1
|
Burns AR, Baker RJ, Kitner M, Knox J, Cooke B, Volpatti JR, Vaidya AS, Puumala E, Palmeira BM, Redman EM, Snider J, Marwah S, Chung SW, MacDonald MH, Tiefenbach J, Hu C, Xiao Q, Finney CAM, Krause HM, MacParland SA, Stagljar I, Gilleard JS, Cowen LE, Meyer SLF, Cutler SR, Dowling JJ, Lautens M, Zasada I, Roy PJ. Selective control of parasitic nematodes using bioactivated nematicides. Nature 2023:10.1038/s41586-023-06105-5. [PMID: 37225985 DOI: 10.1038/s41586-023-06105-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.
Collapse
Affiliation(s)
- Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Rachel J Baker
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megan Kitner
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Jessica Knox
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Cooke
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan R Volpatti
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aditya S Vaidya
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bruna M Palmeira
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth M Redman
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jamie Snider
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sagar Marwah
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sai W Chung
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Margaret H MacDonald
- USDA-ARS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Jens Tiefenbach
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Chun Hu
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qi Xiao
- Department of Biological Sciences, Host Parasite Interactions Program, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Constance A M Finney
- Department of Biological Sciences, Host Parasite Interactions Program, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Henry M Krause
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sonya A MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Stagljar
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Susan L F Meyer
- USDA-ARS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Sean R Cutler
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Inga Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Peter J Roy
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Kaddah MMY, Billig S, Oehme R, Birkemeyer C. Bio-activation of simeprevir in liver microsomes and characterization of its glutathione conjugates by liquid chromatography coupled to ultrahigh-resolution quadrupole time-of-flight mass spectrometry. J Chromatogr A 2021; 1645:462095. [PMID: 33857675 DOI: 10.1016/j.chroma.2021.462095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Liquid chromatography coupled to a triple quadrupole and, alternatively, to an ultrahigh-resolution quadrupole time-of-flight (UHR-QqTOF) mass spectrometers was used to collect qualitative and quantitative information from incubations of the anti-hepatitis C drug simeprevir with human and rat liver microsomes, respectively, supplemented with NADPH and glutathione. For this, different chromatographic methods using two different chromatographic columns, Kinetex® 2.6 µm C18 (50 × 3 mm) and Atlantis T3 (100 Å, 3 µm, 4.6 mm × 150 mm), have been employed. For determination and structural characterization of the reactive metabolites, we used information obtained from high-resolution mass spectrometry, namely accurate mass data to calculate the elemental composition, accurate MS/MS fragmentation patterns for confirmation of structural proposals, and the high mass spectral resolution to eliminate false-positive peaks. In this study, the use of high-resolution mass spectrometry (HR-MS) enabled the identification of 19 simeprevir metabolites generated by O- respectively N-demethylation, oxidation, dehydrogenation, hydrolysis, and formation of glutathione conjugates. The in silico study provides insights into the sites of simeprevir most amenable to reactions involving cytochrome P450. The developed methods have been successfully applied to analyze simeprevir and its metabolites simultaneously; based on this data, potential metabolic pathways of simeprevir are discussed. In general, the obtained results demonstrate that simeprevir is susceptible to form reactive simeprevir-glutathione adducts and cyclopropansulfonamide, which may explain the implication of simeprevir in idiosyncratic adverse drug reactions (IADRs) or hepatotoxicity.
Collapse
Affiliation(s)
- Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| | - Susan Billig
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| | - Ramona Oehme
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| | - Claudia Birkemeyer
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Moure AL, Narula G, Sorrentino F, Bojang A, Tsui CKM, Sao Emani C, Porras-De Francisco E, Díaz B, Rebollo-López MJ, Torres-Gómez PA, López-Román EM, Camino I, Casado Castro P, Guijarro López L, Ortega F, Ballell L, Barros-Aguirre D, Remuiñán Blanco M, Av-Gay Y. MymA Bioactivated Thioalkylbenzoxazole Prodrug Family Active against Mycobacterium tuberculosis. J Med Chem 2020; 63:4732-4748. [DOI: 10.1021/acs.jmedchem.0c00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Abraham L. Moure
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | | | - Flavia Sorrentino
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | - Esther Porras-De Francisco
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Beatriz Díaz
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - María José Rebollo-López
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Pedro Alfonso Torres-Gómez
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Eva María López-Román
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Isabel Camino
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Patricia Casado Castro
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Laura Guijarro López
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Fátima Ortega
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lluis Ballell
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - David Barros-Aguirre
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Modesto Remuiñán Blanco
- Diseases of the Developing World (DDW), Global Health Catalyst, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | | |
Collapse
|