism underlying the inhibition of UGT1A9 by these pollutant-derived disruptors was elucidated by molecular docking and molecular dynamics simulations. Collectively, a fluorescent probe to characterize the responses of UGT1A9 towards environmental pollutants was developed, which was beneficial for elucidating the health hazards of environmental pollutants from a new perspective.
Collapse
Affiliation(s)
- Yi-Sheng Miao
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jia-Yue Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Rui-Rui Zhuang
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Zi-Chang Yi
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Nan Sun
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiang-Ge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xia Lv
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
2
|
Singh R, Lu R, Hu M. Flavonoids interference in common protein assays: Effect of position and degree of hydroxyl substitution. Anal Biochem 2020; 597:113644. [PMID: 32105737 DOI: 10.1016/j.ab.2020.113644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/26/2022]
Abstract
Flavonoids interfere with colorimetric protein assays in a concentration- and structure-dependent manner. Degree (≥3) and position (C3) of -OH substitution was associated with intensified interference (p < 0.05). Significant overestimation of protein (~3-5 folds) could occur at higher flavonoid concentrations (>5 μM) and is particularly evident at lower protein concentrations (25-250 μg/ml). Since, healthy human urinary protein (<200 μg/ml) and flavonoids urinary excretion (0.5-2 μg/ml) levels fall in this range, overestimation of protein concentration with flavonoids consumption in diet, including natural supplements, remains relevant issue for diagnostic and research labs. Protein precipitation by acetone to remove interfering flavonoid successfully resolves the problem.
Collapse
Affiliation(s)
- Rashim Singh
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, USA.
| | - Rong Lu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Zhang B, Yang J, Qin Z, Li S, Xu J, Yao Z, Zhang X, Gonzalez FJ, Yao X. Mechanism of the efflux transport of demethoxycurcumin-O-glucuronides in HeLa cells stably transfected with UDP-glucuronosyltransferase 1A1. PLoS One 2019; 14:e0217695. [PMID: 31150474 PMCID: PMC6544300 DOI: 10.1371/journal.pone.0217695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Demethoxycurcumin (DMC) is a safe and natural food-coloring additive, as well as an agent with several therapeutic properties. However, extensive glucuronidation in vivo has resulted in its poor bioavailability. In this study, we aimed to investigate the formation of DMC-O-glucuronides by uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) and its transport by breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in HeLa cells stably transfected with UGT1A1 (named HeLa1A1 cells). The chemical inhibitors Ko143 (a selective BCRP inhibitor) and MK571 (a pan-MRP inhibitor) both induced an obvious decrease in the excretion rate of DMC-O-glucuronides and a significant increase in intracellular DMC-O-glucuronide concentrations. Furthermore, BCRP knock-down resulted in a marked reduction in the level of excreted DMC-O-glucuronides (maximal 55.6%), whereas MRP1 and MRP4 silencing significantly decreased the levels of excreted DMC-O-glucuronides (a maximum of 42.9% for MRP1 and a maximum of 29.9% for MRP3), respectively. In contrast, neither the levels of excreted DMC-O-glucuronides nor the accumulation of DMC-O-glucuronides were significantly altered in the MRP4 knock-down HeLa cells. The BCRP, MRP1 and MRP3 transporters were identified as the most important contributors to the excretion of DMC-O-glucuronides. These results may significantly contribute to improving our understanding of mechanisms underlying the cellular disposition of DMC via UGT-mediated metabolism.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zifei Qin
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
- * E-mail: (ZQ); (ZY)
| | - Shishi Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
- * E-mail: (ZQ); (ZY)
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Qin Z, Zhang B, Yang J, Li S, Xu J, Yao Z, Zhang X, Gonzalez FJ, Yao X. The Efflux Mechanism of Fraxetin- O-Glucuronides in UGT1A9-Transfected HeLa Cells: Identification of Multidrug Resistance-Associated Proteins 3 and 4 (MRP3/4) as the Important Contributors. Front Pharmacol 2019; 10:496. [PMID: 31133859 PMCID: PMC6515931 DOI: 10.3389/fphar.2019.00496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Fraxetin, a natural compound present in many dietary supplements and herbs, is useful in the treatment of acute bacillary dysentery and type 2 diabetes. Previously, several metabolic studies have revealed extensive first-pass metabolism causing formation of fraxetin-O-glucuronides (G1 and G2), resulting in poor bioavailability of fraxetin. Active transport processes play an important role in the excretion of fraxetin-O-glucuronides. Nevertheless, the transporters involved are yet to be elucidated. In this study, we aimed to determine the active efflux transporters, including breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), involved in the excretion of fraxetin-O-glucuronides. A chemical inhibitor, MK571 (5 and 20 μM), a pan-MRP inhibitor, led to a significant decrease in excreted G1 (maximal 59.1%) and G2 levels (maximal 42.4%), whereas Ko143 (5 and 20 μM), a selective BCRP inhibitor, caused moderate downregulation of excreted G1 (maximal 29.4%) and G2 (maximal 28.5%). Furthermore, MRP3 silencing resulted in a marked decrease of excretion rates (by 29.1% for G1 and by 21.1% for G2) and of fraction metabolized (fmet; by 24.1% for G1 and by 18.6% for G2). Similar results, i.e., a significant reduction in excretion rates (by 34.8% for G1 and by 32.3% for G2) and in fmet (by 22.7% for G1 and by 23.1% for G2) were obtained when MRP4 was partially silenced. No obvious modifications in the excretion rates, intracellular levels, and fmet values of glucuronides were observed after short hairpin RNA (shRNA)-mediated silencing of transporters BCRP and MRP1. Taken together, our results indicate that MRP3 and MRP4 contribute more to the excretion of fraxetin-O-glucuronides than the other transporters do.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Beibei Zhang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shishi Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Feng W, Su Z, Yin Q, Zong W, Shen X, Ju S. ncRNAs associated with drug resistance and the therapy of digestive system neoplasms. J Cell Physiol 2019; 234:19143-19157. [PMID: 30941775 DOI: 10.1002/jcp.28551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
Digestive system cancer remains a common cancer and the main cause of cancer-related death worldwide. Drug resistance is a major challenge in the therapy of digestive system cancer, and represents a primary obstacle in the treatment of cancer by restricting the efficiency of both traditional chemotherapy and biological therapies. Existing studies indicate that noncoding RNAs play an important role in the evolution and progression of drug resistance in digestive system cancer, mainly by modulating drug transporter-related proteins, DNA damage repair, cell-cycle-related proteins, cell apoptosis-related proteins, drug target-related proteins, and the tumor microenvironment. In this review, we address the potential mechanisms of ncRNAs underlying drug resistance in digestive system tumors and discuss the possible application of ncRNAs against drug resistance in digestive system tumors.
Collapse
Affiliation(s)
- Wei Feng
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhangyao Su
- School of Medicine, Nantong University, Nantong, China
| | - Qingqing Yin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
Li S, Xu J, Yao Z, Hu L, Qin Z, Gao H, Krausz KW, Gonzalez FJ, Yao X. The roles of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated proteins (MRPs/ABCCs) in the excretion of cycloicaritin-3-O-glucoronide in UGT1A1-overexpressing HeLa cells. Chem Biol Interact 2018; 296:45-56. [PMID: 30237061 DOI: 10.1016/j.cbi.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
Abstract
Cycloicaritin is a bioactive natural phenolic compound from Epimedium species. However, the glucuronidation and excretion which would influence oral bioavailability and pharmacokinetics of cycloicaritin still remain unknown. Here we aimed to establish UGT1A1 stably transfected HeLa cells, and to determine the contributions of BCRP and MRPs transporters to excretion of cycloicaritin-3-O-glucuronide. First, β-estradiol was used to validate the expression of active UGT1A1 protein in engineered HeLa1A1 cells. Furthermore, Ko143 (5 and 20 μM) led to a significant decrease (42.4%-63.8%, p < 0.01) in CICT-3-G excretion and obvious accumulation (19.7%-54.2%, p < 0.05) of intracellular CICT-3-G, while MK571 (5 and 20 μM) caused a significant reduction (46.8%-64.8%, p < 0.05) in the excretion and obvious elevation (50.7%-85.2%, p < 0.01) of intracellular level of CICT-3-G. Furthermore, BCRP knocked-down brought marked reduction in excretion rates of CICT-3-G (26.0%-42.2%, p < 0.01), whereas MRP1 and MRP4-mediated silencing led to significant decrease in the excretion of CICT-3-G (23.8%-35.4%, p < 0.05 for MRP1 and 11.9%-16.0%, p < 0.05 for MRP4). By contrast, neither CICT-3-G excretion nor CICT-3-G accumulation altered in MRP3 knocked-down cells as compared to scramble cells. Taken together, BCRP, MRP1 and MRP4 were identified as the most important contributors for CICT-3-G excretion. Meanwhile, the UGT1A1 modified HeLa cells were a simple and practical tool to study UGT1A1-mediated glucuronidation and to characterize BCRP and MRPs-mediated glucuronide transport at a cellular level.
Collapse
Affiliation(s)
- Shishi Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Liufang Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Hao Gao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
7
|
Yang T, Liu Y, Huang X, Zhang R, Yang C, Zhou J, Zhang Y, Wan J, Shi S. Quercetin‑3‑O‑β‑D‑glucoside decreases the bioavailability of cyclosporin A through regulation of drug metabolizing enzymes, transporters and nuclear receptors in rats. Mol Med Rep 2018; 18:2599-2612. [PMID: 30015887 PMCID: PMC6102747 DOI: 10.3892/mmr.2018.9249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/19/2018] [Indexed: 12/16/2022] Open
Abstract
Quercetin is a flavonoid compound that is widely present in food and drink. Quercetin-3-O-β-D-glucoside (Q3GA) is a major metabolite of quercetin. The aim of the present study was to investigate the effect of Q3GA on the pharmacokinetics of orally and intravenously administered cyclosporin A (CsA) in rats, and to assess the effect of Q3GA on drug-metabolizing enzymes (DMEs), drug transporters (DTs) and nuclear receptors (NRs). The pharmacokinetic parameters of CsA were measured following oral (10 mg/kg) and intravenous (2.5 mg/kg) administration of CsA in the presence or absence of Q3GA. The mRNA and protein expression levels of DMEs, DTs and NRs in the liver and small intestine were detected by quantitative polymerase chain reaction and western blot analysis. The results indicated that the intravenous administration of Q3GA (2.5, 5 or 10 mg/kg) for 7 consecutive days reduced the bioavailability of oral CsA. By contrast, the pharmacokinetics of the intravenous administration of CsA were not affected by Q3GA. However, the mRNA and protein expression levels of DMEs and DTs were inhibited by Q3GA. The activation of DMEs and DTs by NRs, and the interplay between DMEs and DTs, may explain these results. The present study identified a novel flavonoid-drug interaction, which may have implications for patients taking CsA and quercetin supplements or on a quercetin-containing diet.
Collapse
Affiliation(s)
- Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xixi Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Wan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
8
|
Qin Z, Li S, Yao Z, Hong X, Wu B, Krausz KW, Gonzalez FJ, Gao H, Yao X. Chemical inhibition and stable knock-down of efflux transporters leads to reduced glucuronidation of wushanicaritin in UGT1A1-overexpressing HeLa cells: the role of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in the excretion of glucuronides. Food Funct 2018; 9:1410-1423. [DOI: 10.1039/c7fo01298e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We determine the contributions of BCRP and MRP transporters in HeLa cells.
Collapse
Affiliation(s)
- Zifei Qin
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Shishi Li
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Zhihong Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xiaodan Hong
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangzhou Research and Creativity Biotechnology Co. Ltd
| | - Baojian Wu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Kristopher W. Krausz
- Laboratory of Metabolism
- Center for Cancer Research
- National Cancer Institute
- National Institutes of Health
- Bethesda
| | - Frank J. Gonzalez
- Laboratory of Metabolism
- Center for Cancer Research
- National Cancer Institute
- National Institutes of Health
- Bethesda
| | - Hao Gao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xinsheng Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| |
Collapse
|
9
|
Jiang P, Zhang X, Huang Y, Cheng N, Ma Y. Hepatotoxicity Induced by Sophora flavescens and Hepatic Accumulation of Kurarinone, a Major Hepatotoxic Constituent of Sophora flavescens in Rats. Molecules 2017; 22:molecules22111809. [PMID: 29068394 PMCID: PMC6150336 DOI: 10.3390/molecules22111809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023] Open
Abstract
Our previous study showed that kurarinone was the main hepatotoxic ingredient of Sophora flavescens, accumulating in the liver. This study characterized the mechanism of Sophora flavescens extract (ESF) hepatotoxicity and hepatic accumulation of kurarinone. ESF impaired hepatic function and caused fat accumulation in the liver after oral administration (1.25 and 2.5 g/kg for 14 days in rats). Serum metabolomics evaluation based on high-resolution mass spectrometry was conducted and real-time PCR was used to determine the expression levels of CPT-1, CPT-2, PPAR-α, and LCAD genes. Effects of kurarinone on triglyceride levels were evaluated in HL-7702 cells. Tissue distribution of kurarinone and kurarinone glucuronides was analyzed in rats receiving ESF (2.5 g/kg). Active uptake of kurarinone and kurarinone glucuronides was studied in OAT2-, OATP1B1-, OATP2B1-, and OATP1B3-transfected HEK293 cells. Our results revealed that after oral administration of ESF in rats, kurarinone glucuronides were actively transported into hepatocytes by OATP1B3 and hydrolyzed into kurarinone, which inhibited fatty acid β-oxidation through the reduction of l-carnitine and the inhibition of PPAR-α pathway, ultimately leading to lipid accumulation and liver injury. These findings contribute to understanding hepatotoxicity of kurarinone after oral administration of ESF.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xiuwen Zhang
- Department of Pharmacy, Eye Ear Nose Throat Hospital of Fudan University, Shanghai 200031, China.
| | - Yutong Huang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Nengneng Cheng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
11
|
Wang L, Hong X, Yao Z, Dai Y, Zhao G, Qin Z, Wu B, Gonzalez FJ, Yao X. Glucuronidation of icaritin by human liver microsomes, human intestine microsomes and expressed UDP-glucuronosyltransferase enzymes: identification of UGT1A3, 1A9 and 2B7 as the main contributing enzymes. Xenobiotica 2017; 48:357-367. [PMID: 28443723 DOI: 10.1080/00498254.2017.1323139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation. 2. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms. 3. UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r = 0.787, p = 0.002), propofol glucuronidation (r = 0.661, p = 0.019) and Zidovudine (AZT) glucuronidation (r = 0.805, p = 0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r = 0.640, p = 0.025), propofol glucuronidation (r = 0.592, p = 0.043) and AZT glucuronidation (r = 0.661, p = 0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively. 4. Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.
Collapse
Affiliation(s)
- Li Wang
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Xiaodan Hong
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Zhihong Yao
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Yi Dai
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China
| | - Guoping Zhao
- c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Zifei Qin
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Baojian Wu
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| | - Frank J Gonzalez
- d Laboratory of Metabolism , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Xinsheng Yao
- a College of Pharmacy, Jinan University , Guangzhou , P.R. China.,b Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou , P.R. China.,c Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou , P.R. China , and
| |
Collapse
|
12
|
Ge S, Wei Y, Yin T, Xu B, Gao S, Hu M. Transport–Glucuronidation Classification System and PBPK Modeling: New Approach To Predict the Impact of Transporters on Disposition of Glucuronides. Mol Pharm 2017; 14:2884-2898. [DOI: 10.1021/acs.molpharmaceut.6b00941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shufan Ge
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Yingjie Wei
- Key
Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Street, Nanjing 210028, China
| | - Taijun Yin
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Beibei Xu
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Song Gao
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Ming Hu
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| |
Collapse
|
13
|
Dong D, Quan E, Yuan X, Xie Q, Li Z, Wu B. Sodium Oleate-Based Nanoemulsion Enhances Oral Absorption of Chrysin through Inhibition of UGT-Mediated Metabolism. Mol Pharm 2016; 14:2864-2874. [DOI: 10.1021/acs.molpharmaceut.6b00851] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong Dong
- International
Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Enxi Quan
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xue Yuan
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qian Xie
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhijie Li
- International
Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Baojian Wu
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Zeng X, Shi J, Zhao M, Chen Q, Wang L, Jiang H, Luo F, Zhu L, Lu L, Wang X, Liu Z. Regioselective Glucuronidation of Diosmetin and Chrysoeriol by the Interplay of Glucuronidation and Transport in UGT1A9-Overexpressing HeLa Cells. PLoS One 2016; 11:e0166239. [PMID: 27832172 PMCID: PMC5104480 DOI: 10.1371/journal.pone.0166239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022] Open
Abstract
This study aimed to determine the reaction kinetics of the regioselective glucuronidation of diosmetin and chrysoeriol, two important methylated metabolites of luteolin, by human liver microsomes (HLMs) and uridine-5′-diphosphate glucuronosyltransferase (UGTs) enzymes. This study also investigated the effects of breast cancer resistance protein (BCRP) on the efflux of diosmetin and chrysoeriol glucuronides in HeLa cells overexpressing UGT1A9 (HeLa—UGT1A9). After incubation with HLMs in the presence of UDP-glucuronic acid, diosmetin and chrysoeriol gained two glucuronides each, and the OH—in each B ring of diosmetin and chrysoeriol was the preferable site for glucuronidation. Screening assays with 12 human expressed UGT enzymes and chemical-inhibition assays demonstrated that glucuronide formation was almost exclusively catalyzed by UGT1A1, UGT1A6, and UGT1A9. Importantly, in HeLa—UGT1A9, Ko143 significantly inhibited the efflux of diosmetin and chrysoeriol glucuronides and increased their intracellular levels in a dose-dependent manner. This observation suggested that BCRP-mediated excretion was the predominant pathway for diosmetin and chrysoeriol disposition. In conclusion, UGT1A1, UGT1A6, and UGT1A9 were the chief contributors to the regioselective glucuronidation of diosmetin and chrysoeriol in the liver. Moreover, cellular glucuronidation was significantly altered by inhibiting BCRP, revealing a notable interplay between glucuronidation and efflux transport. Diosmetin and chrysoeriol possibly have different effects on anti-cancer due to the difference of UGT isoforms in different cancer cells.
Collapse
Affiliation(s)
- Xuejun Zeng
- Department of Pharmacy, First Hospital Affiliated to Shihezi University, Shihezi, Xinjiang, 832002, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jian Shi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Min Zhao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qingwei Chen
- Department of Pharmacy, First Hospital Affiliated to Shihezi University, Shihezi, Xinjiang, 832002, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liping Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Feifei Luo
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xinchun Wang
- Department of Pharmacy, First Hospital Affiliated to Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
15
|
Ge S, Tu Y, Hu M. Challenges and Opportunities with Predicting in Vivo Phase II Metabolism via Glucuronidation from in Vitro Data. ACTA ACUST UNITED AC 2016; 2:326-338. [PMID: 28966903 DOI: 10.1007/s40495-016-0076-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glucuronidation is the most important phase II metabolic pathway which is responsible for the clearance of many endogenous and exogenous compounds. To better understand the elimination process for compounds undergoing glucuronidation and identify compounds with desirable in vivo pharmacokinetic properties, many efforts have been made to predict in vivo glucuronidation using in vitro data. In this article, we reviewed typical approaches used in previous predictions. The problems and challenges in prediction of glucuronidation were discussed. Besides that different incubation conditions can affect the prediction accuracy, other factors including efflux / uptake transporters, enterohepatic recycling, and deglucuronidation reactions also contribute to the disposition of glucuronides and make the prediction more difficult. PBPK modeling, which can describe more complicated process in vivo, is a promising prediction strategy which may greatly improve the prediction of glucuronidation and potential DDIs involving glucuronidation. Based on previous studies, we proposed a transport-glucuronidation classification system, which was built based on the kinetics of both glucuronidation and transport of the glucuronide. This system could be a very useful tool to achieve better in vivo predictions.
Collapse
Affiliation(s)
- Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| | - Yifan Tu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Wang M, Yang G, He Y, Xu B, Zeng M, Ge S, Yin T, Gao S, Hu M. Establishment and use of new MDCK II cells overexpressing both UGT1A1 and MRP2 to characterize flavonoid metabolism via the glucuronidation pathway. Mol Nutr Food Res 2016; 60:1967-83. [PMID: 26833852 DOI: 10.1002/mnfr.201500321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022]
Abstract
SCOPE The purpose of this study is to characterize how overexpression of an efflux transporter and an UDP-glucuronosyltransferase (UGT) affects the cellular kinetics of glucuronidation processes. METHODS AND RESULTS A new MDCK II cell line overexpressing both MRP2 and UGT1A1 (MDCKII-UGT1A1/MRP2 cells) was developed and used to determine how overexpression of an efflux transporter affects the kinetics of cellular flavonoid glucuronide production. The results showed that most model flavonoids (from a total of 13) were mainly metabolized into glucuronides in the MDCKII-UGT1A1/MRP2 cells and the glucuronides were rapidly excreted. Flavonoids with three or fewer hydroxyl group at 7, 3' or 6 hydroxyl group were also metabolized into sulfates. Mechanistic studies using 7-hydroxylflavone showed that its glucuronide was mainly (90%) effluxed by BCRP with a small (10%) but significant contribution from MRP2. Maximal velocity of glucuronide production MDCK-MRP2/UGT1A1 cells showed a fairly good correlation (R(2) >0.8) with those derived using UGT1A1 microsomes, but other kinetic parameters (e.g., Km ) did not correlate. CONCLUSION Overexpression of a second efficient efflux transporter did not significantly change the fact that BCRP is the dominant transporter for flavonoid glucuronide nor did it diminish the influence of the efflux transporter as the "gate keeper" of glucuronidation process.
Collapse
Affiliation(s)
- Meifang Wang
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Guangyi Yang
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.,Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu He
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Beibei Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Min Zeng
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Song Gao
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ming Hu
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China. .,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Zhao M, Wang S, Li F, Dong D, Wu B. Arylsulfatase B Mediates the Sulfonation-Transport Interplay in Human Embryonic Kidney 293 Cells Overexpressing Sulfotransferase 1A3. Drug Metab Dispos 2016; 44:1441-9. [DOI: 10.1124/dmd.116.070938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022] Open
|
18
|
Zeng M, Sun R, Basu S, Ma Y, Ge S, Yin T, Gao S, Zhang J, Hu M. Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides. Mol Nutr Food Res 2016; 60:1006-19. [PMID: 26843117 DOI: 10.1002/mnfr.201500692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Abstract
SCOPE Enterohepatic recycling is often thought to involve mostly phase II metabolites generated in the liver. This study aims to determine if direct biliary excretion of extrahepatically generated glucuronides would also enable recycling. METHODS AND RESULTS Conventional and modified intestinal perfusion models along with intestinal and liver microsomes were used to determine the contribution of extrahepatically derived glucuronides. Glucuronidation of four flavonoids (genistein, biochanin A, apigenin, and chrysin at 2.5-20 μM) were generally more rapid in the hepatic than intestinal microsomes. Furthermore, when aglycones (at 10 μM each) were perfused, larger (1.7-9 fold) amounts of glucuronides were found in the bile than in the luminal perfusate. However, higher concentrations of glucuronides were not found in jugular vein than portal vein, and apigenin glucuronide actually displayed a significantly lower concentration in jugular vein (<1 nM) than portal vein (≈4 nM). A direct portal infusion of four flavonoid glucuronides (5.9-10.4 μM perfused at 2 mL/h) showed that the vast majority (>65%) of the glucuronides (except for biochanin A glucuronide) administered were efficiently excreted into the bile. CONCLUSION Direct biliary excretion of extrahepatically generated flavonoid glucuronides is a highly efficient clearance mechanism, which should enable enterohepatic recycling of flavonoids without hepatic conjugating enzymes.
Collapse
Affiliation(s)
- Min Zeng
- Department of Thoracic and Cardiomacrovascular Surgery, Hubei University of Medicine Affiliated Shiyan Taihe Hospital, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Rongjin Sun
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.,Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sumit Basu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Yong Ma
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Song Gao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Jun Zhang
- Department of Thoracic and Cardiomacrovascular Surgery, Hubei University of Medicine Affiliated Shiyan Taihe Hospital, Shiyan, Hubei, China
| | - Ming Hu
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| |
Collapse
|
19
|
Shi J, Zheng H, Yu J, Zhu L, Yan T, Wu P, Lu L, Wang Y, Hu M, Liu Z. SGLT-1 Transport and Deglycosylation inside Intestinal Cells Are Key Steps in the Absorption and Disposition of Calycosin-7-O- -D-Glucoside in Rats. Drug Metab Dispos 2015; 44:283-96. [DOI: 10.1124/dmd.115.067009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022] Open
|
20
|
Curcumin Affects Phase II Disposition of Resveratrol Through Inhibiting Efflux Transporters MRP2 and BCRP. Pharm Res 2015; 33:590-602. [PMID: 26502886 DOI: 10.1007/s11095-015-1812-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the impact of curcumin on the disposition of resveratrol phase II metabolites in vivo, and explain the observations by performing in vitro studies in transporter-overexpressed cells. METHODS Pharmacokinetic studies of resveratrol with and without the co-administration of curcumin were performed in both FVB wild-type and Bcrp1 (-/-) mice. Human UGT1A9-overexpressing HeLa cells and human MRP2-overexpressing MDCK II-UGT1A1 cells were used as in vitro tools to further determine the impact of curcumin as a transporter inhibitor on resveratrol metabolites. RESULTS We observed higher exposure of resveratrol conjugates in Bcrp1 (-/-) mice compared to wild-type mice. In wild-type mice, curcumin increased the AUC of resveratrol glucuronide by 4-fold compared to the mice treated without curcumin. The plasma levels of resveratrol and its sulfate conjugate also increased moderately. In Bcrp1 (-/-) mice, there was a further increase (6-fold increase) in AUC of resveratrol glucuronide observed when curcumin was co-administered compared to AUC values obtained in wild-type mice without curcumin treatment. In the presence of 50 nM curcumin, the clearance of resveratrol-3-O-glucuronide and resveratrol-3-O-sulfate reduced in both MRP2-overexpressing MDCKII-UGT1A1 cells and Human UGT1A9-overexpressing HeLa cells. CONCLUSIONS These results suggest that curcumin alters the phase II distribution of resveratrol through inhibiting efflux transporters including MRP2 and BCRP.
Collapse
|
21
|
Dai P, Zhu L, Luo F, Lu L, Li Q, Wang L, Wang Y, Wang X, Hu M, Liu Z. Triple Recycling Processes Impact Systemic and Local Bioavailability of Orally Administered Flavonoids. AAPS JOURNAL 2015; 17:723-36. [PMID: 25762448 DOI: 10.1208/s12248-015-9732-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/02/2015] [Indexed: 11/30/2022]
Abstract
Triple recycling (i.e., enterohepatic, enteric and local recycling) plays a central role in governing the disposition of phenolics such as flavonoids, resulting in low systemic bioavailability but higher gut bioavailability and longer than expected apparent half-life. The present study aims to investigate the coexistence of these recycling schemes using model bioactive flavonoid tilianin and a four-site perfused rat intestinal model in the presence or absence of a lactase phlorizin hydrolase (LPH) inhibitor gluconolactone and/or a glucuronidase inhibitor saccharolactone. The result showed that tilianin could be metabolized into tilianin glucuronide, acacetin, and acacetin glucuronide, which are excreted into the bile and luminal perfusate (highest in the duodenum and lowest in the colon). Gluconolactone (20 mM) significantly reduced the absorption of tilianin and the enteric and biliary excretion of acacetin glucuronide. Saccharolactone (0.1 mM) alone or in combination of gluconolactone also remarkably reduced the biliary and intestinal excretion of acacetin glucuronide. Acacetin glucuronides from bile or perfusate were rapidly hydrolyzed by bacterial β-glucuronidases to acacetin, enabling enterohepatic and enteric recycling. Moreover, saccharolactone-sensitive tilianin disposition and glucuronide deconjugation, which was more active in the small intestine than the colon, points to the small intestinal origin of the deconjugation enzyme and supports the presence of local recycling scheme. In conclusion, our studies have demonstrated triple recycling of a bioactive phenolic (i.e., a model flavonoid), and this recycling may have an impact on the site and duration of polyphenols pharmacokinetics in vivo.
Collapse
Affiliation(s)
- Peimin Dai
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Dong D, Wang H, Ma Z, Wang Y, Wu B. Stable knock-down of efflux transporters leads to reduced glucuronidation in UGT1A1-overexpressing HeLa cells: the evidence for glucuronidation-transport interplay. Mol Pharm 2015; 12:1268-78. [PMID: 25741749 DOI: 10.1021/mp5008019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efflux of glucuronide is facilitated by the membrane transporters including BCRP and MRPs. In this study, we aimed to determine the effects of transporter expression on glucuronide efflux and cellular glucuronidation. Single efflux transporter (i.e., BCRP, MRP1, MRP3, or MRP4) was stably knocked-down in UGT1A1-overexpressing HeLa cells. Knock-down of transporters was performed by stable transfection of short-hairpin RNA (shRNA) using lentiviral vectors. Glucuronidation and glucuronide transport in the cells were characterized using three different aglycones (i.e., genistein, apigenin, and emodin) with distinct metabolic activities. BCRP knock-down resulted in significant reductions in excretion of glucuronides (42.9% for genistein glucuronide (GG), 21.1% for apigenin glucuronide (AG) , and 33.7% for emodin glucuronide (EG); p < 0.01) and in cellular glucuronidation (38.3% for genistein, 38.6% for apigenin, and 34.7% for emodin; p < 0.01). Knock-down of a MRP transporter led to substantial decreases in excretion of GG (32.3% for MRP1, 36.7% for MRP3, and 36.6% for MRP4; p < 0.01) and AG (59.3% for MRP1, 24.7% for MRP3, and 34.1% for MRP4; p < 0.01). Also, cellular glucuronidation of genistein (38.3% for MRP1, 32.3% for MRP3, and 31.1% for MRP4; p < 0.01) and apigenin (40.6% for MRP1, 32.4% for MRP3, and 34.6% for MRP4; p < 0.001) was markedly suppressed. By contrast, silencing of MRPs did not cause any changes in either excretion of EG or cellular glucuronidation of emodin. In conclusion, cellular glucuronidation was significantly altered by decreasing expression of efflux transporters, revealing a strong interplay of glucuronidation with efflux transport.
Collapse
Affiliation(s)
- Xingwang Zhang
- †Division of Pharmaceutics, College of Pharmacy, and ‡Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | | | - Huailing Wang
- †Division of Pharmaceutics, College of Pharmacy, and ‡Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhiguo Ma
- †Division of Pharmaceutics, College of Pharmacy, and ‡Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | | | - Baojian Wu
- †Division of Pharmaceutics, College of Pharmacy, and ‡Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
23
|
Quan E, Wang H, Dong D, Zhang X, Wu B. Characterization of Chrysin Glucuronidation in UGT1A1-Overexpressing HeLa Cells: Elucidating the Transporters Responsible for Efflux of Glucuronide. Drug Metab Dispos 2015; 43:433-43. [DOI: 10.1124/dmd.114.061598] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Bircsak KM, Aleksunes LM. Interaction of Isoflavones with the BCRP/ABCG2 Drug Transporter. Curr Drug Metab 2015; 16:124-40. [PMID: 26179608 PMCID: PMC4713194 DOI: 10.2174/138920021602150713114921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
This review will provide a comprehensive overview of the interactions between dietary isoflavones and the ATP-binding cassette (ABC) G2 efflux transporter, which is also named the breast cancer resistance protein (BCRP). Expressed in a variety of organs including the liver, kidneys, intestine, and placenta, BCRP mediates the disposition and excretion of numerous endogenous chemicals and xenobiotics. Isoflavones are a class of naturallyoccurring compounds that are found at high concentrations in commonly consumed foods and dietary supplements. A number of isoflavones, including genistein and daidzein and their metabolites, interact with BCRP as substrates, inhibitors, and/or modulators of gene expression. To date, a variety of model systems have been employed to study the ability of isoflavones to serve as substrates and inhibitors of BCRP; these include whole cells, inverted plasma membrane vesicles, in situ organ perfusion, as well as in vivo rodent and sheep models. Evidence suggests that BCRP plays a role in mediating the disposition of isoflavones and in particular, their conjugated forms. Furthermore, as inhibitors, these compounds may aid in reversing multidrug resistance and sensitizing cancer cells to chemotherapeutic drugs. This review will also highlight the consequences of altered BCRP expression and/or function on the pharmacokinetics and toxicity of chemicals following isoflavone exposure.
Collapse
Affiliation(s)
| | - Lauren M Aleksunes
- Dept. of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
Thormann U, Hänggi R, Kreuter M, Imanidis G. Membrane transport of nobilin conjugation products and use of the extract of Chamomillae romanae flos influence absorption of nobilin in the Caco-2 model. Eur J Pharm Sci 2014; 70:92-106. [PMID: 25477003 DOI: 10.1016/j.ejps.2014.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
The purpose of this work was to investigate the role of bioconjugation and carrier mediated efflux of conjugation products in the absorption mechanism of the sesquiterpene lactone nobilin in the Caco-2 model in vitro and to elucidate the impact of the extract of Chamomillae romanae flos and its ingredients on absorption. Transport experiments with inhibitors of P-gp, BCRP, and MRPs were performed to detect efflux and its connection to bioconversion and the effect of different ingredients of the plant extract on absorption processes was determined. Permeability, transport and bioconversion parameter values were deduced by kinetic multi-compartment modeling. Nobilin exhibited high permeability, low relative absorption and fast bioconversion producing glucuronide, cysteine conjugate, and glutathione conjugate that were transported by P-gp (the first two), apical MRP2 and basal MRP3 and possibly MRP1 out of the cell. Inhibition of efflux resulted in diminished bioconjugation and improved absorption. The extract increased the relative fraction absorbed primarily by directly inhibiting bioconversion, and by reducing efflux. Individual extract ingredients could only partly explain this effect. Extensive bioconversion, hence, limited absorption of nobilin in the Caco-2 model and the interplay between conjugation and efflux was shown to provide a possible mechanism for absorption increase. Plant extract increased absorption by this mechanism in addition to metabolic enzyme inhibition.
Collapse
Affiliation(s)
- U Thormann
- Institute of Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - R Hänggi
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - M Kreuter
- Alpinia Laudanum Institute of Phytopharmaceutical Sciences AG, Walenstadt, Switzerland
| | - G Imanidis
- Institute of Pharma Technology, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [PMID: 24777822 DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
27
|
Stresser DM, Mao J, Kenny JR, Jones BC, Grime K. Exploring concepts ofin vitrotime-dependent CYP inhibition assays. Expert Opin Drug Metab Toxicol 2013; 10:157-74. [DOI: 10.1517/17425255.2014.856882] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Tang L, Li Y, Chen WY, Zeng S, Dong LN, Peng XJ, Jiang W, Hu M, Liu ZQ. Breast Cancer Resistance Protein-Mediated Efflux of Luteolin Glucuronides in HeLa Cells Overexpressing UDP-Glucuronosyltransferase 1A9. Pharm Res 2013; 31:847-60. [DOI: 10.1007/s11095-013-1207-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
|
29
|
Liu W, Kulkarni K, Hu M. Gender-dependent differences in uridine 5'-diphospho-glucuronosyltransferase have implications in metabolism and clearance of xenobiotics. Expert Opin Drug Metab Toxicol 2013; 9:1555-69. [DOI: 10.1517/17425255.2013.829040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Wei Y, Wu B, Jiang W, Yin T, Jia X, Basu S, Yang G, Hu M. Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing HeLa cells. Mol Pharm 2013; 10:1736-50. [PMID: 23402418 DOI: 10.1021/mp300562q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular production of flavonoid glucuronides requires the action of both UDP-glucuronosyltransferases (UGT) and efflux transporters since glucuronides are too hydrophilic to diffuse across the cellular membrane. We determined the kinetics of efflux of 13 flavonoid glucuronides using the newly developed HeLa-UGT1A9 cells and correlated them with kinetic parameters derived using expressed UGT1A9. The results indicated that, among the seven monohydroxylflavones (HFs), there was moderately good correlation (r(2) ≥ 0.65) between the fraction metabolized (fmet) derived from HeLa-UGT1A9 cells and CLint derived from the UGT1A9-mediated metabolism. However, there was weak or no correlation between these two parameters for six dihydroxylflavones (DHFs). Furthermore, there was weak or no correlation between various kinetic parameters (Km, Vmax, or CLint) for the efflux and the metabolism regardless of whether we were using seven HFs, six DHFs, or a combination thereof. Instead, the cellular excretion of many flavonoid glucuronides appears to be controlled by the efflux transporter, and the poor affinity of glucuronide to the efflux transporter resulted in major intracellular accumulation of glucuronides to a level that is above the dosing concentration of its aglycone. Hence, the efflux transporters appear to act as the "Revolving Door" to control the cellular excretion of glucuronides. In conclusion, the determination of a flavonoid's susceptibility to glucuronidation must be based on both its susceptibility to glucuronidation by the enzyme and resulting glucuronide's affinity to the relevant efflux transporters, which act as the "Revolving Door(s)" to facilitate or control its removal from the cells.
Collapse
Affiliation(s)
- Yingjie Wei
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Street, Nanjing 210028, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Konopnicki CM, Dickmann LJ, Tracy JM, Tukey RH, Wienkers LC, Foti RS. Evaluation of UGT protein interactions in human hepatocytes: effect of siRNA down regulation of UGT1A9 and UGT2B7 on propofol glucuronidation in human hepatocytes. Arch Biochem Biophys 2013; 535:143-9. [PMID: 23562620 DOI: 10.1016/j.abb.2013.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/11/2022]
Abstract
Previous experiments performed in recombinant systems have suggested that protein-protein interactions occur between the UGTs and may play a significant role in modulating enzyme activity. However, evidence of UGT protein-protein interactions either in vivo or in more physiologically relevant in vitro systems has yet to be demonstrated. In this study, we examined oligomerization and its ability to affect glucuronidation in plated human hepatocytes. siRNA down regulation experiments and activity studies were used to examine changes in metabolite formation of one UGT isoform due to down regulation of a second UGT isoform. Selective siRNA directed towards UGT1A9 or UGT2B7 resulted in significant and selective decreases in their respective mRNA levels. As expected, the metabolism of the UGT1A9 substrate propofol decreased with UGT1A9 down regulation. Interestingly, UGT1A9 activity, but not UGT1A9 mRNA expression, was also diminished when UGT2B7 expression was selectively inhibited, implying potential interactions between the two isoforms. Minor changes to UGT1A4, UGT2B4 and UGT2B7 activity were also observed when UGT1A9 expression was selectively down regulated. To our knowledge, this represents the first piece of evidence that UGT protein-protein interactions occur in human hepatocytes and suggests that expression levels of UGT2B7 may directly impact the glucuronidation activity of selective UGT1A9 substrates.
Collapse
Affiliation(s)
- Camille M Konopnicki
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yokooji T, Kawabe Y, Mori N, Murakami T. Effect of genistein, a natural soy isoflavone, on the pharmacokinetics and intestinal toxicity of irinotecan hydrochloride in rats. J Pharm Pharmacol 2012; 65:280-91. [DOI: 10.1111/j.2042-7158.2012.01592.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/13/2012] [Indexed: 01/22/2023]
Abstract
Abstract
Objectives
The effect of genistein, a natural soy isoflavone, on pharmacokinetics and intestinal toxicity, or late-onset diarrhoea, of irinotecan hydrochloride (CPT-11) was examined in rats.
Methods
Probenecid, a typical inhibitor of multidrug resistance-associated protein (MRP) 2, was also employed for comparison with genistein. Plasma concentration, biliary excretion and intestinal secretion of CPT-11, 7-ethyl-10-hydroxycamptothecin (SN-38) and SN-38 glucuronide (SN-38G) were determined in untreated, genistein-treated and probenecid-treated rats. CPT-11 was administered repeatedly by intravenous injection (60 mg/kg/day for 4 days), and the effects of genistein and probenecid on CPT-11-induced intestinal toxicity were evaluated by measuring body weight, induction of diarrhoea, and alkaline phosphatase (ALP) activity in the intestinal mucosal membranes.
Key findings
Genistein, as well as probenecid, significantly suppressed the MRP2-mediated biliary and intestinal secretion of CPT-11 and its metabolites and increased their plasma concentrations. Multiple administration of CPT-11 reduced body weight and ALP activity, and induced watery diarrhoea. Genistein, as well as probenecid, significantly suppressed the loss in body weight and the reduced mucosal ALP activity in the ileum, and ameliorated the symptoms of diarrhoea induced by CPT-11.
Conclusions
Intravenous genistein was effective in ameliorating CPT-11-induced late-onset diarrhoea, by suppressing MRP2-mediated biliary excretion of CPT-11 and its metabolites.
Collapse
Affiliation(s)
- Tomoharu Yokooji
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Yoshihiro Kawabe
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Nobuhiro Mori
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| |
Collapse
|
33
|
Liu W, Feng Q, Li Y, Ye L, Hu M, Liu Z. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Toxicol Appl Pharmacol 2012; 265:316-24. [PMID: 22982073 DOI: 10.1016/j.taap.2012.08.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 11/16/2022]
Abstract
Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B-A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A-B) and B-A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
34
|
Wu B, Jiang W, Yin T, Gao S, Hu M. A new strategy to rapidly evaluate kinetics of glucuronide efflux by breast cancer resistance protein (BCRP/ABCG2). Pharm Res 2012; 29:3199-208. [PMID: 22752253 DOI: 10.1007/s11095-012-0817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/20/2012] [Indexed: 12/21/2022]
Abstract
PURPOSE The efflux transporter breast cancer resistance protein (BCRP/ABCG2) plays an important role in excretion of anionic drugs and metabolites including glucuronides in humans. METHODS In this article, our recently published cell model (i.e., HeLa cells over-expressing UGT1A9 (HeLa1A9)) is used to determine the kinetic parameters of BCRP-mediated transport of glucuronides. RESULTS After incubation of the aglycone with the cells, a steady-state (i.e., zero-order or near zero-order) excretion of its glucuronide is rapidly achieved and then maintained. Kinetic profiling with different (intracellular) glucuronide concentrations and their corresponding excretion rates is enabled by varying the concentration of the aglycone, which allows for the determination of kinetic parameters responsible for BCRP-mediated efflux of glucuronides. This approach was validated theoretically using a cellular pharmacokinetic model incorporating various enzymatic and transporter-mediated kinetic processes. It was also validated experimentally in that kinetic parameters of efflux of glucuronides of 6-hydroxyflavone and 4-methylumberiferone in the HeLa1A9 cell model were shown to be consistent with those derived with BCRP-overexpressing membrane vesicles. CONCLUSION This study provides a new strategy for rapidly evaluating the kinetics of glucuronide efflux by BCRP.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|