1
|
Subash S, Ahire D, Patel M, Shaikh S, Singh DK, Deshmukh S, Prasad B. Comparison of Relative Activity versus Relative Expression Factors (RAF versus REF) in Predicting Glucuronidation Mediated Drug Clearance Using Recombinant UGTs. Pharm Res 2024; 41:1621-1630. [PMID: 39107514 DOI: 10.1007/s11095-024-03750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/18/2024] [Indexed: 08/30/2024]
Abstract
PURPOSE Predicting the quantitative fraction of glucuronidation (fgluc) by individual UDP-glucuronosyltransferase enzymes (UGTs) is challenging due to the lack of selective inhibitors and inconsistent activity of recombinant UGT systems (rUGTs). Our study compares the relative expression versus activity factors (REF versus RAF) to predict fgluc based on rUGT data to human liver and intestinal microsomes (HLM and HIM). METHODS REF scalars were derived from a previous in-house proteomics study for eleven UGT enzymes (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17), whereas RAF was calculated by measuring activities in rUGTs to microsomes of selective UGT probe substrates. Protein-normalized activity factor (pnAF) values were generated after correcting activity of individual UGTs to their corresponding protein abundance. The utility of REF and RAF in predicting fgluc was assessed for three UGT substrates-diclofenac, vorinostat, and raltegravir. RESULTS The REF values ranged from 0.02 to 1.75, RAF based on activity obtained in rUGTs to HLM/HIM were from 0.1 to 274. pnAF values were ~ 5 to 80-fold, except for UGT2B4 and UGT2B15, where pnAF was ~ 180 and > 1000, respectively. The results revealed confounding effect of differential specific activities (per pmol) of rUGTs in fgluc prediction. CONCLUSION The data suggest that the activity of UGT enzymes was significantly lower when compared to their activity in microsomes at the same absolute protein amount (pmol). Collectively, results of this study demonstrate poor and variable specific activity of different rUGTs (per pmol protein), as determined by pnAF values, which should be considered in fgluc scaling.
Collapse
Affiliation(s)
- Sandhya Subash
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA
| | - Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA
| | - Mitesh Patel
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Sahil Shaikh
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Dilip Kumar Singh
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA
| | - Sujal Deshmukh
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA.
| |
Collapse
|
2
|
Xue J, Yin J, Nie J, Jiang H, Zhang H, Zeng S. Heterodimerization of Human UDP-Glucuronosyltransferase 1A9 and UDP-Glucuronosyltransferase 2B7 Alters Their Glucuronidation Activities. Drug Metab Dispos 2023; 51:1499-1507. [PMID: 37643881 DOI: 10.1124/dmd.123.001369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Human UDP-glucuronosyltransferases (UGTs) play a pivotal role as prominent phase II metabolic enzymes, mediating the glucuronidation of both endobiotics and xenobiotics. Dimerization greatly modulates the enzymatic activities of UGTs. In this study, we examined the influence of three mutations (H35A, H268Y, and N68A/N315A) and four truncations (signal peptide, single transmembrane helix, cytosolic tail, and di-lysine motif) in UGT2B7 on its heterodimerization with wild-type UGT1A9, using a Bac-to-Bac expression system. We employed quantitative fluorescence resonance energy transfer (FRET) techniques and co-immunoprecipitation assays to evaluate the formation of heterodimers between UGT1A9 and UGT2B7 allozymes. Furthermore, we evaluated the glucuronidation activities of the heterodimers using zidovudine and propofol as substrates for UGT2B7 and UGT1A9, respectively. Our findings revealed that the histidine residue at codon 35 was involved in the dimeric interaction, as evidenced by the FRET efficiencies and catalytic activities. Interestingly, the signal peptide and single transmembrane helix domain of UGT2B7 had no impact on the protein-protein interaction. These results provide valuable insights for a comprehensive understanding of UGT1A9/UGT2B7 heterodimer formation and its association with glucuronidation activity. SIGNIFICANCE STATEMENT: Our findings revealed that the H35A mutation in UGT2B7 affected the affinity of protein-protein interaction, leading to discernable variations in fluorescence resonance energy transfer efficiencies and catalytic activity. Furthermore, the signal peptide and single transmembrane helix domain of UGT2B7 did not influence heterodimer formation. These results provide valuable insights into the combined effects of polymorphisms and protein-protein interactions on the catalytic activity of UGT1A9 and UGT2B7, enhancing our understanding of UGT dimerization and its impact on metabolite formation.
Collapse
Affiliation(s)
- Jia Xue
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Jiayi Yin
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Jing Nie
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Haitao Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| |
Collapse
|
3
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
4
|
Xue J, Zhang H, Zeng S. Integrate thermostabilized fusion protein apocytochrome b562RIL and N-glycosylation mutations: A novel approach to heterologous expression of human UDP-glucuronosyltransferase (UGT) 2B7. Front Pharmacol 2022; 13:965038. [PMID: 36034790 PMCID: PMC9412022 DOI: 10.3389/fphar.2022.965038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Human UDP-glucuronosyltransferase (UGT) 2B7 is a crucial phase II metabolic enzyme that transfers glucuronic acid from UDP-glucuronic acid (UDPGA) to endobiotic and xenobiotic substrates. Biophysical and biochemical investigations of UGT2B7 are hampered by the challenge of the integral membrane protein purification. This study focused on the expression and purification of recombinant UGT2B7 by optimizing the insertion sites for the thermostabilized fusion protein apocytochrome b562RIL (BRIL) and various mutations to improve the protein yields and homogeneity. Preparation of the recombinant proteins with high purity accelerated the measurement of pharmacokinetic parameters of UGT2B7. The dissociation constants (KD) of two classical substrates (zidovudine and androsterone) and two inhibitors (schisanhenol and hesperetin) of UGT2B7 were determined using the surface plasmon resonance spectroscopy (SPR) for the first time. Using negative-staining transmission electron microscopy (TEM), UGT2B7 protein particles were characterized, which could be useful for further exploring its three-dimensional structure. The methods described in this study could be broadly applied to other UGTs and are expected to provide the basis for the exploration of metabolic enzyme kinetics, the mechanisms of drug metabolisms and drug interactions, changes in pharmacokinetics, and pharmacodynamics studies in vitro.
Collapse
Affiliation(s)
- Jia Xue
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haitao Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Haitao Zhang, ; Su Zeng,
| | - Su Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Haitao Zhang, ; Su Zeng,
| |
Collapse
|
5
|
Miyauchi Y, Kimura A, Sawai M, Fujimoto K, Hirota Y, Tanaka Y, Takechi S, Mackenzie PI, Ishii Y. Use of a Baculovirus-Mammalian Cell Expression-System for Expression of Drug-Metabolizing Enzymes: Optimization of Infection With a Focus on Cytochrome P450 3A4. Front Pharmacol 2022; 13:832931. [PMID: 35295333 PMCID: PMC8919721 DOI: 10.3389/fphar.2022.832931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Heterologous expression systems are important for analyzing the effects of genetic factors including single nucleotide polymorphisms on the functions of drug-metabolizing enzymes. In this study, we focused on a baculovirus-mammalian cell (Bac-Mam) expression system as a safer and more efficient approach for this purpose. The baculovirus-insect cell expression system is widely utilized in large-scale protein expression. Baculovirus has been shown to also infect certain mammalian cells, although the virus only replicates in insect cells. With this knowledge, baculovirus is now being applied in a mammalian expression system called the Bac-Mam system wherein a gene-modified baculovirus is used whose promotor is replaced with one that can function in mammalian cells. We subcloned open-reading frames of cytochrome P450 3A4 (CYP3A4), UDP-glucuronosyltransferase (UGT) 1A1, and UGT2B7 into a transfer plasmid for the Bac-Mam system, and prepared recombinant Bac-Mam virus. The obtained virus was amplified in insect Sf9 cells and used to infect mammalian COS-1 cells. Expression of CYP3A4, UGT1A1, and UGT2B7 in COS-1 cell homogenates were confirmed by immunoblotting. Optimum infection conditions including the amount of Bac-Mam virus, culture days before collection, and concentration of sodium butyrate, an enhancer of viral-transduction were determined by monitoring CYP3A4 expression. Expressed CYP3A4 showed appropriate activity without supplying hemin/5-aminolevulinic acid or co-expressing with NADPH-cytochrome P450 reductase. Further, we compared gene transfer efficiency between the Bac-Mam system and an established method using recombinant plasmid and transfection reagent. Our results indicate that the Bac-Mam system can be applied to introduce drug-metabolizing enzyme genes into mammalian cells that are widely used in drug metabolism research. The expressed enzymes are expected to undergo appropriate post-translational modification as they are in mammalian bodies. The Bac-Mam system may thus accelerate pharmacogenetics and pharmacogenomics research.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akane Kimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Madoka Sawai
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Takechi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Peter I Mackenzie
- Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre and Flinders University, Adelaide, SA, Australia
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Zhou J, Argikar UA, Miners JO. Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). Methods Mol Biol 2021; 2342:301-338. [PMID: 34272700 DOI: 10.1007/978-1-0716-1554-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bisubstrate reaction that requires the aglycone and the cofactor, UDP-GlcUA. Accumulating evidence suggests that the bisubstrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modeling of glucuronidation reactions in vitro, UDP-GlcUA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for during experimental design and data interpretation. While the assessment of drug-drug interactions resulting from UGT inhibition has been challenging in the past, the increasing availability of UGT enzyme-selective substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of drug-drug interaction potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often underpredicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation. Physiologically based pharmacokinetic (PBPK) modeling has also shown to be of value for predicting PK of drugs eliminated by glucuronidation.
Collapse
Affiliation(s)
- Jin Zhou
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Upendra A Argikar
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| | - John O Miners
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
8
|
Miyauchi Y, Kurohara K, Kimura A, Esaki M, Fujimoto K, Hirota Y, Takechi S, Mackenzie PI, Ishii Y, Tanaka Y. The carboxyl-terminal di-lysine motif is essential for catalytic activity of UDP-glucuronosyltransferase 1A9. Drug Metab Pharmacokinet 2020; 35:466-474. [PMID: 32883578 DOI: 10.1016/j.dmpk.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022]
Abstract
UDP-Glucuronosyltransferase (UGT) is a type I membrane protein localized to the endoplasmic reticulum (ER). UGT has a di-lysine motif (KKXX/KXKXX) in its cytoplasmic domain, which is defined as an ER retention signal. However, our previous study has revealed that UGT2B7, one of the major UGT isoform in human, localizes to the ER in a manner that is independent of this motif. In this study, we focused on another UGT isoform, UGT1A9, and investigated the role of the di-lysine motif in its ER localization, glucuronidation activity, and homo-oligomer formation. Immunofluorescence microscopy indicated that the cytoplasmic domain of UGT1A9 functioned as an ER retention signal in a chimeric protein with CD4, but UGT1A9 itself could localize to the ER in a di-lysine motif-independent manner. In addition, UGT1A9 formed homo-oligomers in the absence of the motif. However, deletion of the di-lysine motif or substitution of lysines in the motif for alanines, severely impaired glucuronidation activity of UGT1A9. This is the first study that re-defines the cytoplasmic di-lysine motif of UGT as an essential peptide for retaining glucuronidation capacity.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.
| | - Ken Kurohara
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akane Kimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Madoka Esaki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Takechi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Peter I Mackenzie
- Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre and Flinders University, Adelaide, Australia
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Ji L. Synergy between Experiments and Computations: A Green Channel for Revealing Metabolic Mechanism of Xenobiotics in Chemical Toxicology. Chem Res Toxicol 2020; 33:1539-1550. [DOI: 10.1021/acs.chemrestox.9b00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Chau N, Kaya L, Lewis BC, Mackenzie PI, Miners JO. Drug and Chemical Glucosidation by Control Supersomes and Membranes from Spodoptera frugiperda (Sf) 9 Cells: Implications for the Apparent Glucuronidation of Xenobiotics by UDP-glucuronosyltransferase 1A5. Drug Metab Dispos 2018; 47:271-278. [PMID: 30541877 DOI: 10.1124/dmd.118.084947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/29/2018] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence indicates that several human UDP-glucuronosyltransferase (UGT) enzymes catalyze both glucuronidation and glucosidation reactions. Baculovirus-infected insect cells [Trichoplusia ni and Spodoptera frugiperda (Sf9)] are used widely for the expression of recombinant human UGT enzymes. Following the observation that control Supersomes (c-SUP) express a native enzyme capable of glucosidating morphine, we characterized the glucosidation of a series of aglycones with a hydroxyl (aliphatic or phenolic), carboxylic acid, or amine functional group by c-SUP and membranes from uninfected Sf9 cells. Although both enzyme sources glucosidated the phenolic substrates investigated, albeit with differing activities, differences were observed in the selectivities of the native UDP-glucosyltransferases toward aliphatic alcohols, carboxylic acids, and amines. For example, zidovudine was solely glucosidated by c-SUP. By contrast, c-SUP lacked activity toward the amines lamotrigine and trifluoperazine and did not form the acyl glucoside of mycophenolic acid, reactions all catalyzed by uninfected Sf9 membranes. Glucosidation intrinsic clearances were high for several substrates, notably 1-hydroxypyrene (∼1400-1900 µl/min⋅mg). The results underscore the importance of including control cell membranes in the investigation of drug and chemical glucosidation by UGT enzymes expressed in T. ni (High-Five) and Sf9 cells. In a coincident study, we observed that UGT1A5 expressed in Sf9, human embryonic kidney 293T, and COS7 cells lacked glucuronidation activity toward prototypic phenolic substrates. However, Sf9 cells expressing UGT1A5 glucosidated 1-hydroxypyrene with UDP-glucuronic acid as the cofactor, presumably due to the presence of UDP-glucose as an impurity. Artifactual glucosidation may explain, at least in part, a previous report of phenolic glucuronidation by UGT1A5.
Collapse
Affiliation(s)
- Nuy Chau
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Leyla Kaya
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Benjamin C Lewis
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - John O Miners
- Department of Clinical Pharmacology (N.C., L.K., B.C.L., P.I.M., J.O.M.) and Flinders Centre for Innovation in Cancer (B.C.L., P.I.M., J.O.M.), Flinders University College of Medicine and Public Health, Adelaide, Australia
| |
Collapse
|
11
|
Kim K, Zheng F, Zhan CG. Oligomerization and Catalytic Parameters of Human UDP-Glucuronosyltransferase 1A10: Expression and Characterization of the Recombinant Protein. Drug Metab Dispos 2018; 46:1446-1452. [PMID: 30111624 DOI: 10.1124/dmd.118.082495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferase (UGT), as an integral membrane protein localized in the endoplasmic reticulum, has the ability to detoxify potentially hazardous xenobiotic substances. Most UGTs are expressed in liver, but UGT1A10 has proven to be an extrahepatic enzyme considerably expressed throughout the gastrointestinal tract. Earlier studies indicated that different UGT isoforms could exist in higher-order homo-oligomers or at least dimers within the membrane, but the formation of intermolecular disulfide bridges between UGT molecules was not often observed. In this study, we expressed recombinant human UGT1A10 in human embryonic kidney (HEK)293 and Chinese hamster ovary (CHO) cells to examine its oligomeric states and characterize its enzymatic activities against two therapeutically interesting substrates, morphine and entacapone, including determination of the catalytic rate constant (kcat) values for the first time. It was observed that a majority of the UGT1A10 protein expressed in HEK293 cells existed in covalently crosslinked higher-order oligomers via formation of intermolecular disulfide bonds, whereas formation of the intermolecular disulfide bonds was not observed in the UGT1A10 protein expressed in CHO cells. Owing to the formation of the covalently crosslinked higher-order oligomers, the UGT1A10 protein expressed in HEK293 cells had much lower catalytic activity (particularly the catalytic rate constant kcat) against both morphine and entacapone, compared with the UGT1A10 protein form expressed in CHO cells against the same substrates.
Collapse
Affiliation(s)
- Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicol Lett 2017; 284:70-78. [PMID: 29203276 DOI: 10.1016/j.toxlet.2017.11.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
The use of diclofenac is associated with rare but severe drug-induced liver injury (DILI) in a very small number of patients. The factors which predispose susceptible patients to hepatotoxicity of diclofenac are still incompletely understood. Formation of protein-reactive metabolites by UDP-glucuronosyl transferases and cytochromes P450 is commonly considered to play an important role, as indicated by the detection of covalent protein adducts and antibodies in the serum of patients suffering from diclofenac-induced liver injury. Since no associations have been found with HLA-alleles, polymorphisms of genes encoding for proteins involved in the disposition of diclofenac may be important. Previous association studies showed that possession of the UGT2B7*2 and CYP2C8*4 alleles is more common in cases of diclofenac-induced DILI. In the present study, the metabolism of diclofenac by UGT2B7*2 and CYP2C8*4 was compared with their corresponding wild-type enzymes. Enzyme kinetic analysis revealed that recombinant UGT2B7*2 showed an almost 6-fold lower intrinsic clearance of diclofenac glucuronidation compared to UGT2B7*1. The mutant CYP2C8*4 showed approximately 35% reduced activity in the 4'-hydroxylation of diclofenac acyl glucuronide. Therefore, a decreased hepatic exposure to diclofenac acyl glucuronide is expected in patients with the UGT2B7*2 genotype. The increased risk for hepatotoxicity, therefore, might be the result from a shift to oxidative bioactivation to cytotoxic quinoneimines.
Collapse
Affiliation(s)
- Katarzyna E Lazarska
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Kurita A, Miyauchi Y, Ikushiro S, Mackenzie PI, Yamada H, Ishii Y. Comprehensive Characterization of Mouse UDP-Glucuronosyltransferase (Ugt) Belonging to the Ugt2b Subfamily: Identification of Ugt2b36 as the Predominant Isoform Involved in Morphine Glucuronidation. J Pharmacol Exp Ther 2017; 361:199-208. [PMID: 28228532 DOI: 10.1124/jpet.117.240382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
UDP-Glucuronosyltransferases (UGTs) are classified into three subfamilies in mice: Ugt1a, 2b, and 2a. In the Ugt1a subfamily, Ugt1a1 and 1a6 appear to correspond to human UGT1A1 and 1A6 The mouse is an important animal for its use in investigations, but the substrate specificities of Ugt isoforms belonging to the 2b subfamily in mice remain largely unknown. To address this issue, we characterized the substrate specificity of all isoforms of the Ugt2b subfamily expressed in the mouse liver. The cDNAs of Ugt1a1, Ugt2a3, and all the Ugt2b isoforms expressed in the liver were reverse-transcribed from the total RNA of male FVB-mouse livers and then amplified. A baculovirus-Sf9 cell system for expressing each Ugt was established. Of all the Ugts examined, Ugt2b34, 2b36, and 2b37 exhibited the ability to glucuronidate morphine with Ugt2b36, the most active in this regard. Ugt1a1, but also Ugt2b34, 2b36, and 2b37 to a lesser extent, preferentially catalyzed the glucuronidation of 17β-estradiol on the 3-hydroxyl group (E3G). With these isoforms, E3G formation by Ugt1a1 was efficient; however, Ugt2b5 exhibited a preference for the 17β-hydroxyl group (E17G). Ugt2b1 and Ugt2a3 formed comparable levels of E3G and E17G. Ugt2b1 and 2b5 were the only isoforms involved in chloramphenicol glucuronidation. As Ugt2b36 is highly expressed in the liver, it is most likely that Ugt2b36 is a major morphine Ugt in mouse liver. Regarding E3G formation, Ugt1a1, like the human homolog, seems to play an important role in the liver.
Collapse
Affiliation(s)
- Ayumi Kurita
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Yuu Miyauchi
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Shin'ichi Ikushiro
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Peter I Mackenzie
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (A.K., Y.M., H.Y., Y.I.), Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan (S.I.), and Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia (P.I.M.)
| |
Collapse
|
14
|
Troberg J, Järvinen E, Ge GB, Yang L, Finel M. UGT1A10 Is a High Activity and Important Extrahepatic Enzyme: Why Has Its Role in Intestinal Glucuronidation Been Frequently Underestimated? Mol Pharm 2016; 14:2875-2883. [DOI: 10.1021/acs.molpharmaceut.6b00852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johanna Troberg
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Erkka Järvinen
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Guang-Bo Ge
- Laboratory
of Pharmaceutical Resource Discovery, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ling Yang
- Laboratory
of Pharmaceutical Resource Discovery, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Moshe Finel
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
15
|
Scotcher D, Jones C, Posada M, Galetin A, Rostami-Hodjegan A. Key to Opening Kidney for In Vitro-In Vivo Extrapolation Entrance in Health and Disease: Part II: Mechanistic Models and In Vitro-In Vivo Extrapolation. AAPS JOURNAL 2016; 18:1082-1094. [PMID: 27506526 DOI: 10.1208/s12248-016-9959-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
It is envisaged that application of mechanistic models will improve prediction of changes in renal disposition due to drug-drug interactions, genetic polymorphism in enzymes and transporters and/or renal impairment. However, developing and validating mechanistic kidney models is challenging due to the number of processes that may occur (filtration, secretion, reabsorption and metabolism) in this complex organ. Prediction of human renal drug disposition from preclinical species may be hampered by species differences in the expression and activity of drug metabolising enzymes and transporters. A proposed solution is bottom-up prediction of pharmacokinetic parameters based on in vitro-in vivo extrapolation (IVIVE), mediated by recent advances in in vitro experimental techniques and application of relevant scaling factors. This review is a follow-up to the Part I of the report from the 2015 AAPS Annual Meeting and Exhibition (Orlando, FL; 25th-29th October 2015) which focuses on IVIVE and mechanistic prediction of renal drug disposition. It describes the various mechanistic kidney models that may be used to investigate renal drug disposition. Particular attention is given to efforts that have attempted to incorporate elements of IVIVE. In addition, the use of mechanistic models in prediction of renal drug-drug interactions and potential for application in determining suitable adjustment of dose in kidney disease are discussed. The need for suitable clinical pharmacokinetics data for the purposes of delineating mechanistic aspects of kidney models in various scenarios is highlighted.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christopher Jones
- DMPK, Oncology iMed, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, UK
| | - Maria Posada
- Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana, 46203, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK. .,Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK.
| |
Collapse
|
16
|
Scotcher D, Jones C, Posada M, Rostami-Hodjegan A, Galetin A. Key to Opening Kidney for In Vitro-In Vivo Extrapolation Entrance in Health and Disease: Part I: In Vitro Systems and Physiological Data. AAPS JOURNAL 2016; 18:1067-1081. [PMID: 27365096 DOI: 10.1208/s12248-016-9942-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
The programme for the 2015 AAPS Annual Meeting and Exhibition (Orlando, FL; 25-29 October 2015) included a sunrise session presenting an overview of the state-of-the-art tools for in vitro-in vivo extrapolation (IVIVE) and mechanistic prediction of renal drug disposition. These concepts are based on approaches developed for prediction of hepatic clearance, with consideration of scaling factors physiologically relevant to kidney and the unique and complex structural organisation of this organ. Physiologically relevant kidney models require a number of parameters for mechanistic description of processes, supported by quantitative information on renal physiology (system parameters) and in vitro/in silico drug-related data. This review expands upon the themes raised during the session and highlights the importance of high quality in vitro drug data generated in appropriate experimental setup and robust system-related information for successful IVIVE of renal drug disposition. The different in vitro systems available for studying renal drug metabolism and transport are summarised and recent developments involving state-of-the-art technologies highlighted. Current gaps and uncertainties associated with system parameters related to human kidney for the development of physiologically based pharmacokinetic (PBPK) model and quantitative prediction of renal drug disposition, excretion, and/or metabolism are identified.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christopher Jones
- DMPK, Oncology iMed, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, UK
| | - Maria Posada
- Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana, 46203, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.,Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
17
|
Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO. Scaling factors for the in vitro-in vivo extrapolation (IV-IVE) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol 2016; 81:1153-64. [PMID: 26808419 PMCID: PMC4876189 DOI: 10.1111/bcp.12889] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/21/2022] Open
Abstract
AIM To determine the scaling factors required for inclusion of renal drug glucuronidation clearance in the prediction of total clearance via glucuronidation (CLUGT ). METHODS Microsomal protein per gram of kidney (MPPGK) was determined for human 'mixed' kidney (n = 5) microsomes (MKM). The glucuronidation activities of deferiprone (DEF), propofol (PRO) and zidovudine (AZT) by MKM and paired cortical (KCM) and medullary (KMM) microsomes were measured, along with the UGT 1A6, 1A9 and 2B7 protein contents of each enzyme source. Unbound intrinsic clearances (CLint,u,UGT ) for PRO and morphine (MOR; 3- and 6-) glucuronidation by MKM, human liver microsomes (HLM) and recombinant UGT1A9 and 2B7 were additionally determined. Data were scaled using in vitro-in vivo extrapolation (IV-IVE) approaches to assess the influence of renal CLint,u,UGT on the prediction accuracy of the calculated CLUGT values of PRO and MOR. RESULTS MPPGK was 9.3 ± 2.0 mg g(-1) (mean ± SD). The respective rates of DEF (UGT1A6), PRO (UGT1A9) and AZT (UGT2B7) glucuronidation by KCM were 1.4-, 5.2- and 10.5-fold higher than those for KMM. UGT 1A6, 1A9 and 2B7 were the only enzymes expressed in kidney. Consistent with the activity data, the abundance of each of these enzymes was greater in KCM than in KMM. The abundance of UGT1A9 in MKM (61.3 pmol mg(-1) ) was 2.7 fold higher than that reported for HLM. CONCLUSIONS Scaled renal PRO glucuronidation CLint,u,UGT was double that of liver. Renal CLint,u,UGT should be accounted for in the IV-IVE of UGT1A9 and considered for UGT1A6 and 2B7 substrates.
Collapse
Affiliation(s)
- Kathleen M. Knights
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of MedicineFlinders UniversityAdelaideSouth AustraliaAustralia5001
| | - Shane M. Spencer
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of MedicineFlinders UniversityAdelaideSouth AustraliaAustralia5001
| | - John K. Fallon
- Division of Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599USA
| | - Nuy Chau
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of MedicineFlinders UniversityAdelaideSouth AustraliaAustralia5001
| | - Philip C. Smith
- Division of Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599USA
| | - John O. Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of MedicineFlinders UniversityAdelaideSouth AustraliaAustralia5001
| |
Collapse
|
18
|
Yang Y, Wang HM, Tong YF, Liu MZ, Cheng KD, Wu S, Wang W. Systems metabolic engineering of Escherichia coli to enhance the production of flavonoid glucuronides. RSC Adv 2016. [DOI: 10.1039/c6ra03304k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Through modulating UDPGA biosynthetic pathway and introducting SbUGT, an engineered strain was constructed to enhance the production of flavonoid glucuronides.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Hui-Min Wang
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Yuan-Feng Tong
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Min-Zhi Liu
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Ke-Di Cheng
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- 100050 Beijing
- China
| |
Collapse
|
19
|
Troberg J, Finel M. The Polymorphic Variant P24T of UDP-Glucuronosyltransferase 1A4 and Its Unusual Consequences. Drug Metab Dispos 2015; 43:1769-72. [DOI: 10.1124/dmd.115.065680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022] Open
|
20
|
Miyauchi Y, Nagata K, Yamazoe Y, Mackenzie PI, Yamada H, Ishii Y. Suppression of Cytochrome P450 3A4 Function by UDP-Glucuronosyltransferase 2B7 through a Protein-Protein Interaction: Cooperative Roles of the Cytosolic Carboxyl-Terminal Domain and the Luminal Anchoring Region. Mol Pharmacol 2015; 88:800-12. [PMID: 26243732 DOI: 10.1124/mol.115.098582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022] Open
Abstract
There is a large discrepancy between the interindividual difference in the hepatic expression level of cytochrome P450 3A4 (CYP3A4) and that of drug clearance mediated by this enzyme. However, the reason for this discrepancy remains largely unknown. Because CYP3A4 interacts with UDP-glucuronosyltransferase 2B7 (UGT2B7) to alter its function, the reverse regulation is expected to modulate CYP3A4-catalyzed activity. To address this issue, we investigated whether protein-protein interaction between CYP3A4 and UGT2B7 modulates CYP3A4 function. For this purpose, we coexpressed CYP3A4, NADPH-cytochrome P450 reductase, and UGT2B7 using a baculovirus-insect cell system. The activity of CYP3A4 was significantly suppressed by coexpressing UGT2B7, and this suppressive effect was lost when UGT2B7 was replaced with calnexin (CNX). These results strongly suggest that UGT2B7 negatively regulates CYP3A4 activity through a protein-protein interaction. To identify the UGT2B7 domain associated with CYP3A4 suppression we generated 12 mutants including chimeras with CNX. Mutations introduced into the UGT2B7 carboxyl-terminal transmembrane helix caused a loss of the suppressive effect on CYP3A4. Thus, this hydrophobic region is necessary for the suppression of CYP3A4 activity. Replacement of the hydrophilic end of UGT2B7 with that of CNX produced a similar suppressive effect as the native enzyme. The data using chimeric protein demonstrated that the internal membrane-anchoring region of UGT2B7 is also needed for the association with CYP3A4. These data suggest that 1) UGT2B7 suppresses CYP3A4 function, and 2) both hydrophobic domains located near the C terminus and within UGT2B7 are needed for interaction with CYP3A4.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (Y.M., H.Y., Y.I.); Tohoku Pharmaceutical University, Sendai, Japan (K.N.); Food Safety Commission, Cabinet Office, Government of Japan, Tokyo, Japan (Y.Y.); and Department of Clinical Pharmacology, Flinders Medical Center and Flinders University, Adelaide, Australia (P.I.M.)
| | - Kiyoshi Nagata
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (Y.M., H.Y., Y.I.); Tohoku Pharmaceutical University, Sendai, Japan (K.N.); Food Safety Commission, Cabinet Office, Government of Japan, Tokyo, Japan (Y.Y.); and Department of Clinical Pharmacology, Flinders Medical Center and Flinders University, Adelaide, Australia (P.I.M.)
| | - Yasushi Yamazoe
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (Y.M., H.Y., Y.I.); Tohoku Pharmaceutical University, Sendai, Japan (K.N.); Food Safety Commission, Cabinet Office, Government of Japan, Tokyo, Japan (Y.Y.); and Department of Clinical Pharmacology, Flinders Medical Center and Flinders University, Adelaide, Australia (P.I.M.)
| | - Peter I Mackenzie
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (Y.M., H.Y., Y.I.); Tohoku Pharmaceutical University, Sendai, Japan (K.N.); Food Safety Commission, Cabinet Office, Government of Japan, Tokyo, Japan (Y.Y.); and Department of Clinical Pharmacology, Flinders Medical Center and Flinders University, Adelaide, Australia (P.I.M.)
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (Y.M., H.Y., Y.I.); Tohoku Pharmaceutical University, Sendai, Japan (K.N.); Food Safety Commission, Cabinet Office, Government of Japan, Tokyo, Japan (Y.Y.); and Department of Clinical Pharmacology, Flinders Medical Center and Flinders University, Adelaide, Australia (P.I.M.)
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (Y.M., H.Y., Y.I.); Tohoku Pharmaceutical University, Sendai, Japan (K.N.); Food Safety Commission, Cabinet Office, Government of Japan, Tokyo, Japan (Y.Y.); and Department of Clinical Pharmacology, Flinders Medical Center and Flinders University, Adelaide, Australia (P.I.M.)
| |
Collapse
|
21
|
Gramec Skledar D, Troberg J, Lavdas J, Peterlin Mašič L, Finel M. Differences in the glucuronidation of bisphenols F and S between two homologous human UGT enzymes, 1A9 and 1A10. Xenobiotica 2014; 45:511-9. [PMID: 25547628 DOI: 10.3109/00498254.2014.999140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Bisphenol S (BPS) and bisphenol F (BPF) are bisphenol A (BPA) analogues commonly used in the manufacturing of industrial and consumer products. 2. Bisphenols are often detoxified through conjugation with glucuronic acid or sulfate. In this work, we have examined the glucuronidation of BPS and BPF by recombinant human UDP-glucuronosyltransferase (UGT) enzymes. In addition, we have reexamined BPA glucuronidation, using extra-hepatic UGTs that were not tested previously. 3. The results revealed that UGT1A9, primarily a hepatic enzyme, is mainly responsible for BPS glucuronidation, whereas UGT1A10, an intestine enzyme that is highly homologous to UGT1A9 at the protein level, is by far the most active UGT in BPF glucuronidation. In contrast to the latter two UGTs that display significant specificity in the glucuronidation of BPS and BPF, UGT2A1 that is mainly expressed in the airways, exhibited high activity toward all the tested bisphenols, BPS, BPF and BPA. UGT1A10 exhibited somewhat higher BPA glucuronidation activity than UGT1A9, but it was lower than UGT2A1 and UGT2B15. 4. The new findings demonstrate interesting differences in the glucuronidation patterns of bisphenols and provide new insights into the role of extra-hepatic tissues in their detoxification.
Collapse
|
22
|
Troberg J, Järvinen E, Muniz M, Sneitz N, Mosorin J, Hagström M, Finel M. Dog UDP-Glucuronosyltransferase Enzymes of Subfamily 1A: Cloning, Expression, and Activity. Drug Metab Dispos 2014; 43:107-18. [DOI: 10.1124/dmd.114.059303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
23
|
Wang Y, Huang H, Wu Q. Characterization of the zebrafish Ugt repertoire reveals a new class of drug-metabolizing UDP glucuronosyltransferases. Mol Pharmacol 2014; 86:62-75. [PMID: 24728488 DOI: 10.1124/mol.113.091462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The zebrafish genome contains a gene superfamily of 40 Ugt genes that can be divided into Ugt1, Ugt2, and Ugt5 families. Because the encoded zebrafish UDP glucuronosyltransferase (UGT) proteins do not display orthologous relationships to any of the mammalian and avian UGT enzymes based on molecular phylogeny, it is difficult to predict their substrate specificity. Here, we mapped their tissue-specific expression patterns. We showed that the zebrafish UGT enzymes can be glycosylated. We determined their substrate specificity and catalytic activity toward diverse aglycone substrates. Specifically, we measured mRNA levels of each of the 40 zebrafish Ugt genes in 11 adult tissues and found that they are expressed in a tissue-specific manner. Moreover, functional analyses with the donor of UDP glucuronic acid (UDPGA) for each of the 40 zebrafish UGT proteins revealed their substrate specificity toward 10 important aglycones. In particular, UGT1A1, UGT1A7, and UGT1B1 displayed good glucuronidation activities toward most phenolic aglycones (4-methylumbelliferone, 4-nitrophenol, 1-naphthol, bisphenol A, and mycophenolic acid) and the two carboxylic acids (bilirubin and diclofenac). Importantly, some members of the UGT5, a novel UGT family identified recently, are capable of glucuronidating multiple aglycones with the donor cofactor of UDPGA. In particular, UGT5A5, UGT5B2, and UGT5E1 glucuronidate phenols and steroids with high specificity toward steroid hormones of estradiol and testosterone and estrogenic alkylphenols 4-tert-octylphenol. These results shed new insights into the mechanisms by which fish species defend themselves against vast numbers of xenobiotics via glucuronidation conjugations and may facilitate the establishment of zebrafish as a model vertebrate in toxicological, developmental, and pathologic studies.
Collapse
Affiliation(s)
- Yuanming Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, and Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, and Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, and Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Perreault M, Gauthier-Landry L, Trottier J, Verreault M, Caron P, Finel M, Barbier O. The Human UDP-glucuronosyltransferase UGT2A1 and UGT2A2 enzymes are highly active in bile acid glucuronidation. Drug Metab Dispos 2013; 41:1616-20. [PMID: 23756265 DOI: 10.1124/dmd.113.052613] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bile acids (BA) are essential modulators of lipid, glucose, and cholesterol homeostasis, but they exert cytotoxic effects in the cholestatic liver. Glucuronidation, catalyzed by the UDP-glucuronosyltransferase (UGT) enzymes is a pharmacologically relevant BA detoxification process. The present study characterized the BA-conjugating activity of the little-studied human UGTs of subfamily 2A: UGT2A1, 2A2, and 2A3. Recombinant UGT2As, expressed in baculovirus-infected insect cells, were assayed for the glucuronidation of six major bile acids: chenodeoxycholic acid (CDCA), cholic acid (CA), lithocholic acid (LCA), deoxycholic acid (DCA), hyocholic acid (HCA) and hyodeoxycholic acid (HDCA). UGT2A3 exhibited detectable but very low activity with all the tested BA substrates. UGT2A1 was highly efficient in forming LCA-3 and LCA-24G, CDCA-24, DCA-24, HCA-24, and HDCA-24G, whereas UGT2A2 was the most active enzyme for CA-24G and CDCA-24G formation and also was able to generate HDCA-6G, HDCA-24G, LCA-24G, and HCA-24G. The Km values of UGT2A1 varied between 102.2 ± 14.3 µM and 2.4 ± 1.2 mM. With the exception of CA-24G, a low affinity substrate for UGT2A2, all the Km values for UGT2A2 were in the 100 to 400 µM range. We demonstrate the high reactivity of the human UGT2A1 and UGT2A2 for bile acid glucuronidation. The physiologic importance of these reactions to BA disposition remains, however, to be clarified in vivo.
Collapse
Affiliation(s)
- Martin Perreault
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre, Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Stachulski AV, Meng X. Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. Nat Prod Rep 2013; 30:806-48. [DOI: 10.1039/c3np70003h] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Anti-cancer drugs elicit re-expression of UDP-glucuronosyltransferases in melanoma cells. PLoS One 2012; 7:e47696. [PMID: 23110092 PMCID: PMC3478267 DOI: 10.1371/journal.pone.0047696] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the detoxification of carcinogens as well as clearance of anti-cancer drugs. In humans, 19 UGT family members have been identified and are expressed in a tissue specific manner throughout the body. However, the UGTs have not been previously characterized in melanocytes or melanoma. In the present study, UGT2B7, UGT2B10, and UGT2B15 were identified as being normally expressed in human melanocytes. The same three UGT family members were also expressed in the primary melanoma cell line WM115. No UGT expression was detected in another primary melanoma cell line, WM3211, or in any metastatic melanoma cell line examined. These results suggest that UGT expression is lost during melanoma progression. Treatment of WM3211 or metastatic melanoma cell lines with anti-cancer agents (including vemurafenib) induced expression of UGT2B7, UGT2B10 and UGT2B15 demonstrating that melanoma cells retain the ability to re-express these same three UGTs. The corresponding increase in glucuronidation activity in melanoma cells following anti-cancer treatment was also observed. Furthermore, knockdown of UGT2B7 in WM115 cells sensitized these cells to treatment by adriamycin and epirubicin indicating that UGT2B7 is involved in resistance to these drugs. However, knockdown of UGT2B7 had no effect on temozolomide toxicity. Taken together, these results clearly demonstrate a role for UGTs in melanoma etiology. Since the UGTs are drug metabolism enzymes, we propose that re-expression of the UGTs constitutes a previously unsuspected mechanism for intratumoral drug resistance in melanoma.
Collapse
|