1
|
Gorrie D, Bravo M, Fan L. The Yin and Yang of the Natural Product Triptolide and Its Interactions with XPB, an Essential Protein for Gene Expression and DNA Repair. Genes (Basel) 2024; 15:1287. [PMID: 39457411 PMCID: PMC11507457 DOI: 10.3390/genes15101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Triptolide, a bioactive diterpene tri-epoxide extracted from Tripterygium wilfordii Hook F (TWHF), exhibits notable pharmacological activities, including anti-inflammatory, immunosuppressive, antifertility, and anticancer effects. Despite its promising therapeutic potential, clinical applications of triptolide are significantly limited by its poor water solubility and substantial toxicity, particularly hepatotoxicity, nephrotoxicity, and cardiotoxicity. These toxic effects are difficult to separate from many of its desired therapeutic effects, the Yin and Yang of triptolide applications. Triptolide's therapeutic and toxic effects are linked to its inhibitory interactions with XPB, a DNA helicase essential for transcription by RNA polymerase II (RNAPII) and nucleotide excision repair (NER). By irreversibly binding to XPB, triptolide inhibits its ATPase activity, leading to global repression of transcription and impaired NER, which underlies its cytotoxic and antitumor properties. Recent developments, including triptolide prodrugs such as Minnelide and derivatives like glutriptolides, aim to enhance its pharmacokinetic properties and reduce toxicity. This review critically examines triptolide's chemical structure, therapeutic applications, toxicological profile, and molecular interactions with XPB and other protein targets to inform future strategies that maximize therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
| | | | - Li Fan
- Department of Biochemistry, University of California, 900 University Ave, Riverside, CA 92521, USA; (D.G.); (M.B.)
| |
Collapse
|
2
|
Hu Y, Wu Q, Wang Y, Zhang H, Liu X, Zhou H, Yang T. The molecular pathogenesis of triptolide-induced hepatotoxicity. Front Pharmacol 2022; 13:979307. [PMID: 36091841 PMCID: PMC9449346 DOI: 10.3389/fphar.2022.979307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Triptolide (TP) is the major pharmacologically active ingredient and toxic component of Tripterygium wilfordii Hook. f. However, its clinical potential is limited by a narrow therapeutic window and multiple organ toxicity, especially hepatotoxicity. Furthermore, TP-induced hepatotoxicity shows significant inter-individual variability. Over the past few decades, research has been devoted to the study of TP-induced hepatotoxicity and its mechanism. In this review, we summarized the mechanism of TP-induced hepatotoxicity. Studies have demonstrated that TP-induced hepatotoxicity is associated with CYP450s, P-glycoprotein (P-gp), oxidative stress, excessive autophagy, apoptosis, metabolic disorders, immunity, and the gut microbiota. These new findings provide a comprehensive understanding of TP-induced hepatotoxicity and detoxification.
Collapse
Affiliation(s)
- Yeqing Hu
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Qiguo Wu
- Department of Pharmacy, Anqing Medical College, Anqing, China
| | - Yulin Wang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Haibo Zhang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Xueying Liu
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
- *Correspondence: Tao Yang, ; Hua Zhou,
| | - Tao Yang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Tao Yang, ; Hua Zhou,
| |
Collapse
|
3
|
Feng X, Shi Y, Ding Y, Zheng H. Inhibitory effects of traditional Chinese medicine colquhounia root tablet on the pharmacokinetics of tacrolimus in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115358. [PMID: 35551976 DOI: 10.1016/j.jep.2022.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tacrolimus (TAC) was widely used in various renal diseases while high recurrence rate and high expense restricted its applications. Traditional herbal medicine has become increasingly popular as an adjuvant therapy to minimize the adverse effects of TAC. Colquhounia root tablet (CRT), a prescribed drug prepared from the water extract of the peeled root of Tripterygium hypoglaucum (H. Lév.) Hutch., showed excellent anti-inflammatory, analgesic and immunosuppressive pharmacological properties. TAC used in combination with CRT was substantially more efficacious and safer than the monotherapy for the treatment of nephrotic syndrome. However, studies on their herb-drug interaction were scanty. AIM OF THE STUDY The study was proposed to examine the effect of CRT on the pharmacokinetics of TAC in rats and identify the key natural constituents in CRT that affected the metabolism of TAC. MATERIALS AND METHODS TAC was orally and intravenously administered to rats alone or in combination with CRT and the pharmacokinetic parameters of TAC were compared. After pretreatment with CRT for 15 d, the expressions of the drug-metabolizing enzymes (DMEs), drug transporters (DTs) and nuclear receptors (NRs) were determined by polymerase chain reaction and western blotting and compared with the control group. The hepatic microsomal incubation system was employed to confirm the inhibitory effects of CRT and its major components on rat cytochrome P450 (CYP) 3A2. The roles of the primary components in the regulation of human CYP3A4 and mouse P-gp activities were evaluated by using docking analysis. RESULTS The blood concentrations of TAC were significantly increased in a dose- and pretreatment time-dependent manner after combined administration of CRT. The maximal effect was found at 300 mg/kg (43.70 ± 8.77 ng/mL and 141.45 ± 21.58 h·ng/mL) in a single dose run and the pharmacokinetic parameters gradually returned to the normal levels at 24 h interval of long-term CRT pretreatment. In contrast, CRT had no effect on the pharmacokinetics of intravenous TAC. Further study indicated that the mRNA and protein expressions of DMEs and DTs, such as CYP3A1, CYP3A2, P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 in rat intestine and liver were down-regulated, whereas the expressions of NRs like constitutive androstane receptor and pregnane X receptor were up-regulated after multiple oral doses of CRT. Molecular docking showed the binding potency of five CRT major constituents with both human CYP3A4 and mouse P-gp. Celastrol, wilforgine and wilforine were the strongest inhibitors towards midazolam metabolism in rat liver microsomes, with the 50% inhibition concentrations being at 8.33 μM, 22.18 μM and 22.22 μM, respectively. CONCLUSIONS Our results revealed that co-dosing of CRT could lead to a significant increase in blood concentration of TAC and this effect could be ascribed to the resultant co-regulation of DMEs, DTs and NRs. Our study provided an experimental basis for the combination use of CRT and TAC in clinical practice.
Collapse
Affiliation(s)
- Xiangling Feng
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Youquan Shi
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yufeng Ding
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Heng Zheng
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Kawai K, Okada J, Nakae M, Tsujimura T, Karuo Y, Tarui A, Sato K, Yamashita S, Kataoka M, Omote M. Discovery of benzyloxyphenyl- and phenethylphenyl-imidazole derivatives as a new class of ante–drug type boosters. Bioorg Med Chem Lett 2022; 72:128868. [DOI: 10.1016/j.bmcl.2022.128868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
5
|
Cao Z, Liu B, Li L, Lu P, Yan L, Lu C. Detoxification strategies of triptolide based on drug combinations and targeted delivery methods. Toxicology 2022; 469:153134. [PMID: 35202762 DOI: 10.1016/j.tox.2022.153134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Tripterygium wilfordii Hook f. has a long history of use in Chinese medicine. Triptolide (TP), as its main pharmacological component, has been widely explored in various diseases, including systemic lupus erythematosus, rheumatoid arthritis and cancer. However, due to its poor water solubility, limited therapeutic range and multi-organ toxicity, TP's clinical application has been greatly hampered. To improve its clinical potential, many attenuated drug combinations have been developed based on its toxicity mechanism and targeted delivery systems aimed at its water-solubility and structure. This review, conducted a systematic review of TP detoxification strategies including drug combination detoxification strategies from metabolic and toxic mechanisms, as well as drug delivery detoxification strategies from the prodrug strategy and nanotechnology. Many detoxification strategies have demonstrated promising potential in vitro and in vivo due to previous extensive studies on TP. Therefore, summarizing and discussing TP detoxification strategies for clinical problems can serve as a reference for developing novel TP detoxification strategies, and provide opportunities for future clinical applications.
Collapse
Affiliation(s)
- Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
6
|
Wang YK, Li WQ, Xia S, Guo L, Miao Y, Zhang BK. Metabolic Activation of the Toxic Natural Products From Herbal and Dietary Supplements Leading to Toxicities. Front Pharmacol 2021; 12:758468. [PMID: 34744736 PMCID: PMC8564355 DOI: 10.3389/fphar.2021.758468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Currently, herbal and dietary supplements have been widely applied to prevent and treat various diseases. However, the potential toxicities and adverse reactions of herbal and dietary supplements have been increasingly reported, and have gradually attracted widespread attention from clinical pharmacists and physicians. Metabolic activation of specific natural products from herbal and dietary supplements is mediated by hepatic cytochrome P450 or intestinal bacteria, and generates chemical reactive/toxic metabolites that bind to cellular reduced glutathione or macromolecules, and form reactive metabolites-glutathione/protein/DNA adducts, and these protein/DNA adducts can result in toxicities. The present review focuses on the relation between metabolic activation and toxicities of natural products, and provides updated, comprehensive and critical comment on the toxic mechanisms of reactive metabolites. The key inductive role of metabolic activation in toxicity is highlighted, and frequently toxic functional groups of toxic natural products were summarized. The biotransformation of drug cytochrome P450 or intestinal bacteria involved in metabolic activation were clarified, the reactive metabolites-protein adducts were selected as biomarkers for predicting toxicity. And finally, further perspectives between metabolic activation and toxicities of natural products from herbal and dietary supplements are discussed, to provide a reference for the reasonable and safe usage of herbal and dietary supplements.
Collapse
Affiliation(s)
- Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wen Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Miao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
7
|
Liang D, Mai H, Ruan F, Fu H. The Efficacy of Triptolide in Preventing Diabetic Kidney Diseases: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:728758. [PMID: 34658869 PMCID: PMC8517526 DOI: 10.3389/fphar.2021.728758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/09/2022] Open
Abstract
Ethnopharmacological Relevance: Triptolide (TP), the primary biologically active ingredient of Tripterygium wilfordii Hook F (TWHF), possesses the potential to solve the shortcomings of TWHF in treating diabetic kidney disease (DKD) in the clinic. Aim of the Study: We conducted a meta-analysis to evaluate the efficacy of TP in treating DKD and offer solid evidence for further clinical applications of TP. Materials and Methods: Eight databases (CNKI, VIP, CBM, WanFang, PubMed, Web of Science, EMBASE, and Cochrane library) were electronically searched for eligible studies until October 17, 2020. We selected animal experimental studies using TP versus renin-angiotensin system inhibitors or nonfunctional liquids to treat DKD by following the inclusion and exclusion criteria. Two researchers independently extracted data from the included studies and assessed the risk of bias with the Systematic Review Centre for Laboratory Animal Experimentation Risk of Bias tool. Fixed-effects meta-analyses, subgroup analyses, and meta-regression were conducted using RevMan 5.3 software. Inplasy registration number: INPLASY2020100042. Results: Twenty-six studies were included. Meta-analysis showed that TP significantly reduced albuminuria (14 studies; standardized mean difference SMD: -1.44 [-1.65, -1.23], I2 = 87%), urine albumin/urine creatinine ratio (UACR) (8 studies; SMD: -5.03 [-5.74, -4.33], I2 = 84%), total proteinuria (4 studies; SMD: -3.12 [-3.75, -2.49], I2 = 0%), serum creatinine (18 studies; SMD: -0.30 [-0.49, -0.12], I2 = 76%), and blood urea nitrogen (12 studies; SMD: -0.40 [-0.60, -0.20], I2 value = 55%) in DKD animals, compared to the vehicle control. However, on comparing TP to the renin-angiotensin system (RAS) inhibitors in DKD treatment, there was no marked difference in ameliorating albuminuria (3 studies; SMD: -0.35 [-0.72, 0.02], I2 = 41%), serum creatinine (3 studies; SMD: -0.07 [-0.62, 0.48], I2 = 10%), and blood urea nitrogen (2 studies; SMD: -0.35 [-0.97, 0.28], I2 = 0%). Of note, TP exhibited higher capacities in reducing UACR (2 studies; SMD: -0.66 [-1.31, -0.01], I2 = 0%) and total proteinuria (2 studies; SMD: -1.18 [-1.86, -2049], I2 = 0%). Meta-regression implicated that the efficacy of TP in reducing DKD albuminuria was associated with applied dosages. In addition, publication bias has not been detected on attenuating albuminuria between TP and RAS inhibitors after the diagnosis of DKD. Systematic Review Registration: https://clinicaltrials.gov/, identifier INPLASY2020100042.
Collapse
Affiliation(s)
- Dongning Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Medical College, Southern Medical University, Guangzhou, China
| | - Hanwen Mai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Medical College, Southern Medical University, Guangzhou, China
| | - Fangyi Ruan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Medical College, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Wu W, Cheng R, Jiang Z, Zhang L, Huang X. UPLC-MS/MS method for the simultaneous quantification of pravastatin, fexofenadine, rosuvastatin, and methotrexate in a hepatic uptake model and its application to the possible drug-drug interaction study of triptolide. Biomed Chromatogr 2021; 35:e5093. [PMID: 33634891 DOI: 10.1002/bmc.5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/07/2022]
Abstract
A rapid and specific UPLC-MS/MS method with a total run time of 3.5 min was developed for the determination of pravastatin, fexofenadine, rosuvastatin, and methotrexate in rat primary hepatocytes. After protein precipitation with 70% acetonitrile (containing 30% H2 O), these four analytes were separated under gradient conditions with a mobile phase consisting of 0.03% acetic acid (v/v) and methanol at a flow rate of 0.50 mL/min. The linearity, recovery, matrix effect, accuracy, precision, and stability of the method were well validated. We evaluated drug-drug interactions based on these four compounds in freshly suspended hepatocytes. The hepatic uptake of pravastatin, fexofenadine, rosuvastatin, and methotrexate at 4°C was significantly lower than that at 37°C, and the hepatocytes were saturable with increased substrate concentration and culture time, suggesting that the rat primary hepatocyte model was successfully established. Triptolide showed a significant inhibitory effect on the hepatic uptake of these four compounds. In conclusion, this method was successfully employed for the quantification of pravastatin, fexofenadine, rosuvastatin, and methotrexate and was used to verify the rat primary hepatocyte model for Oatp1, Oatp2, Oatp4, and Oat2 transporter studies. Then, we applied this model to explore the effect of triptolide on these four transporters.
Collapse
Affiliation(s)
- Wei Wu
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Huang
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Wang R, Wei L, Dong Z, Meng F, Wang G, Zhou S, Lan X, Liao Z, Chen M. Pterocephin A, a novel Triterpenoid Saponin from Pterocephalus hookeri induced liver injury by activation of necroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153548. [PMID: 33831690 DOI: 10.1016/j.phymed.2021.153548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/30/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pterocephalus hookeri (C. B. Clarke) Höeck, a Tibetan medicine widely used for treatment of rheumatoid arthritis, was recorded in Chinese Pharmacopoeia (2020 version) with slight toxicity. The liver injury was observed in mice with administration of n-butanol extract (BUE) in our previously study. However, the toxic components and the mechanism were still unrevealed. PURPOSE The present study was aimed to isolate and structural elucidate of the toxic compound pterocephin A (PA), as well as evaluate its liver toxicity and investigate its mechanism. METHODS PA was isolated from the BUE of P. hookeri. Its structure was determined by analysis of HRMS, NMR and ECD data. L-02 cellular viability, LDH, ALT, AST, ROS, intracellular Ca2+ and the fluidity of cell membrane were assessed by multifunctional microplate reader. The PI staining, cell membrane permeability assessment, and mitochondrial fluorescence staining analysis were determined through the fluorescence microscope. Liver samples for mice were assessed by pathological and immunohistochemistry analysis. Expression levels of indicated proteins were measured by western blotting assays. RESULTS PA was determined as a previously undescribed oleanolane-type triterpenoid saponin. In vitro study revealed PA significantly induced hepatotoxicity by inhibition of L-02 cell growth, abnormally elevation of ALT and AST. Mechanically, PA induced the damage of cell membrane, fragmentation of mitochondria, and subsequently increase of intracellular Ca2+ and ROS levels, which trigged by necroptosis with the activation of RIP1 and NF-κB signaling pathways. In vivo study confirmed PA could induce liver injury in mice with observation of the body weight loss, increasing of serum ALT and AST, and the histopathological changes in liver tissues. CONCLUSION Our present study indicated that PA was an undescribed toxic constituent in P. hookeri to induce liver injury in mice by activation of necroptosis and inflammation. And the findings are of great significance for the clinical use safely of this herb.
Collapse
Affiliation(s)
- Rui Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lin Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhaoyue Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Siyu Zhou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant R&D Center, XiZang Agriculture and Animal Husbandry College, Nyingchi, Tibet 860000, PR China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Detoxification of toxic herbs in TCM prescription based on modulation of efflux transporters. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Zheng N, Wei A, Wu T, Long L, Yang H, Li H, Wang L. Triptolide and atorvastatin synergistically promote hepatotoxicity in cultured hepatocytes and female Sprague-Dawley rats by inhibiting pregnane X receptor-mediated transcriptional activation of CYP3A4. Toxicol Lett 2021; 342:85-94. [PMID: 33600922 DOI: 10.1016/j.toxlet.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Triptolide (TP), an active component of Tripterygium wilfordii Hook. F, has been widely used in China for treating autoimmune and inflammatory diseases, and has also been validated by modern science and developed as a candidate anti-cancer treatment. However, liver toxicity of TP has seriously hindered its use and development, the clinical features and primary toxicological mechanism have been unclear. Considering the major target regulation mechanism of TP is the suppression of global transcription regulated by RNAPII, which is closed related with the detoxification of drugs. This paper tries to verify the synergistic liver injury and its mechanism of TP when co-administered with CYP3A4 substrate drug. The experiments showed that TP dose-dependently blocked transcriptional activation of CYP3A4 in both hPXR and hPXR-CYP3A4 reporter cell lines, lowered the mRNA and protein expression of PXR target genes such as CYP3A1, CYP2B1, and MDR1, and inhibited the functional activity of CYP3A in a time- and concentration-dependent manner in sandwich-cultured rat hepatocytes (SCRH) and female Sprague-Dawley (f-SD) rats. Furthermore, TP combined with atorvastatin (ATR), the substrate of CYP3A4, synergistically enhanced hepatotoxicity in cultured HepG2 and SCRH cells (CI is 0.38 and 0.29, respectively), as well as in f-SD rats, with higher exposure levels of both drugs. These results clearly indicate that TP inhibits PXR-mediated transcriptional activation of CYP3A4, leading to a blockade on the detoxification of itself and ATR, thereby greatly promoting liver injury. This study may implies the key cause of TP related liver injury and provides experimental data for the rational use of TP in a clinical scenario.
Collapse
Affiliation(s)
- Nan Zheng
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application, Beijing 100730, China
| | - Aili Wei
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Tong Wu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Long Long
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Haiying Yang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Hua Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Lili Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| |
Collapse
|
12
|
Ren Q, Li M, Deng Y, Lu A, Lu J. Triptolide delivery: Nanotechnology-based carrier systems to enhance efficacy and limit toxicity. Pharmacol Res 2021; 165:105377. [PMID: 33484817 DOI: 10.1016/j.phrs.2020.105377] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Triptolide (TP) possesses a wide range of biological and pharmacological activities involved in the treatment of various diseases. However, widespread usages of TP raise the urgent issues of the severe toxicity, which hugely limits its further clinical application. The novel functional nanostructured delivery system, which is of great significance in enhancing the efficacy, reducing side effects and improving bioavailability, could improve the enrichment, penetration and controlled release of drugs in the lesion location. Over the past decades, considerable efforts have been dedicated to designing and developing a variety of TP delivery systems with the intention of alleviating the adverse toxicity effects and enhancing the bioavailability. In this review, we briefly summarized and discussed the recent functionalized nano-TP delivery systems for the momentous purpose of guiding further development of novel TP delivery systems and providing perspectives for future clinical applications.
Collapse
Affiliation(s)
- Qing Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Integrated Bioinformedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, 518000, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Meimei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Aiping Lu
- Institute of Integrated Bioinformedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, 518000, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Integrated Bioinformedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, 518000, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
13
|
Zhang Y, Mao X, Li W, Chen W, Wang X, Ma Z, Lin N. Tripterygium wilfordii: An inspiring resource for rheumatoid arthritis treatment. Med Res Rev 2020; 41:1337-1374. [PMID: 33296090 DOI: 10.1002/med.21762] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
Tripterygium wilfordii Hook F (TwHF)-based therapy is among the most efficient and crucial therapeutics for the treatment of rheumatoid arthritis (RA), which indicates that TwHF is a potential source of novel anti-RA drugs. However, accumulating studies have observed that TwHF-based therapy induces multi-organ toxicity, which prevents the wide use of this herb in clinical practice, although several recent studies have attempted to reduce the toxicity of TwHF. Notably, our research group developed a "Clinical Practice Guideline for Tripterygium Glycosides/Tripterygium wilfordii Tablets in the Treatment of Rheumatoid Arthritis" (No. T/CACM 1337-2020) approved by the China Association of Chinese Medicine to standardize the clinical application of TwHF-based therapy and thus avoid adverse effects. Although great strides have been made toward the characterization of TwHF-based therapy and revealing its underlying pharmacological and toxicological mechanisms, several crucial gaps in knowledge remain as potential barriers to enhance its therapeutic effects on the premise of safety assurance. This review offers a global view of TwHF, ranging from its chemical constituents, quality control, clinical observations, and underlying pharmacological mechanisms to toxic manifestations and mechanisms. We focus on the important and emerging aspects of this field and highlight the major challenges and strategies for using novel techniques and approaches to gain new insights into unresolved questions. We hope that this review will improve the understanding of TwHF application and draw increasing interdisciplinary attention from clinicians that practice both Chinese and Western medicine, basic researchers, and computer scientists.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Mao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijie Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjia Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhaochen Ma
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Efficacy and mechanism of actions of natural antimicrobial drugs. Pharmacol Ther 2020; 216:107671. [PMID: 32916205 DOI: 10.1016/j.pharmthera.2020.107671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Microbial infections have significantly increased over the last decades, and the mortality rates remain unacceptably high. The emergence of new resistance patterns and the spread of new viruses challenge the eradication of infectious diseases. The declining efficacy of antimicrobial drugs has become a global public health problem. Natural products derived from natural sources, such as plants, animals, and microorganisms, have significant efficacy for the treatment of infectious diseases accompanied by less adverse effects, synergy, and ability to overcome drug resistance. As the Chinese female scientist Youyou Tu received the Nobel Prize for the antimalarial drug artemisinin, antimicrobial drugs developed from Traditional Chinese Medicine are expected to receive increasing attention again. This review summarizes the antimicrobial agents derived from natural products approved for nearly 20 years and describes their efficacy and mode of action. The aim of this unit is to review the current status of antimicrobial drugs from natural products in order to increase the value of natural products as a source of novel drug candidates for infectious diseases.
Collapse
|
15
|
Xiao X, Zhang T, Huang J, Zhao Q, Li F. Effect of CYP3A4 on liver injury induced by triptolide. Biomed Chromatogr 2020; 34:e4864. [PMID: 32330997 DOI: 10.1002/bmc.4864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/22/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Triptolide (TP), one of the main bioactive diterpenes of the herbal medicine Tripterygium wilfordii Hook F, is used for the treatment of autoimmune diseases in the clinic and is accompanied by severe hepatotoxicity. CYP3A4 has been reported to be responsible for TP metabolism, but the mechanism remains unclear. The present study applied a UPLC-QTOF-MS-based metabolomics analysis to characterize the effect of CYP3A4 on TP-induced hepatotoxicity. The metabolites carnitines, lysophosphatidylcholines (LPCs) and a serious of amino acids were found to be closely related to liver damage indexes in TP-treated female mice. Metabolomics analysis further revealed that the CYP3A4 inducer dexamethasone improved the level of LPCs and amino acids, and defended against oxidative stress. On the contrary, pretreatment with the CYP3A4 inhibitor ketoconazole increased liver damage with most metabolites being markedly altered, especially carnitines. Among these metabolites, except for LPC18:2, LPC20:1 and arginine, dexamethasone and ketoconazole both affected oxidative stress induced by TP. The current study provides new mechanistic insights into the metabolic alterations, leading to understanding of the role of CYP3A4 in hepatotoxicity induced by TP.
Collapse
Affiliation(s)
- Xuerong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Zhao H, Tong Y, Lu D, Wu B. Circadian clock regulates hepatotoxicity of Tripterygium wilfordii through modulation of metabolism. J Pharm Pharmacol 2020; 72:1854-1864. [PMID: 32478421 DOI: 10.1111/jphp.13299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES We aimed to determine the diurnal rhythm of Tripterygium wilfordii (TW) hepatotoxicity and to investigate a potential role of metabolism and pharmacokinetics in generating chronotoxicity. METHODS Hepatotoxicity was determined based on assessment of liver injury after dosing mice with TW at different circadian time points. Circadian clock control of metabolism, pharmacokinetics and hepatotoxicity was investigated using Clock-deficient (Clock-/- ) mice. KEY FINDINGS Hepatotoxicity of TW displayed a significant circadian rhythm (the highest level of toxicity was observed at ZT2 and the lowest level at ZT14). Pharmacokinetic experiments showed that oral gavage of TW at ZT2 generated higher plasma concentrations (and systemic exposure) of triptolide (a toxic constituent) compared with ZT14 dosing. This was accompanied by reduced formation of triptolide metabolites at ZT2. Loss of Clock gene sensitized mice to TW-induced hepatotoxicity and abolished the time-dependency of toxicity that was well correlated with altered metabolism and pharmacokinetics of triptolide. Loss of Clock gene also decreased Cyp3a11 expression in mouse liver and blunted its diurnal rhythm. CONCLUSIONS Tripterygium wilfordii chronotoxicity was associated with diurnal variations in triptolide pharmacokinetics and circadian expression of hepatic Cyp3a11 regulated by circadian clock. Our findings may have implications for improving TW treatment outcome with a chronotherapeutic approach.
Collapse
Affiliation(s)
- Huan Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yongbin Tong
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Shen QQ, Wang JJ, Roy D, Sun LX, Jiang ZZ, Zhang LY, Huang X. Organic anion transporter 1 and 3 contribute to traditional Chinese medicine-induced nephrotoxicity. Chin J Nat Med 2020; 18:196-205. [PMID: 32245589 DOI: 10.1016/s1875-5364(20)30021-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 01/09/2023]
Abstract
With the internationally growing popularity of traditional Chinese medicine (TCM), TCM-induced nephropathy has attracted public attention. Minimizing this toxicity is an important issue for future research. Typical nephrotoxic TCM drugs such as Aristolochic acid, Tripterygium wilfordii Hook. f, Rheum officinale Baill, and cinnabar mainly damage renal proximal tubules or cause interstitial nephritis. Transporters in renal proximal tubule are believed to be critical in the disposition of xenobiotics. In this review, we provide information on the alteration of renal transporters by nephrotoxic TCMs, which may be helpful for understanding the nephrotoxic mechanism of TCMs and reducing adverse effects. Studies have proven that when administering nephrotoxic TCMs, the expression or function of renal transporters is altered, especially organic anion transporter 1 and 3. The alteration of these transporters may enhance the accumulation of toxic drugs or the dysfunction of endogenous toxins and subsequently sensitize the kidney to injury. Transporters-related drug combination and clinical biomarkers supervision to avoid the risk of future toxicity are proposed.
Collapse
Affiliation(s)
- Qing-Qing Shen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Jing Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Debmalya Roy
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Xin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Lu C, Di L. In vitro
and
in vivo
methods to assess pharmacokinetic drug– drug interactions in drug discovery and development. Biopharm Drug Dispos 2020; 41:3-31. [DOI: 10.1002/bdd.2212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Chuang Lu
- Department of DMPKSanofi Company Waltham MA 02451
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismPfizer Worldwide Research & Development Groton CT 06340
| |
Collapse
|
19
|
Huo J, Yu Q, Zhang Y, Liu K, Hsiao C, Jiang Z, Zhang L. Triptolide‐induced hepatotoxicity via apoptosis and autophagy in zebrafish. J Appl Toxicol 2019; 39:1532-1540. [DOI: 10.1002/jat.3837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jingting Huo
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical University Nanjing China
| | - Qinwei Yu
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical University Nanjing China
| | - Yun Zhang
- Biology InstituteQilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Kechun Liu
- Biology InstituteQilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Chung‐Der Hsiao
- Department of Bioscience TechnologyChung Yuan Christian University Chung‐Li Taiwan
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical University Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of EducationChina Pharmaceutical University Nanjing China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical University Nanjing China
- Center for Drug Research and DevelopmentGuangdong Pharmaceutical University Guangzhou China
| |
Collapse
|
20
|
Song W, Liu M, Wu J, Zhai H, Chen Y, Peng Z. Preclinical Pharmacokinetics of Triptolide: A Potential Antitumor Drug. Curr Drug Metab 2019; 20:147-154. [DOI: 10.2174/1389200219666180816141506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023]
Abstract
Background:Triptolide, a bioactive component in Tripterygium wilfordii extracts, possess strong antiproliferative activity on all 60-National Cancer Institute (NCI) cancer cell lines. However, the widespread use of triptolide in the clinical practice is greatly limited for its multi-organ toxicity and narrow therapeutic window. All the toxic characteristics of triptolide are associated with the pharmacokinetics especially its distribution and accumulation in the target organ.Methods:The literature review was done using PubMed search, SciFinder and Google Scholar databases with specific keywords such as triptolide, pharmacokinetics, drug-drug interaction, transporters, metabolism, modification to collect the related full-length articles and abstracts from 2000 to 2018.Results:Oral triptolide is rapidly and highly absorbed. Grapefruit juice affects oral absorption, increasing the area under the concentration-time curve (AUC) by 153 % and the maximum concentration (Cmax) by 141 %. The AUC and the Cmax are not dose proportional. Triptolide distributes into the liver, heart, spleen, lung and kidney. Biotransformation of triptolide in rats includes hydroxylation, sulfate, glucuronide, N-acetylcysteine (NAC) and Glutathione (GSH) conjugation and combinations of these pathways. Less than 4 % of triptolide was recovered from the feces, bile and urine within 24 h. After repeating dosage, triptolide was eliminated quickly without accumulation in vivo. As a substrate of P-glycoprotein (P-gp) and CYP3A4, triptolide could have clinically significant pharmacokinetic interactions with those proteins substrates/inhibitors.Conclusion:The findings of this review confirm the importance of pharmacokinetic character for understanding the pharmacology and toxicology of triptolide.
Collapse
Affiliation(s)
- Wei Song
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Meilin Liu
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Junjun Wu
- Lab of Structure Biology and Medicinal Chemistry, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Hong Zhai
- Lab of Structure Biology and Medicinal Chemistry, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Yong Chen
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Zhihong Peng
- School of Life Sciences, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| |
Collapse
|
21
|
CYP3A4 inducer and inhibitor strongly affect the pharmacokinetics of triptolide and its derivative in rats. Acta Pharmacol Sin 2018; 39:1386-1392. [PMID: 29283173 DOI: 10.1038/aps.2017.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
Triptolide is the most active ingredient of Tripterygium wilfordii Hook F, which is used to treat rheumatoid arthritis. (5R)-5-Hydroxytriptolide is a hydroxylation derivative of triptolide with a reduced toxicity. To investigate the metabolic enzymes of the two compounds and the drug-drug interactions with enzyme inducers or inhibitors, a series of in vitro and in vivo experiments were conducted. In vitro studies using recombinant human cytochrome P450 enzyme demonstrated that cytochrome P450 3A4 (CYP3A4) was predominant in the metabolism of triptolide and (5R)-5-hydroxytriptolide, accounting for 94.2% and 64.2% of the metabolism, respectively. Pharmacokinetics studies were conducted in male SD rats following administration of triptolide or (5R)-5-hydroxytriptolide (0.4 mg/kg, po). The plasma exposure to triptolide and (5R)-5-hydroxytriptolide in the rats was significantly increased when co-administered with the CYP3a inhibitor ritonavir (30 mg/kg, po) with the values of AUC0-∞ (area under the plasma concentration-time curve from time zero extrapolated to infinity) being increased by 6.84 and 1.83 times, respectively. When pretreated with the CYP3a inducer dexamethasone (50 mg·kg-1·d-1, for 3 d), the AUC0-∞ values of triptolide and (5R)-5-hydroxytriptolide were decreased by 85.4% and 91.4%, respectively. These results suggest that both triptolide and (5R)-5-hydroxytriptolide are sensitive substrates of CYP3a. Because of their narrow therapeutic windows, clinical drug-drug interaction studies should be carried out to ensure their clinical medication safety and efficacy.
Collapse
|
22
|
Rundel PW, Arroyo MTK, Cowling RM, Keeley JE, Lamont BB, Pausas JG, Vargas P. Fire and Plant Diversification in Mediterranean-Climate Regions. FRONTIERS IN PLANT SCIENCE 2018; 9:851. [PMID: 30018621 PMCID: PMC6038726 DOI: 10.3389/fpls.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 05/29/2023]
Abstract
Despite decades of broad interest in global patterns of biodiversity, little attention has been given to understanding the remarkable levels of plant diversity present in the world's five Mediterranean-type climate (MTC) regions, all of which are considered to be biodiversity hotspots. Comprising the Mediterranean Basin, California, central Chile, the Cape Region of South Africa, and southwestern Australia, these regions share the unusual climatic regime of mild wet winters and warm dry summers. Despite their small extent, covering only about 2.2% of world land area, these regions are home to approximately one-sixth of the world vascular plant flora. The onset of MTCs in the middle Miocene brought summer drought, a novel climatic condition, but also a regime of recurrent fire. Fire has been a significant agent of selection in assembling the modern floras of four of the five MTC regions, with central Chile an exception following the uplift of the Andes in the middle Miocene. Selection for persistence in a fire-prone environment as a key causal factor for species diversification in MTC regions has been under-appreciated or ignored. Mechanisms for fire-driven speciation are diverse and may include both directional (novel traits) and stabilizing selection (retained traits) for appropriate morphological and life-history traits. Both museum and nursery hypotheses have important relevance in explaining the extant species richness of the MTC floras, with fire as a strong stimulant for diversification in a manner distinct from other temperate floras. Spatial and temporal niche separation across topographic, climatic and edaphic gradients has occurred in all five regions. The Mediterranean Basin, California, and central Chile are seen as nurseries for strong but not spectacular rates of Neogene diversification, while the older landscapes of southwestern Australia and the Cape Region show significant components of both Paleogene and younger Neogene speciation in their diversity. Low rates of extinction suggesting a long association with fire more than high rates of speciation have been key to the extant levels of species richness.
Collapse
Affiliation(s)
- Philip W. Rundel
- Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mary T. K. Arroyo
- Department of Ecological Science, Faculty of Sciences, Institute of Ecology and Biodiversity, University of Chile, Santiago, Chile
| | - Richard M. Cowling
- African Centre for Coastal Palaeoscience, Nelson Mandela University, Port Elizabeth, South Africa
| | - Jon E. Keeley
- Sequoia Field Station, Western Ecological Research Center, United States Geological Survey, Reston, VA, United States
| | - Byron B. Lamont
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Juli G. Pausas
- Centro de Investigaciones sobre Desertificación, University of Valencia, CSIC, Valencia, Spain
| | - Pablo Vargas
- Department of Biodiversity and Conservation, Royal Botanical Garden of Madrid, CSIC, Madrid, Spain
| |
Collapse
|
23
|
Smutný T, Harjumäki R, Kanninen L, Yliperttula M, Pávek P, Lou YR. A feasibility study of the toxic responses of human induced pluripotent stem cell-derived hepatocytes to phytochemicals. Toxicol In Vitro 2018; 52:94-105. [PMID: 29902661 DOI: 10.1016/j.tiv.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022]
Abstract
Herbal medicines have been increasingly used in the last three decades. Despite their popularity, safety issues with herbal products need to be addressed. We performed a feasibility study of the toxic responses of human induced pluripotent stem cell-derived hepatocytes (iHep cells) to phytochemicals in comparison with hepatoblasoma-derived HepG2 cells and long-term human hepatocytes (LTHHs). The iHep cells expressed typical hepatocyte markers cytochrome P450 3A4 (CYP3A4), hepatocyte nuclear factor 4α, and albumin despite the expression of immature markers α-fetoprotein and cytokeratin 19. We studied the responses of iHep cells to phytochemicals saikosaponin D, triptolide, deoxycalyciphylline B, and monocrotaline with different mode of toxicity employing MTS and lactate dehydrogenase (LDH) assays. Saikosaponin D and triptolide caused dose-dependent cytotoxicity in the iHep cells, which were more sensitive than LTHHs and HepG2 cells. Saikosaponin D-induced cytotoxicity tightly correlated with increased LDH leakage in the iHep cells. Although deoxycalyciphylline B did not exhibit toxic effect on the iHep and HepG2 cells when compared with LTHHs, it decreased CYP3A7 expression in the iHep cells and increased CYP1A2 expression in HepG2 cells. We hereby show the feasibility of using iHep cells to detect toxic effects of phytochemicals.
Collapse
Affiliation(s)
- Tomáš Smutný
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Králové 50005, Czech Republic
| | - Riina Harjumäki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Liisa Kanninen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, Hradec Králové 50005, Czech Republic
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
24
|
Yu C, Yuan M, Yang H, Zhuang X, Li H. P-Glycoprotein on Blood-Brain Barrier Plays a Vital Role in Fentanyl Brain Exposure and Respiratory Toxicity in Rats. Toxicol Sci 2018; 164:353-362. [DOI: 10.1093/toxsci/kfy093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Chenchen Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mei Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Haiying Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
25
|
Hou Z, Chen L, Fang P, Cai H, Tang H, Peng Y, Deng Y, Cao L, Li H, Zhang B, Yan M. Mechanisms of Triptolide-Induced Hepatotoxicity and Protective Effect of Combined Use of Isoliquiritigenin: Possible Roles of Nrf2 and Hepatic Transporters. Front Pharmacol 2018; 9:226. [PMID: 29615906 PMCID: PMC5865274 DOI: 10.3389/fphar.2018.00226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Triptolide (TP), the main bioactive component of Tripterygium wilfordii Hook F, can cause severe hepatotoxicity. Isoliquiritigenin (ISL) has been reported to be able to protect against TP-induced liver injury, but the mechanisms are not fully elucidated. This study aims to explore the role of nuclear transcription factor E2-related factor 2 (Nrf2) and hepatic transporters in TP-induced hepatotoxicity and the reversal protective effect of ISL. TP treatment caused both cytotoxicity in L02 hepatocytes and acute liver injury in mice. Particularly, TP led to the disorder of bile acid (BA) profiles in mice livers. Combined treatment of TP with ISL effectively alleviated TP-induced hepatotoxicity. Furthermore, ISL pretreatment enhanced Nrf2 expressions and nuclear accumulations and its downstream NAD(P)H: quinine oxidoreductase 1 (NQO1) expression. Expressions of hepatic P-gp, MRP2, MRP4, bile salt export pump, and OATP2 were also induced. In addition, in vitro transport assays identified that neither was TP exported by MRP2, OATP1B1, or OATP1B3, nor did TP influence the transport activities of P-gp or MRP2. All these results indicate that ISL may reduce the hepatic oxidative stress and hepatic accumulations of both endogenous BAs and exogenous TP as well as its metabolites by enhancing the expressions of Nrf2, NQO1, and hepatic influx and efflux transporters. Effects of TP on hepatic transporters are mainly at the transcriptional levels, and changes of hepatic BA profiles are very important in the mechanisms of TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhenyan Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Pingfei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huaibo Tang
- Department of Pharmacy, Chemistry College, Xiangtan University, Xiangtan, China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory, College of Life Sciences, State Key Laboratory of Chemo, Bio-Sensing and Chemometrics, Hunan University, Changsha, China
| | - Yang Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lingjuan Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huande Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
26
|
Yu C, Li Y, Liu M, Gao M, Li C, Yan H, Li C, Sun L, Mo L, Wu C, Qi X, Ren J. Critical Role of Hepatic Cyp450s in the Testis-Specific Toxicity of (5R)-5-Hydroxytriptolide in C57BL/6 Mice. Front Pharmacol 2017; 8:832. [PMID: 29209210 PMCID: PMC5702336 DOI: 10.3389/fphar.2017.00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Low solubility, tissue accumulation, and toxicity are chief obstacles to developing triptolide derivatives, so a better understanding of the pharmacokinetics and toxicity of triptolide derivatives will help with these limitations. To address this, we studied pharmacokinetics and toxicity of (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide derivative immunosuppressant in a conditional knockout (KO) mouse model with liver-specific deletion of CYP450 reductase. Compared to wild type (WT) mice, after LLDT-8 treatment, KO mice suffered severe testicular toxicity (decreased testicular weight, spermatocytes apoptosis) unlike WT mice. Moreover, KO mice had greater LLDT-8 exposure as confirmed with elevated AUC and Cmax, increased drug half-life, and greater tissue distribution. γ-H2AX, a marker of meiosis process, its localization and protein level in testis showed a distinct meiosis block induced by LLDT-8. RNA polymerase II (Pol II), an essential factor for RNA storage and synapsis in spermatogenesis, decreased in testes of KO mice after LLDT-8 treatment. Germ-cell line based assays confirmed that LLDT-8 selectively inhibited Pol II in spermatocyte-like cells. Importantly, the analysis of androgen receptor (AR) related genes showed that LLDT-8 did not change AR-related signaling in testes. Thus, hepatic CYP450s were responsible for in vivo metabolism and clearance of LLDT-8 and aggravated testicular injury may be due to increased LLDT-8 exposure in testis and subsequent Pol II reduction.
Collapse
Affiliation(s)
- Cunzhi Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingxia Liu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Man Gao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong Yan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunzhu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lihan Sun
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Liying Mo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Xi C, Peng S, Wu Z, Zhou Q, Zhou J. WITHDRAWN: Toxicity of triptolide and the molecular mechanisms involved. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017:S1382-6689(17)30271-5. [PMID: 29037923 DOI: 10.1016/j.etap.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chen Xi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shaojun Peng
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Zhengping Wu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Qingping Zhou
- Internet and Education Technology Center, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| |
Collapse
|
28
|
Toxicity of triptolide and the molecular mechanisms involved. Biomed Pharmacother 2017; 90:531-541. [DOI: 10.1016/j.biopha.2017.04.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023] Open
|
29
|
Li Z, Yan M, Cao L, Fang P, Guo Z, Hou Z, Zhang B. Glycyrrhetinic Acid Accelerates the Clearance of Triptolide through P-gp In Vitro. Phytother Res 2017; 31:1090-1096. [PMID: 28509400 DOI: 10.1002/ptr.5831] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/18/2017] [Accepted: 04/18/2017] [Indexed: 11/10/2022]
Abstract
Triptolide (TP) is an active ingredient isolated from Tripterygium wilfordii Hook. f. (TWHF), which is a traditional herbal medicine widely used for the treatment of rheumatoid arthritis and autoimmune disease in the clinic. However, its adverse reactions of hepatotoxicity and nephrotoxicity have been frequently reported which limited its clinical application. The aim of this study was to investigate the mechanism of glycyrrhetinic acid (GA) effecting on the elimination of TP in HK-2 cells and the role of the efflux transporters of P-gp and multidrug resistance-associated proteins (MRPs) in this process. An ultra performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) analytical method was established to determine the intracellular concentration of TP. In order to study the role of efflux transporters of P-gp and MRPs in GA impacting on the accumulation of TP, the inhibitors of efflux transporters (P-gp: verapamil; MRPs: MK571) were used in this study. The results showed that GA could enhance the elimination of TP and reduce the TP accumulation in HK-2 cells. Verapamil and MK571 could increase the intracellular concentration of TP; in addition, GA co-incubation with verapamil significantly increased the TP cellular concentration compared with the control group. In conclusion, GA could reduce the accumulation of TP in HK-2 cells, which was related to P-gp. This is probably one of the mechanisms that TP combined with GA to detoxify its toxicity. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhihua Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,School of Pharmaceutical Science, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lingjuan Cao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,School of Pharmaceutical Science, Central South University, Changsha, China
| | - Pingfei Fang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhaohui Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,School of Pharmaceutical Science, Central South University, Changsha, China
| | - Zhenyan Hou
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
30
|
Jia Y, Liu J, Xu J. Influence of grapefruit juice on pharmacokinetics of triptolide in rats grapefruit juice on the effects of triptolide. Xenobiotica 2017; 48:407-411. [PMID: 28359180 DOI: 10.1080/00498254.2017.1313470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yuzhen Jia
- Department of Pediatrics, Yidu Central Hospital of Weifang, China,
| | - Jie Liu
- Yidu Central Hospital of Weifang, China, and
| | - Jisen Xu
- Department of Neurology, Yidu Central Hospital of Weifang, China
| |
Collapse
|
31
|
Lu J, Zhang Y, Sun M, Liu M, Wang X. Comprehensive assessment of Cucurbitacin E related hepatotoxicity and drug-drug interactions involving CYP3A and P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 26:1-10. [PMID: 28257659 DOI: 10.1016/j.phymed.2017.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/17/2016] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Cucurbitacin E (CuE), a tetracyclic triterpenoid isolated from Cucurbitaceae, possesses many pharmacological activities especially anti-cancer. PURPOSE The aim of this investigation was to comprehensively assess CuE related hepatotoxicity and potential drug-drug interactions involving CYP3A and P-glycoprotein (P-gp). STUDY DESIGN AND METHODS Four common cytotoxicity assays (MTS, SRB, NRU and apoptosis assays) were used to evaluate the hepatotoxicity of CuE in human hepatocellular carcinoma HepG2 cells. Human and rat liver microsomes incubation system, Caco-2 transport model and 3D organoids model were used to investigate the effects of CuE on CYP3A and P-gp in vitro. The oral pharmacokinetics of indinavir was employed to evaluate the effects of CuE on CYP3A and P-gp in vivo. RESULTS CuE induced the HepG2 apoptosis and exhibited acute cytotoxicity in MTS, SRB, and NRU assays with IC50 value at 15.98µM, 0.31µM, and 1.11µM, respectively. Moreover, CuE not only presented mechanism-based inhibition on human CYP3A4, but also decreased the efflux ratio of digoxin (P-gp substrate) across Caco-2 cell monolayers in vitro. Furthermore, CuE significantly inhibited the transport of Rh123 into 3D organoids, which was caused by the inhibition on P-gp. In Sprague-Dawley rat studies in vivo, acute administration of CuE significantly increased the maximum serum concentration (Cmax) and area under the concentration-time curve (AUC) of indinavir. In contrast, CuE treatment for three consecutive days significantly decreased indinavir Cmax and AUC in rats. CONCLUSION These studies demonstrated that CuE has strong hepatotoxicity, and CuE presents potent inhibition on both CYP3A and P-gp activities in vitro. In animal in vivo studies, CuE induces CYP3A and P-gp after a long-term treatment but inhibits the activities of CYP3A and P-gp after an acute dosing. Therefore, CuE as a dual functional regulator of both CYP3A and P-gp may cause complex drug-drug interactions.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
32
|
Lu Y, Xie T, Zhang Y, Zhou F, Ruan J, Zhu W, Zhu H, Feng Z, Zhou X. Triptolide Induces hepatotoxicity via inhibition of CYP450s in Rat liver microsomes. Altern Ther Health Med 2017; 17:15. [PMID: 28056947 PMCID: PMC5217299 DOI: 10.1186/s12906-016-1504-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
Abstract
Background Triptolide (TP), an active constituent of Tripterygium wilfordii, possesses numerous pharmacological activities. However, its effects on cytochrome P450 enzymes (CYP450s) in rats remain unexplored. Methods In this study, the effects of triptolide on the six main CYP450 isoforms (1A2, 2C9, 2C19, 2D6, 2E1, and 3A) were investigated both in vivo and in vitro. We monitored the body weight, survival proportions, liver index, changes in pathology, and biochemical index upon TP administration, in vivo. Using a cocktail probe of CYP450 isoform-specific substrates and their metabolites, we then carried out in vitro enzymatic studies in liver microsomal incubation systems via ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Finally, we verified our results at the messenger ribonucleic acid (mRNA) and protein level through quantitative real-time polymerase chain reaction (RT-qPCR), western blotting, and immunohistochemical detection. Results The in vivo toxicity study confirmed that Sprague-Dawley (SD) rats exhibited dose-dependent hepatotoxicity after intragastric administration of TP [200, 400, and 600 μg/(kg.day)] for 28 days. In case of the CYP450 isoforms 3A, 2C9, 2C19, and 2E1, the in vitro metabolic study demonstrated a decrease in the substrate metabolic rate, metabolite production rate, and Vmax, with an increase in the Km value, compared with that observed in the control group. Additionally, a TP dose-dependent decrease in the mRNA levels was observed in the four major isoforms of CYP3A subfamily (3A1/3A23, 3A2, 3A9, and 3A62) and CYP2C9. A similar effect was also observed with respect to the protein levels of CYP2C19 and CYP2E1. Conclusions This study suggests that TP can cause hepatotoxicity by reducing the substrate affinity, activity, and expression at the transcriptional and protein levels of the CYP450 isoforms 3A, 2C9, 2C19, and 2E1. TP also has the potential to cause pharmacokinetic drug interactions when co-administered with drugs metabolized by these four isoforms. However, further clinical studies are needed to evaluate the significance of this interaction. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1504-3) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Kong LL, Shen GL, Wang ZY, Zhuang XM, Xiao WB, Yuan M, Gong ZH, Li H. Inhibition of P-Glycoprotein and Multidrug Resistance-Associated Protein 2 Regulates the Hepatobiliary Excretion and Plasma Exposure of Thienorphine and Its Glucuronide Conjugate. Front Pharmacol 2016; 7:242. [PMID: 27555820 PMCID: PMC4977286 DOI: 10.3389/fphar.2016.00242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/22/2016] [Indexed: 11/13/2022] Open
Abstract
Thienorphine (TNP) is a novel partial opioid agonist that has completed phase II clinical evaluation as a promising drug candidate for the treatment of opioid dependence. Previous studies have shown that TNP and its glucuronide conjugate (TNP-G) undergo significant bile excretion. The purpose of this study was to investigate the roles of efflux transporters in regulating biliary excretion and plasma exposure of TNP and TNP-G. An ATPase assay suggested that TNP and TNP-G were substrates of P-gp and MRP2, respectively. The in vitro data from rat hepatocytes showed that bile excretion of TNP and TNP-G was regulated by the P-gp and MRP2 modulators. The accumulation of TNP and TNP-G in HepG2 cells significantly increased by the treatment of mdr1a or MRP2 siRNA for P-gp or MRP2 modulation. In intact rats, the bile excretion, and pharmacokinetic profiles of TNP and TNP-G were remarkably changed with tariquidar and probenecid pretreatment, respectively. Tariquidar increased the Cmax and AUC0-t and decreased MRT and T1/2 of TNP, whereas probenecid decreased the plasma exposure of TNP-G and increased its T1/2. Knockdown P-gp and MRP2 function using siRNA significantly increased the plasma exposure of TNP and TNP-G and reduced their mean retention time in mice. These results indicated the important roles of P-gp and MRP2 in hepatobiliary excretion and plasma exposure of TNP and TNP-G. Inhibition of the efflux transporters may affect the pharmacokinetics of TNP and result in a drug-drug interaction between TNP and the concomitant transporter inhibitor or inducer in clinic.
Collapse
Affiliation(s)
- Ling-Lei Kong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and ToxicologyBeijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing, China
| | - Guo-Lin Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and ToxicologyBeijing, China; Research Center for Import-Export Chemicals Safety of General Administration of Quality Supervision, Inspection and Quarantine of People's Republic of China, Chinese Academy of Inspection and QuarantineBeijing, China
| | - Zhi-Yuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiao-Mei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Wei-Bin Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Mei Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Ze-Hui Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Hua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| |
Collapse
|
34
|
Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy. Biomaterials 2016; 97:110-21. [DOI: 10.1016/j.biomaterials.2016.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/07/2016] [Accepted: 04/20/2016] [Indexed: 01/16/2023]
|
35
|
Jin J, Sun X, Zhao Z, Wang W, Qiu Y, Fu X, Huang M, Huang Z. Activation of the farnesoid X receptor attenuates triptolide-induced liver toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:894-901. [PMID: 26321738 DOI: 10.1016/j.phymed.2015.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Triptolide, an active ingredient extracted from the Chinese herb Tripterygium wilfordii Hook f., has multiple pharmacological properties, including anti-inflammatory, immune-modulatory, and anti-proliferative activities. However, the hepatotoxicity of triptolide always limits its clinical applications. HYPOTHESIS/PURPOSE Farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays a key role in hepatoprotection through the maintenance of liver metabolism homeostasis. This study explored the role of FXR in triptolide-induced cytotoxicity and investigated whether activation of FXR can protect against triptolide-induced liver injury. STUDY DESIGN The role of FXR in triptolide-induced cytotoxicity was investigated in HepG2 cells. In addition, the protective effect of the selective FXR agonist GW4064 on triptolide-induced hepatotoxicity was explored in BALB/c mice. METHODS HepG2 cells were transient transfected with FXR expression plasmid or FXR-siRNA. The cytotoxicity was compared using the MTT assay. The extent of liver injury was assessed by histopathology and serum aminotransferases. The expression of FXR and its target genes were detected by Western blot and qRT-PCR. RESULTS The transient overexpression of FXR protected against triptolide-induced cell death, whereas FXR knockdown with a specific small interfering RNA resulted in increased cytotoxicity. In BALB/c mice, treatment with the FXR agonist GW4064 attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and lipid peroxidation. Moreover, the livers of GW4064-treated mice showed increased expression of FXR and several related target genes involved in phase II and phase III xenobiotic metabolism. CONCLUSION Taken together, these results indicate that activation of FXR attenuates triptolide-induced hepatotoxicity and provide direct implications for the development of novel therapeutic strategies against triptolide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiaozhe Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuwen Qiu
- Center of Laboratory animals, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xinlu Fu
- Center of Laboratory animals, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Center of Laboratory animals, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
36
|
Kong LL, Zhuang XM, Yang HY, Yuan M, Xu L, Li H. Inhibition of P-glycoprotein Gene Expression and Function Enhances Triptolide-induced Hepatotoxicity in Mice. Sci Rep 2015; 5:11747. [PMID: 26134275 PMCID: PMC4488747 DOI: 10.1038/srep11747] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022] Open
Abstract
Triptolide (TP) is the major active principle of Tripterygium wilfordii Hook f. and very effective in treatment of autoimmune diseases. However, TP induced hepatotoxicity limited its clinical applications. Our previous study found that TP was a substrate of P-glycoprotein and its hepatobiliary clearance was markedly affected by P-gp modulation in sandwich-cultured rat hepatocytes. In this study, small interfering RNA (siRNA) and specific inhibitor tariquidar were used to investigate the impact of P-gp down regulation on TP-induced hepatotoxicity. The results showed that when the function of P-gp was inhibited by mdr1a-1 siRNA or tariquidar, the systemic and hepatic exposures of TP were significantly increased. The aggravated hepatotoxicity was evidenced with the remarkably lifted levels of serum biomarkers (ALT and AST) and pathological changes in liver. The other toxicological indicators (MDA, SOD and Bcl-2/Bax) were also significantly changed by P-gp inhibition. The data analysis showed that the increase of TP exposure in mice was quantitatively correlated to the enhanced hepatotoxicity, and the hepatic exposure was more relevant to the toxicity. P-gp mediated clearance played a significant role in TP detoxification. The risk of herb-drug interaction likely occurs when TP is concomitant with P-gp inhibitors or substrates in clinic.
Collapse
Affiliation(s)
- Ling-Lei Kong
- 1] State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China [2] Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiao-Mei Zhuang
- 1] State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China [2] Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hai-Ying Yang
- 1] State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China [2] Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mei Yuan
- 1] State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China [2] Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liang Xu
- 1] State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China [2] Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hua Li
- 1] State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China [2] Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
37
|
Zhang FL, He X, Zhai YR, He LN, Zhang SC, Wang LL, Yang AH, An LJ. Mechanism-based inhibition of CYPs and RMs-induced hepatoxicity by rutaecarpine. Xenobiotica 2015; 45:978-89. [DOI: 10.3109/00498254.2015.1038742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Zhang Y, Li J, Lei X, Zhang T, Liu G, Yang M, Liu M. Influence of Verapamil on Pharmacokinetics of Triptolide in Rats. Eur J Drug Metab Pharmacokinet 2015; 41:449-56. [DOI: 10.1007/s13318-015-0275-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|