1
|
Rowbottom C, Pietrasiewicz A, Tuczewycz T, Grater R, Qiu D, Kapadnis S, Trapa P. Optimization of dose and route of administration of the P-glycoprotein inhibitor, valspodar (PSC-833) and the P-glycoprotein and breast cancer resistance protein dual-inhibitor, elacridar (GF120918) as dual infusion in rats. Pharmacol Res Perspect 2021; 9:e00740. [PMID: 33660938 PMCID: PMC7931226 DOI: 10.1002/prp2.740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
Transporters can play a key role in the absorption, distribution, metabolism, and excretion of drugs. Understanding these contributions early in drug discovery allows for more accurate projection of the clinical pharmacokinetics. One method to assess the impact of transporters in vivo involves co‐dosing specific inhibitors. The objective of the present study was to optimize the dose and route of administration of a P‐glycoprotein (P‐gp) inhibitor, valspodar (PSC833), and a dual P‐gp/breast cancer resistance protein (BCRP) inhibitor, elacridar (GF120918), by assessing the transporters’ impact on brain penetration and absorption. A dual‐infusion strategy was implemented to allow for flexibility with dose formulation. The chemical inhibitor was dosed intravenously via the femoral artery, and a cassette of known substrates was infused via the jugular vein. Valspodar or elacridar was administered as 4.5‐hour constant infusions over a range of doses. To assess the degree of inhibition, the resulting ratios of brain and plasma concentrations, Kp's, of the known substrates were compared to the vehicle control. These data demonstrated that doses greater than 0.9 mg/hr/kg valspodar and 8.9 mg/hr/kg elacridar were sufficient to inhibit P‐gp‐ and BCRP‐mediated efflux at the blood‐brain barrier in rats without any tolerability issues. Confirmation of BBB restriction by efflux transporters in preclinical species allows for subsequent prediction in humans based upon the proteomic expression at rodent and human BBB. Overall, the approach can also be applied to inhibition of efflux at other tissues (gut absorption, liver clearance) or can be extended to other transporters of interest using alternate inhibitors.
Collapse
|
2
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
3
|
Huang L, Wells MC, Zhao Z. A Practical Perspective on the Evaluation of Small Molecule CNS Penetration in Drug Discovery. Drug Metab Lett 2020; 13:78-94. [PMID: 30854983 DOI: 10.2174/1872312813666190311125652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 01/16/2023]
Abstract
The separation of the brain from blood by the blood-brain barrier and the bloodcerebrospinal fluid (CSF) barrier poses unique challenges for the discovery and development of drugs targeting the central nervous system (CNS). This review will describe the role of transporters in CNS penetration and examine the relationship between unbound brain (Cu-brain) and unbound plasma (Cu-plasma) or CSF (CCSF) concentration. Published data demonstrate that the relationship between Cu-brain and Cu-plasma or CCSF can be affected by transporter status and passive permeability of a drug and CCSF may not be a reliable surrogate for CNS penetration. Indeed, CCSF usually over-estimates Cu-brain for efflux substrates and it provides no additional value over Cu-plasma as the surrogate of Cu-brain for highly permeable non-efflux substrates. A strategy described here for the evaluation of CNS penetration is to use in vitro permeability, P-glycoprotein (Pgp) and breast cancer resistance protein efflux assays and Cu-brain/Cu-plasma in preclinical species. Cu-plasma should be used as the surrogate of Cu-brain for highly permeable non-efflux substrates with no evidence of impaired distribution into the brain. When drug penetration into the brain is impaired, we recommend using (total brain concentration * unbound fraction in the brain) as Cu-brain in preclinical species or Cu-plasma/in vitro Pgp efflux ratio if Pgp is the major limiting mechanism for brain penetration.
Collapse
Affiliation(s)
- Liyue Huang
- Epizyme Inc, 400 Technology Square, Cambridge, MA-02139, United States
| | - Mary C Wells
- Vertex Pharmaceuticals, 50 Northern Ave, Boston, MA-02210, United States
| | - Zhiyang Zhao
- Alliance Pharma, Inc. 17 Lee Blvd. Malvern, PA-19355, United States
| |
Collapse
|
4
|
Nakaoka T, Uetake Y, Kaneko KI, Niwa T, Ochiai H, Irie S, Suezaki Y, Otsuka N, Hayashinaka E, Wada Y, Cui Y, Maeda K, Kusuhara H, Sugiyama Y, Hosoya T, Watanabe Y. Practical Synthesis of [ 18F]Pitavastatin and Evaluation of Hepatobiliary Transport Activity in Rats by Positron Emission Tomography. Mol Pharm 2020; 17:1884-1898. [PMID: 32271581 DOI: 10.1021/acs.molpharmaceut.9b01284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We developed a practical synthetic method for fluorine-18 (18F)-labeled pitavastatin ([18F]PTV) as a positron emission tomography (PET) tracer to assess hepatobiliary transporter activity and conducted a PET scan as a preclinical study for proof-of-concept in rats. This method is a one-pot synthesis involving aromatic 18F-fluorination of an arylboronic acid ester followed by deprotection under acidic conditions, which can be reproduced in general clinical sites equipped with a standard radiolabeling system due to the simplified procedure. PET imaging confirmed that intravenously administered [18F]PTV was rapidly accumulated in the liver and gradually transferred into the intestinal lumen through the bile duct. Radiometabolite analysis showed that [18F]PTV was metabolically stable, and 80% of the injected dose was detected as the unchanged form in both blood and bile. We applied integration plot analysis to assess tissue uptake clearance (CLuptake, liver and CLuptake, kidney) and canalicular efflux clearance (CLint, bile), and examined the effects of inhibitors on membrane transport. Treatment with rifampicin, an organic anion transporting polypeptide inhibitor, significantly reduced CLuptake, liver and CLuptake, kidney to 44% and 64% of control, respectively. In contrast, Ko143, a breast cancer resistance protein inhibitor, did not affect CLuptake, liver but significantly reduced CLint, bile to 39% of control without change in [18F]PTV blood concentration. In addition, we found decreased CLuptake, liver and increased CLint, bile in Eisai hyperbilirubinemic rats in response to altered expression levels of transporters. We expect that [18F]PTV can be translated into clinical application, as our synthetic method does not need special apparatus in the radiolabeling system and PET scan with [18F]PTV can quantitatively evaluate transporter activity in vivo.
Collapse
Affiliation(s)
- Takayoshi Nakaoka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuta Uetake
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ken-Ichi Kaneko
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Niwa
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hidenori Ochiai
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoshie Suezaki
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Natsumi Otsuka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Emi Hayashinaka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yilong Cui
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takamitsu Hosoya
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Suzuki K, Taniyama K, Aoyama T, Watanabe Y. Evaluation of the Role of P-glycoprotein (P-gp)-Mediated Efflux in the Intestinal Absorption of Common Substrates with Elacridar, a P-gp Inhibitor, in Rats. Eur J Drug Metab Pharmacokinet 2020; 45:385-392. [PMID: 32078103 DOI: 10.1007/s13318-019-00602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES P-glycoprotein (P-gp) has been shown previously to contribute to the intestinal absorption of verapamil, diltiazem, tacrolimus, colchicine and indinavir in situ; however, its contribution in vivo is unknown. The present study aimed to evaluate the in vivo involvement of P-gp using elacridar as its inhibitor to distinguish the contribution of P-gp from cytochrome P450 (CYP) 3A. METHODS Fexofenadine (5 mg/kg) and buspirone (1 mg/kg) were used as probe substrates of P-gp and CYP3A, respectively. Each dual substrate (1 or 2 mg/kg) was orally administered to rats after elacridar pre-treatment (3 mg/kg). Additionally, verapamil, diltiazem or tacrolimus was orally co-administered with fexofenadine. RESULTS Elacridar drastically increased the area under the plasma concentration-time curve (AUC0-t) of oral fexofenadine by 8.6-fold; however, it did not affect the AUC0-t of oral buspirone. Therefore, elacridar inhibited P-gp without affecting CYP3A. The absorption of oral verapamil, diltiazem and tacrolimus was not influenced by elacridar pre-treatment, and the increase in the AUC0-t of fexofenadine was approximately 3-fold when co-administered with each substrate; the minimal effect of elacridar was attributable to the limited contribution of P-gp but not to their self-inhibition against the transporter. Conversely, elacridar significantly increased the AUC0-t of colchicine (5.3-fold) and indinavir (2.0-fold), indicating that P-gp contributes to their absorption. CONCLUSIONS Elacridar is useful for distinguishing the contribution of P-gp from CYP3A to the absorption of drugs in rats. The in vivo contribution of P-gp is minimal for high permeable compounds owing to their fraction absorbed of nearly 1.0.
Collapse
Affiliation(s)
- Kei Suzuki
- Exploratory Research Section III, Exploratory Research Laboratories, Drug Research Department, TOA EIYO LTD., 1, Yuno-tanaka, Iizaka-machi, Fukushima-shi, Fukushima, 960-0280, Japan.
| | - Kazuhiro Taniyama
- Exploratory Research Section III, Exploratory Research Laboratories, Drug Research Department, TOA EIYO LTD., 1, Yuno-tanaka, Iizaka-machi, Fukushima-shi, Fukushima, 960-0280, Japan.
| | - Takao Aoyama
- Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoshiaki Watanabe
- Exploratory Research Section III, Exploratory Research Laboratories, Drug Research Department, TOA EIYO LTD., 1, Yuno-tanaka, Iizaka-machi, Fukushima-shi, Fukushima, 960-0280, Japan
| |
Collapse
|
6
|
Abstract
Background: A major concern for clinicians in prescribing medications to pregnant women and neonates is the possibility that drugs might have damaging effects, particularly on long-term brain development. Current understanding of drug permeability at placental and blood-brain barriers during development is poor. In adults, ABC transporters limit many drugs from entering the brain; however, little is known about their function during development. Methods: The transfer of clinically relevant doses of paracetamol (acetaminophen), digoxin and cimetidine into the brain and cerebrospinal fluid (CSF) was estimated using radiolabelled drugs in Sprague Dawley rats at three developmental stages: E19, P4 and adult. Drugs were applied intraperitoneally either acutely or following chronic exposure (for five days). Entry into brain, CSF and transfer across the placenta was measured and compared to three markers (L-glucose, sucrose, glycerol) that cross barriers by "passive diffusion". The expression of ABC transporters in the brain, choroid plexus and placenta was estimated using RT-qPCR. Results: All three drugs entered the developing brain and CSF in higher amounts than the adult brain and CSF. Comparisons with "passive" permeability markers suggested that this might be due to age-related differences in the functional capacity of ABC-efflux mechanisms. In adult animals, chronic treatment reduced digoxin (12% to 5%, p<0.01) and paracetamol (30% to 21%, p<0.05) entry compared to acute treatment, with the decrease in digoxin entry correlating with up-regulation of efflux transporter abcb1a (PGP). In fetal and newborn animals, no gene up-regulation or transfer decreases were observed. Instead, chronic paracetamol treatment resulted in increased transfer into the fetal brain (66% to 104%, p<0.001). Conclusions: These results suggest that the developing brain may be more at risk from acute drug exposure than the adult brain due to reduced efflux capacity and at greater risk from chronic treatment due to a lack of efflux mechanism regulatory capacity.
Collapse
Affiliation(s)
- Liam Koehn
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mark Habgood
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yifan Huang
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Katarzyna Dziegielewska
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Norman Saunders
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
7
|
Fu T, Gao R, Scott-Stevens P, Chen Y, Zhang C, Wang J, Summerfield S, Liu H, Sahi J. Rapid Bioavailability and Disposition protocol: A novel higher throughput approach to assess pharmacokinetics and steady-state brain distribution with reduced animal usage. Eur J Pharm Sci 2018; 122:13-21. [PMID: 29857045 DOI: 10.1016/j.ejps.2018.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 11/18/2022]
Abstract
Besides routine pharmacokinetic (PK) parameters, unbound brain-to-blood concentration ratio (Kp,uu) is an index particularly crucial in drug discovery for central nervous system (CNS) indications. Despite advantages of Kp,uu from steady state after constant intravenous (i.v.) infusion compared with one- or multiple time points after transient dosing, it is seldom obtained for compound optimization in early phase of CNS drug discovery due to requirement of prerequisite PK data to inform the study design. Here, we designed a novel rat in vivo PK protocol, dubbed as Rapid Bioavailability and Disposition (RBD), which combined oral (p.o.) dosing and i.v. infusion to obtain steady-state brain penetration, along with blood clearance, oral exposure and oral bioavailability for each discovery compound, within a 24 hour in-life experiment and only a few (e.g., 3) animals. Protocol validity was verified through simulations with a range of PK parameters in compartmental models as well as data comparison for nine compounds with distinct PK profiles. PK parameters (Kp,brain, CLb and oral AUC) measured from the RBD protocol for all compounds, were within two-fold and/or statistically similar to those derived from conventional i.v./p.o. crossover PK studies. Our data clearly indicates that the RBD protocol offers reliable and reproducible data over a wide range of PK properties, with reduced turnaround time and animal usage.
Collapse
Affiliation(s)
- Tingting Fu
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China.
| | - Ruina Gao
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | | | - Yan Chen
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | - Chalmers Zhang
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | - Jianfei Wang
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | | | - Houfu Liu
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | - Jasminder Sahi
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| |
Collapse
|
8
|
Mihajlica N, Betsholtz C, Hammarlund-Udenaes M. Pharmacokinetics of pericyte involvement in small-molecular drug transport across the blood-brain barrier. Eur J Pharm Sci 2018; 122:77-84. [DOI: 10.1016/j.ejps.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
|
9
|
Mairinger S, Zoufal V, Wanek T, Traxl A, Filip T, Sauberer M, Stanek J, Kuntner C, Pahnke J, Müller M, Langer O. Influence of breast cancer resistance protein and P-glycoprotein on tissue distribution and excretion of Ko143 assessed with PET imaging in mice. Eur J Pharm Sci 2018; 115:212-222. [PMID: 29360507 PMCID: PMC5884419 DOI: 10.1016/j.ejps.2018.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Abstract
Ko143 is a reference inhibitor of the adenosine triphosphate-binding cassette (ABC) transporter breast cancer resistance protein (humans: ABCG2, rodents: Abcg2) for in vitro and in vivo use. Previous in vitro data indicate that Ko143 binds specifically to ABCG2/Abcg2, suggesting a potential utility of Ko143 as a positron emission tomography (PET) tracer to assess the density (abundance) of ABCG2 in different tissues. In this work we radiolabeled Ko143 with carbon-11 (11C) and performed small-animal PET experiments with [11C]Ko143 in wild-type, Abcg2(-/-), Abcb1a/b(-/-) and Abcb1a/b(-/-)Abcg2(-/-) mice to assess the influence of Abcg2 and Abcb1a/b on tissue distribution and excretion of [11C]Ko143. [11C]Ko143 was extensively metabolized in vivo and unidentified radiolabeled metabolites were found in all investigated tissues. We detected no significant differences between wild-type and Abcg2(-/-) mice in the distribution of [11C]Ko143-derived radioactivity to Abcg2-expressing organs (brain, liver and kidney). [11C]Ko143 and possibly its radiolabeled metabolites were transported by Abcb1a and not by Abcg2 at the mouse blood-brain barrier. [11C]Ko143-derived radioactivity underwent both hepatobiliary and urinary excretion, with Abcg2 playing a possible role in mediating the transport of radiolabeled metabolites of [11C]Ko143 from the kidney into urine. Experiments in which a pharmacologic dose of unlabeled Ko143 (10 mg/kg) was co-administered with [11C]Ko143 revealed pronounced effects of the vehicle used for Ko143 formulation (containing polyethylene glycol 300 and polysorbate 80) on radioactivity distribution to the brain and the liver, as well as on hepatobiliary and urinary excretion of radioactivity. Our results highlight the challenges associated with the development of PET tracers for ABC transporters and emphasize that inhibitory effects of pharmaceutical excipients on membrane transporters need to be considered when performing in vivo drug-drug interaction studies. Finally, our study illustrates the power of small-animal PET to assess the interaction of drug molecules with membrane transporters on a whole body level.
Collapse
Affiliation(s)
- Severin Mairinger
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Viktoria Zoufal
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Wanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Alexander Traxl
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Filip
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johann Stanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claudia Kuntner
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway; LIED, University of Lübeck, Germany; Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Markus Müller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Yahata M, Chiba K, Watanabe T, Sugiyama Y. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters. J Pharm Sci 2017; 106:2345-2356. [PMID: 28501470 DOI: 10.1016/j.xphs.2017.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023]
Abstract
Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro Ki values for human SERT and plasma concentrations of unbound drug (Cu,plasma), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro Ki values were compared with the means of in vivo Ki values (Ki,u,plasma) which were calculated as Cu,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro Ki values for 7 drugs were comparable to their in vivo Ki,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro Ki values and Cu,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments.
Collapse
Affiliation(s)
- Masahiro Yahata
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Company, Ltd., Osaka, Japan.
| | - Koji Chiba
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Takao Watanabe
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Company, Ltd., Osaka, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama, Japan
| |
Collapse
|
11
|
Zheng Y, Chen X, Benet LZ. Reliability of In Vitro and In Vivo Methods for Predicting the Effect of P-Glycoprotein on the Delivery of Antidepressants to the Brain. Clin Pharmacokinet 2016; 55:143-67. [PMID: 26293617 DOI: 10.1007/s40262-015-0310-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As the effect of P-glycoprotein (P-gp) transport on antidepressant delivery has been extensively evaluated using in vitro cellular and in vivo rodent models, an increasing number of publications have addressed the effect of P-gp in limiting brain penetration of antidepressants and causing treatment-resistant depression in current clinical therapies. However, contradictory results have been observed in different systems. It is of vital importance to understand the potential for drug interactions related to P-gp at the blood-brain barrier (BBB), and whether coadministration of a P-gp inhibitor together with an antidepressant is a good clinical strategy for dosing of patients with treatment-resistant depression. In this review, the complicated construction of the BBB, the transport mechanisms for compounds that cross the BBB, and the basic characteristics of antidepressants are illustrated. Further, the reliability of different systems related to antidepressant brain delivery, including in vitro bidirectional transport cell lines, in vivo Mdr1 knockout mice, and chemical inhibition studies in rodents are analyzed, supporting a low possibility that P-gp affects currently marketed antidepressants when these results are extrapolated to the human BBB. These findings can also be applied to other central nervous system drugs.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 533 Parnassus Avenue, Room U-68, San Francisco, CA, 94143-0912, USA
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xijing Chen
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 533 Parnassus Avenue, Room U-68, San Francisco, CA, 94143-0912, USA.
| |
Collapse
|
12
|
Salphati L, Alicke B, Heffron TP, Shahidi-Latham S, Nishimura M, Cao T, Carano RA, Cheong J, Greve J, Koeppen H, Lau S, Lee LB, Nannini-Pepe M, Pang J, Plise EG, Quiason C, Rangell L, Zhang X, Gould SE, Phillips HS, Olivero AG. Brain Distribution and Efficacy of the Brain Penetrant PI3K Inhibitor GDC-0084 in Orthotopic Mouse Models of Human Glioblastoma. Drug Metab Dispos 2016; 44:1881-1889. [PMID: 27638506 DOI: 10.1124/dmd.116.071423] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/09/2016] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Limited treatment options have only marginally impacted patient survival over the past decades. The phophatidylinositol 3-kinase (PI3K) pathway, frequently altered in GBM, represents a potential target for the treatment of this glioma. 5-(6,6-Dimethyl-4-morpholino-8,9-dihydro-6H-[1,4]oxazino[4,3-e]purin-2-yl)pyrimidin-2-amine (GDC-0084) is a PI3K inhibitor that was specifically optimized to cross the blood-brain barrier. The goals of our studies were to characterize the brain distribution, pharmacodynamic (PD) effect, and efficacy of GDC-0084 in orthotopic xenograft models of GBM. GDC-0084 was tested in vitro to assess its sensitivity to the efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) and in vivo in mice to evaluate its effects on the PI3K pathway in intact brain. Mice bearing U87 or GS2 intracranial tumors were treated with GDC-0084 to assess its brain distribution by matrix-assisted laser desorption ionization (MALDI) imaging and measure its PD effects and efficacy in GBM orthotopic models. Studies in transfected cells indicated that GDC-0084 was not a substrate of P-gp or BCRP. GDC-0084 markedly inhibited the PI3K pathway in mouse brain, causing up to 90% suppression of the pAkt signal. MALDI imaging showed GDC-0084 distributed evenly in brain and intracranial U87 and GS2 tumors. GDC-0084 achieved significant tumor growth inhibition of 70% and 40% against the U87 and GS2 orthotopic models, respectively. GDC-0084 distribution throughout the brain and intracranial tumors led to potent inhibition of the PI3K pathway. Its efficacy in orthotopic models of GBM suggests that it could be effective in the treatment of GBM. GDC-0084 is currently in phase I clinical trials.
Collapse
Affiliation(s)
- Laurent Salphati
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Bruno Alicke
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Timothy P Heffron
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Sheerin Shahidi-Latham
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Merry Nishimura
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Tim Cao
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Richard A Carano
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Jonathan Cheong
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Joan Greve
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Hartmut Koeppen
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Shari Lau
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Leslie B Lee
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Michelle Nannini-Pepe
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Jodie Pang
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Emile G Plise
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Cristine Quiason
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Linda Rangell
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Xiaolin Zhang
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Stephen E Gould
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Heidi S Phillips
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| | - Alan G Olivero
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S.-L., J.C., J.P., E.G.P., C.Q., X.Z.), Discovery Chemistry (T.P.H., A.G.O.), Cancer Signaling and Translational Oncology (B.A., M.N., M.N.-P., L.B.L., S.E.G., H.S.P.), Biomedical Imaging (T.C., R.A.C., J.G.), and Pathology (H.K., S.L., L.R.), Genentech Inc., South San Francisco, California
| |
Collapse
|
13
|
Investigation of utility of cerebrospinal fluid drug concentration as a surrogate for interstitial fluid concentration using microdialysis coupled with cisternal cerebrospinal fluid sampling in wild-type and Mdr1a(-/-) rats. Drug Metab Pharmacokinet 2015; 31:57-66. [PMID: 26830080 DOI: 10.1016/j.dmpk.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 11/23/2022]
Abstract
In drug discovery, the cerebrospinal fluid (CSF) drug concentration (CCSF) has been used as a surrogate for the interstitial fluid (ISF) concentration (CISF). However, the CCSF-to-CISF gradient suggested for P-glycoprotein (P-gp) substrates in rodents causes uncertainty in CISF estimations and subsequent pharmacokinetic-pharmacodynamic analyses. To evaluate the utility of CCSF as a surrogate for CISF, this study directly compared the CCSF with the CISF of 12 compounds, including P-gp substrates, under steady-state conditions in wild-type and Mdr1a(-/-) rats using microdialysis coupled with cisternal CSF sampling. In wild-type rats, the ISF-to-unbound plasma (Kp,uu,ISF) and CSF-to-unbound plasma (Kp,uu,CSF) concentration ratios of the P-gp substrates, except for metoclopramide, were lower than those of the non-P-gp substrates, and the Kp,uu,CSF values were within or close to 3-fold of the Kp,uu,ISF values for all the compounds examined. The Kp,uu,CSF values of the selected P-gp substrates increased in Mdr1a(-/-) rats with a similar magnitude to the Kp,uu,ISF values, resulting in the Kp,uu,CSF-to-Kp,uu,ISF ratios being unchanged. These results suggested that P-gp-mediated active efflux at the blood-brain barrier is a major determinant not only for CISF, but also for CCSF, and that CCSF can be used as a surrogate for CISF even for P-gp substrates in rats.
Collapse
|
14
|
Milojkovic Kerklaan B, van Tellingen O, Huitema ADR, Beijnen JH, Boogerd W, Schellens JHM, Brandsma D. Strategies to target drugs to gliomas and CNS metastases of solid tumors. J Neurol 2015; 263:428-40. [DOI: 10.1007/s00415-015-7919-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023]
|
15
|
Weidner LD, Zoghbi SS, Lu S, Shukla S, Ambudkar SV, Pike VW, Mulder J, Gottesman MM, Innis RB, Hall MD. The Inhibitor Ko143 Is Not Specific for ABCG2. J Pharmacol Exp Ther 2015; 354:384-93. [PMID: 26148857 DOI: 10.1124/jpet.115.225482] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Lora D Weidner
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Suneet Shukla
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Suresh V Ambudkar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Jan Mulder
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Michael M Gottesman
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Matthew D Hall
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| |
Collapse
|
16
|
Deshmukh G, Sun K, Liederer BM, Ding X, Liu X. Use of Cassette Dosing to Enhance the Throughput of Rat Brain Microdialysis Studies. Drug Metab Dispos 2015; 43:1123-8. [DOI: 10.1124/dmd.115.064204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/04/2015] [Indexed: 12/20/2022] Open
|
17
|
Huang L, Li X, Roberts J, Janosky B, Lin MHJ. Differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain, CSF and peripheral nerve tissues in rats. Xenobiotica 2014; 45:547-55. [PMID: 25539457 DOI: 10.3109/00498254.2014.997324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. This study was designed to evaluate how the absence of P-glycoprotein (Pgp, Mdr1a), breast cancer-resistance protein (Bcrp, Abcg2) or both affects drug distribution into sciatic nerves, brain and cerebrospinal fluid (CSF) in rats. 2. Pgp substrate (loperamide), BCRP substrates (dantrolene and proprietary compound X) and dual substrates (imatinib and proprietary compound Y) were well distributed into sciatic nerves with comparable nerve to plasma concentration ratios between wild-type and knockout (KO) rats. 3. Brain exposure increased substantially in Mdr1a(-/-) rats for loperamide and in Mdr1a(-/-)/Abcg2(-/-) rats for imatinib and compound Y, but minimally to modestly in Abcg2(-/-) rats for dantrolene and compound X. The deletion of Mdr1a or Abcg2 alone had little effect on brain distribution of compound Y. 4. While CSF to unbound brain concentration ratio remained ≥3 in the KO animals for dantrolene, compounds X and Y, it was reduced to 1 in the Mdr1a(-/-)/Abcg2(-/-) rats for imatinib. 5. The data indicate that Pgp and Bcrp do not play significant roles in drug distribution into peripheral nerve tissues in rats, while working in concert to regulate brain penetration. Our results further support that CSF concentration may not be a good surrogate for unbound brain concentration of efflux substrates.
Collapse
Affiliation(s)
- Liyue Huang
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc , Cambridge, MA , USA
| | | | | | | | | |
Collapse
|
18
|
Fuchs H, Kishimoto W, Gansser D, Tanswell P, Ishiguro N. Brain penetration of WEB 2086 (Apafant) and dantrolene in Mdr1a (P-glycoprotein) and Bcrp knockout rats. Drug Metab Dispos 2014; 42:1761-5. [PMID: 25053619 DOI: 10.1124/dmd.114.058545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transporter gene knockout rat models are attracting increasing interest for mechanistic studies of new drugs as transporter substrates or inhibitors in vivo. However, limited data are available on the functional validity of such models at the blood-brain barrier. Therefore, the present study evaluated Mdr1a [P-glycoprotein (P-gp)], Bcrp, and combined Mdr1a/Bcrp knockout rat strains for the influence of P-gp and breast cancer resistance protein (BCRP) transport proteins on brain penetration of the selective test substrates [(14)C]WEB 2086 (3-[4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo-[4,3-a][1,4]-diazepin-2-yl]-1-(4-morpholinyl)-1-propanon) for P-gp and dantrolene for BCRP. Brain-to-plasma concentration ratios (BPR) were measured after intravenous coinfusions of 5.5 µmol/kg per hour [(14)C]WEB 2086 and 2 µmol/kg per hour dantrolene for 2 hours in groups of knockout or wild-type rats. Compared with wild-type controls, mean BPR of [(14)C]WEB 2086 increased 8-fold in Mdr1a knockouts, 9.5-fold in double Mdr1a/Bcrp knockouts, and 7.3-fold in zosuquidar-treated wild-type rats, but was unchanged in Bcrp knockout rats. Mean BPR of dantrolene increased 3.3-fold in Bcrp knockouts and 3.9-fold in double Mdr1a/Bcrp knockouts compared with wild type, but was unchanged in the Mdr1a knockouts. The human intestinal CaCo-2 cell bidirectional transport system in vitro confirmed the in vivo finding that [(14)C]WEB 2086 is a substrate of P-gp but not of BCRP. Therefore, Mdr1a, Bcrp, and combined Mdr1a/Bcrp knockout rats provide functional absence of these efflux transporters at the blood-brain barrier and are a suitable model for mechanistic studies on the brain penetration of drug candidates.
Collapse
Affiliation(s)
- Holger Fuchs
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (H.F., D.G.); Kobe Pharma Research Institute, Nippon Boehringer Ingelheim, Kobe, Japan (W.K., N.I.); and PKPharmaExpert, Laupheim, Germany (P.T.)
| | - Wataru Kishimoto
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (H.F., D.G.); Kobe Pharma Research Institute, Nippon Boehringer Ingelheim, Kobe, Japan (W.K., N.I.); and PKPharmaExpert, Laupheim, Germany (P.T.)
| | - Dietmar Gansser
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (H.F., D.G.); Kobe Pharma Research Institute, Nippon Boehringer Ingelheim, Kobe, Japan (W.K., N.I.); and PKPharmaExpert, Laupheim, Germany (P.T.)
| | - Paul Tanswell
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (H.F., D.G.); Kobe Pharma Research Institute, Nippon Boehringer Ingelheim, Kobe, Japan (W.K., N.I.); and PKPharmaExpert, Laupheim, Germany (P.T.)
| | - Naoki Ishiguro
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (H.F., D.G.); Kobe Pharma Research Institute, Nippon Boehringer Ingelheim, Kobe, Japan (W.K., N.I.); and PKPharmaExpert, Laupheim, Germany (P.T.)
| |
Collapse
|