1
|
Gunwhy ER, Hines CDG, Green C, Laitinen I, Tadimalla S, Hockings PD, Schütz G, Kenna JG, Sourbron S, Waterton JC. Assessment of hepatic transporter function in rats using dynamic gadoxetate-enhanced MRI: a reproducibility study. MAGMA (NEW YORK, N.Y.) 2024; 37:697-708. [PMID: 39105950 PMCID: PMC11417070 DOI: 10.1007/s10334-024-01192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Previous studies have revealed a substantial between-centre variability in DCE-MRI biomarkers of hepatocellular function in rats. This study aims to identify the main sources of variability by comparing data measured at different centres and field strengths, at different days in the same subjects, and over the course of several months in the same centre. MATERIALS AND METHODS 13 substudies were conducted across three facilities on two 4.7 T and two 7 T scanners using a 3D spoiled gradient echo acquisition. All substudies included 3-6 male Wistar-Han rats each, either scanned once with vehicle (n = 76) or twice with either vehicle (n = 19) or 10 mg/kg of rifampicin (n = 13) at follow-up. Absolute values, between-centre reproducibility, within-subject repeatability, detection limits, and effect sizes were derived for hepatocellular uptake rate (Ktrans) and biliary excretion rate (kbh). Sources of variability were identified using analysis of variance and stratification by centre, field strength, and time period. RESULTS Data showed significant differences between substudies of 31% for Ktrans (p = 0.013) and 43% for kbh (p < 0.001). Within-subject differences were substantially smaller for kbh (8%) but less so for Ktrans (25%). Rifampicin-induced inhibition was safely above the detection limits, with an effect size of 75 ± 3% in Ktrans and 67 ± 8% in kbh. Most of the variability in individual data was accounted for by between-subject (Ktrans = 23.5%; kbh = 42.5%) and between-centre (Ktrans = 44.9%; kbh = 50.9%) variability, substantially more than the between-day variation (Ktrans = 0.1%; kbh = 5.6%). Significant differences in kbh were found between field strengths at the same centre, between centres at the same field strength, and between repeat experiments over 2 months apart in the same centre. DISCUSSION Between-centre bias caused by factors such as hardware differences, subject preparations, and operator dependence is the main source of variability in DCE-MRI of liver function in rats, closely followed by biological between-subject differences. Future method development should focus on reducing these sources of error to minimise the sample sizes needed to detect more subtle levels of inhibition.
Collapse
Affiliation(s)
- Ebony R Gunwhy
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Polaris, 18 Claremont Crescent, Sheffield, S10 2TA, UK.
| | | | - Claudia Green
- MR & CT Contrast Media Research, Bayer AG, Berlin, Germany
| | - Iina Laitinen
- Antaros Medical, GoCo House, Mölndal, Sweden
- Sanofi-Aventis GmbH, Frankfurt, Germany
| | - Sirisha Tadimalla
- Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - Paul D Hockings
- Antaros Medical, GoCo House, Mölndal, Sweden
- Chalmers University of Technology, Gothenburg, Sweden
| | - Gunnar Schütz
- MR & CT Contrast Media Research, Bayer AG, Berlin, Germany
| | | | - Steven Sourbron
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Polaris, 18 Claremont Crescent, Sheffield, S10 2TA, UK
| | - John C Waterton
- Bioxydyn Ltd, St. James Tower, Manchester, UK
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
van Rosmalen BV, Visentin M, Furumaya A, van Delden OM, Kazemier G, van Gulik TM, Verheij J, Stieger B. Association Between Gadoxetic Acid-Enhanced Magnetic Resonance Imaging, Organic Anion Transporters, and Farnesoid X Receptor in Benign Focal Liver Lesions. Drug Metab Dispos 2024; 52:118-125. [PMID: 38050024 DOI: 10.1124/dmd.123.001492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The organic anion uptake and efflux transporters [organic anion-transporting polypeptide (OATP)1B1, OATP1B3 and multidrug resistance-associated protein (MRP)2 and MRP3] that mediate the transport of the hepatobiliary-specific contrast agent gadoxetate (Gd-EOB-DTPA) are direct or indirect targets of the farnesoid X receptor (FXR), a key regulator of bile acid and lipid homeostasis. In benign liver tumors, FXR expression and activation is not yet characterized. We investigated the expression and activation of FXR and its targets in hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH) and their correlation with Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI). Gd-EOB-DTPA MRI patterns were assessed by an expert radiologist. The intensity of the lesions on the hepatobiliary phase was correlated to mRNA expression levels of OATP1B1, OATP1B3, MRP2, MRP3, FXR, and small heterodimer partner (SHP) in fresh surgical specimens of patients with FNH or HCA subtypes. Normal and tumor sample pairs of 43 HCA and 14 FNH were included. All FNH (14/14) were hyperintense. Of the 34 HCA with available Gd-EOB-DTPA-enhanced MRI, 6 were hyperintense and 28 HCA were hypointense. OATP1B3 was downregulated in the hypointense tumors compared with normal surrounding liver tissue (2.77±3.59 vs. 12.9±15.6, P < 0.001). A significant positive correlation between FXR expression and activation and OATP1B3 expression level was found in the HCA cohort. SHP showed a trend toward downregulation in hypointense HCA. In conclusion, this study suggests that the MRI relative signal in HCA may reflect expression level and/or activity of SHP and FXR. Moreover, our data confirms the pivotal role of OATP1B3 in Gd-EOB-DTPA uptake in HCA. SIGNIFICANCE STATEMENT: FXR represents a valuable target for the treatment of liver disease and metabolic syndrome. Currently, two molecules, ursodeoxycholate and obeticholate, are approved for the treatment of primary biliary cirrhosis and cholestasis, with several compounds in clinical trials for the treatment of metabolic dysfunction-associated fatty liver disease. Because FXR expression and activation is associated with gadoxetate accumulation in HCA, an atypical gadoxetate-enhanced MRI pattern might arise in patients under FXR-targeted therapy, thereby complicating the differential diagnosis.
Collapse
Affiliation(s)
- Belle V van Rosmalen
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Michele Visentin
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Alicia Furumaya
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Otto M van Delden
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Geert Kazemier
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Thomas M van Gulik
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Joanne Verheij
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Bruno Stieger
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| |
Collapse
|
3
|
Jeong A, Pastor CM, Brouwer KLR. Application of Pharmacokinetic Modeling to Characterize Hepatobiliary Disposition of Imaging Agents and Alterations due to Liver Injury in Isolated Perfused Rat Livers. Pharm Res 2023; 40:2513-2523. [PMID: 37349653 PMCID: PMC10739561 DOI: 10.1007/s11095-023-03549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Understanding the impact of altered hepatic uptake and/or efflux on the hepatobiliary disposition of the imaging agents [99mTc]Mebrofenin (MEB) and [153Gd]Gadobenate dimeglumine (BOPTA) is important for proper estimation of liver function. METHODS A multi-compartmental pharmacokinetic (PK) model describing MEB and BOPTA disposition in isolated perfused rat livers (IPRLs) was developed. The PK model was simultaneously fit to MEB and BOPTA concentration-time data in the extracellular space, hepatocytes, bile canaliculi, and sinusoidal efflux in livers from healthy rats, and to BOPTA concentration-time data in rats pretreated with monocrotaline (MCT). RESULTS The model adequately described MEB and BOPTA disposition in each compartment. The hepatocyte uptake clearance was much higher for MEB (55.3 mL/min) than BOPTA (6.67 mL/min), whereas the sinusoidal efflux clearance for MEB (0.000831 mL/min) was lower than BOPTA (0.0127 mL/min). The clearance from hepatocytes to bile (CLbc) for MEB (0.658 mL/min) was similar to BOPTA (0.642 mL/min) in healthy rat livers. The BOPTA CLbc was reduced in livers from MCT-pretreated rats (0.496 mL/min), while the sinusoidal efflux clearance was increased (0.0644 mL/min). CONCLUSION A PK model developed to characterize MEB and BOPTA disposition in IPRLs was used to quantify changes in the hepatobiliary disposition of BOPTA caused by MCT pretreatment of rats to induce liver toxicity. This PK model could be applied to simulate changes in the hepatobiliary disposition of these imaging agents in rats in response to altered hepatocyte uptake or efflux associated with disease, toxicity, or drug-drug interactions.
Collapse
Affiliation(s)
- Angela Jeong
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 100 L Beard Hall, CB# 7569, Chapel Hill, NC, 27599-7569, USA
| | - Catherine M Pastor
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, U1149, CNRS, ERL8252, F-75006, Paris, France
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 100 L Beard Hall, CB# 7569, Chapel Hill, NC, 27599-7569, USA.
| |
Collapse
|
4
|
Xue Y, Xiao B, Xia Z, Dai L, Xia Q, Zhong L, Zhu C, Zhu J. A New OATP-Mediated Hepatobiliary-Specific Mn(II)-Based MRI Contrast Agent for Hepatocellular Carcinoma in Mice: A Comparison With Gd-EOB-DTPA. J Magn Reson Imaging 2023; 58:926-933. [PMID: 36609994 DOI: 10.1002/jmri.28590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Growing concerns about the safety of gadolinium (Gd)-based contrast agents have reinforced the need for the development of Gd-free MRI contrast agents (CAs) that are effective in imaging liver tumors. PURPOSE To evaluate the ability of Mn-BnO-TyEDTA MRI CA to detect hepatocellular carcinoma in a mouse model of implanted liver tumor. STUDY TYPE Prospective. ANIMAL MODEL Thirteen orthotopically implanted liver tumor mice. FIELD STRENGTH/SEQUENCE 3.0 T/precontrast and postcontrast T1-weighted fast spoiled gradient recalled echo and T2-weighted fast recovery fast spin-echo imaging with fat suppression. ASSESSMENT The relative enhancement ratio was calculated and statistically compared. Lesion detection in postcontrast images was analyzed by calculations of area under the curve (AUC, the increases in liver-to-tumor contrast-to-noise ratio [∆CNR] vs. time curve). Mn or Gd levels were measured in the liver and tumoral tissues by inductively coupled plasma-mass spectrometry. Tumor specimens were stained with hematoxylin and eosin (H&E) and the expression of organic anion transfer peptide (OATP)1B1 was evaluated by immunofluorescence (IF) staining and mean fluorescence intensity (MFI) was calculated. STATISTICAL TESTS Unpaired t-test and two-tailed paired t-test. P < 0.05 was considered statistical significance. RESULTS Mn-BnO-TyEDTA and Gd-EOB-DTPA demonstrated nearly identical enhancement patterns in the liver, tumor, and psoas muscle and no difference in lesion detection (AUC10-30, Mn = 851 ∆CR·min, AUC10-30, Gd = 823 ∆CR·min). A Significant higher concentration of metal (Mn or Gd) was found in the liver compared to the tumor ([Mn]liver = 0.88 ± 0.07 μmmol/g, [Mn]tumor = 0.49 ± 0.05 μmmol/g, [Gd]liver = 0.65 ± 0.07 μmmol/g, [Gd]tumor = 0.27 ± 0.04 μmmol/g). IF staining showed significantly decreased expression of OATP1B1 in the tumor core compared to the liver (MFItumor = 5.28 ± 1.54, MFIliver = 25.49 ± 3.41). DATA CONCLUSION Mn-BnO-TyEDTA can provide comparable hepatobiliary tumor contrast enhancement to Gd-EOB-DTPA. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yuan Xue
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bin Xiao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhiyang Xia
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lixiong Dai
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Qian Xia
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lei Zhong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chunrong Zhu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
5
|
Lee JH, Calcagno C, Feuerstein IM, Solomon J, Mani V, Huzella L, Castro MA, Laux J, Reeder RJ, Kim DY, Worwa G, Thomasson D, Hagen KR, Ragland DR, Kuhn JH, Johnson RF. Magnetic Resonance Imaging for Monitoring of Hepatic Disease Induced by Ebola Virus: a Nonhuman Primate Proof-of-Concept Study. Microbiol Spectr 2023; 11:e0353822. [PMID: 37184428 PMCID: PMC10269877 DOI: 10.1128/spectrum.03538-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD). However, the role of hepatic involvement in EVD progression is understudied. Medical imaging in established animal models of EVD (e.g., nonhuman primates [NHPs]) can be a strong complement to traditional assays to better investigate this pathophysiological process in vivo and noninvasively. In this proof-of-concept study, we used longitudinal multiparametric magnetic resonance imaging (MRI) to characterize liver morphology and function in nine rhesus monkeys after exposure to Ebola virus (EBOV). Starting 5 days postexposure, MRI assessments of liver appearance, morphology, and size were consistently compatible with the presence of hepatic edema, inflammation, and congestion, leading to significant hepatomegaly at necropsy. MRI performed after injection of a hepatobiliary contrast agent demonstrated decreased liver signal on the day of euthanasia, suggesting progressive hepatocellular dysfunction and hepatic secretory impairment associated with EBOV infection. Importantly, MRI-assessed deterioration of biliary function was acute and progressed faster than changes in serum bilirubin concentrations. These findings suggest that longitudinal quantitative in vivo imaging may be a useful addition to standard biological assays to gain additional knowledge about organ pathophysiology in animal models of EVD. IMPORTANCE Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD), but the contribution of hepatic pathophysiology to EVD progression is not fully understood. Noninvasive medical imaging of liver structure and function in well-established animal models of disease may shed light on this important aspect of EVD. In this proof-of-concept study, we used longitudinal magnetic resonance imaging (MRI) to characterize liver abnormalities and dysfunction in rhesus monkeys exposed to Ebola virus. The results indicate that in vivo MRI may be used as a noninvasive readout of organ pathophysiology in EVD and may be used in future animal studies to further characterize organ-specific damage of this condition, in addition to standard biological assays.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Claudia Calcagno
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Irwin M. Feuerstein
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Venkatesh Mani
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Louis Huzella
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Marcelo A. Castro
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Joseph Laux
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Rebecca J. Reeder
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Dong-Yun Kim
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - David Thomasson
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Katie R. Hagen
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Danny R. Ragland
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Reed F. Johnson
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
6
|
Sun D, Chen Q, Gai Z, Zhang F, Yang X, Hu W, Chen C, Yang G, Hörmann S, Kullak-Ublick GA, Visentin M. The Role of the Carnitine/Organic Cation Transporter Novel 2 in the Clinical Outcome of Patients With Locally Advanced Esophageal Carcinoma Treated With Oxaliplatin. Front Pharmacol 2021; 12:684545. [PMID: 34603016 PMCID: PMC8481660 DOI: 10.3389/fphar.2021.684545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/18/2021] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer is the ninth most common malignancy worldwide, ranking sixth in mortality. Platinum-based chemotherapy is commonly used for treating locally advanced esophageal cancer, yet it is ineffective in a large portion of patients. There is a need for reliable molecular markers with direct clinical application for a prospective selection of patients who can benefit from chemotherapy and patients in whom toxicity is likely to outweigh the benefit. The cytotoxic activity of platinum derivatives largely depends on the uptake and accumulation into cells, primarily by organic cation transporters (OCTs). The aim of the study was to investigate the impact of OCT expression on the clinical outcome of patients with esophageal cancer treated with oxaliplatin. Twenty patients with esophageal squamous cell carcinoma (SCC) were prospectively enrolled and surgical specimens used for screening OCT expression level by western blotting and/or immunostaining, and for culture of cancer cells. Sixty-seven patients with SCC who received oxaliplatin and for whom follow-up was available were retrospectively assessed for organic cation/carnitine transporter 2 (OCTN2) expression by real time RT-PCR and immunostaining. OCTN2 staining was also performed in 22 esophageal adenocarcinomas. OCTN2 function in patient-derived cancer cells was evaluated by assessing L-carnitine uptake and sensitivity to oxaliplatin. The impact of OCTN2 on oxaliplatin activity was also assessed in HEK293 cells overexpressing OCTN2. OCTN2 expression was higher in tumor than in normal tissues. In patient-derived cancer cells and HEK293 cells, the expression of OCTN2 sensitized to oxaliplatin. Patients treated with oxaliplatin who had high OCTN2 level in the tumor tissue had a reduced risk of recurrence and a longer survival time than those with low expression of OCTN2 in tumor tissue. In conclusion, OCTN2 is expressed in esophageal cancer and it is likely to contribute to the accumulation and cytotoxic activity of oxaliplatin in patients with esophageal carcinoma treated with oxaliplatin.
Collapse
Affiliation(s)
- Dongfeng Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Emergency Medicine, Shandong Lung Cancer Institute, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fengxia Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Emergency Medicine, Shandong Lung Cancer Institute, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Xiaoqing Yang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wensi Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Emergency Medicine, Shandong Lung Cancer Institute, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Chengyu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Emergency Medicine, Shandong Lung Cancer Institute, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Guangjie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Severin Hörmann
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Pastor CM, Joly F, Vilgrain V, Millet P. Concentrations and pharmacokinetic parameters of MRI and SPECT hepatobiliary agents in rat liver compartments. Eur Radiol Exp 2021; 5:42. [PMID: 34545428 PMCID: PMC8452805 DOI: 10.1186/s41747-021-00236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background In hepatobiliary imaging, systems detect the total amount of agents originating from extracellular space, bile canaliculi, and hepatocytes. They add in situ concentration of each compartment corrected by its respective volume ratio to provide liver concentrations. In vivo contribution of each compartment to liver concentration is inaccessible. Our aim was to quantify the compartmental distribution of two hepatobiliary agents in an ex vivo model and determine how their liver extraction ratios and cholestasis (livers lacking canalicular transporters) might modify it. Methods We perfused labelled gadobenate dimeglumine (Bopta, 200 μM, 7% liver extraction ratio) and mebrofenin (Meb, 64 μM, 94% liver extraction ratio) in normal (n = 18) and cholestatic (n = 6) rat livers. We quantified liver concentrations with a gamma counter placed over livers. Concentrations in hepatocytes and bile canaliculi were calculated. Mann-Whitney and Kruskal-Wallis tests were used. Results Hepatocyte concentrations were 2,043 ± 333 μM (Meb) versus 360 ± 69 μM (Bopta, p < 0.001). Meb extracellular concentrations did not contribute to liver concentrations (1.3 ± 0.3%). The contribution of Bopta extracellular concentration was 12.4 ± 1.9% (p < 0.001 versus Meb). Contribution of canaliculi was similar for both agents (16%). Cholestatic livers had no Bopta in canaliculi but their hepatocyte concentrations increased in comparison to normal livers. Conclusion Hepatocyte concentrations are correlated to liver extraction ratios of hepatobiliary agents. When Bopta is not present in canaliculi of cholestatic livers, hepatocyte concentrations increase in comparison to normal livers. This new understanding extends the interpretation of clinical liver images.
Collapse
Affiliation(s)
- Catherine M Pastor
- Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, Université de Paris, F-75006, Paris, France. .,Department of Radiology, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil, 4, 1205, Geneva, Switzerland.
| | - Florian Joly
- Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, Université de Paris, F-75006, Paris, France
| | - Valérie Vilgrain
- Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, Université de Paris, F-75006, Paris, France.,Department of Radiology, Hôpital Beaujon, Hôpitaux Paris Nord Val de Seine (AP-HP), 92110, Clichy, France
| | - Philippe Millet
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland.,Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Elkilany A, Fehrenbach U, Auer TA, Müller T, Schöning W, Hamm B, Geisel D. A radiomics-based model to classify the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI. Sci Rep 2021; 11:10778. [PMID: 34031487 PMCID: PMC8144372 DOI: 10.1038/s41598-021-90257-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
The implementation of radiomics in radiology is gaining interest due to its wide range of applications. To develop a radiomics-based model for classifying the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI, 248 patients with a known etiology of liver cirrhosis who underwent 306 gadoxetic acid-enhanced MRI examinations were included in the analysis. MRI examinations were classified into 6 groups according to the etiology of liver cirrhosis: alcoholic cirrhosis, viral hepatitis, cholestatic liver disease, nonalcoholic steatohepatitis (NASH), autoimmune hepatitis, and other. MRI examinations were randomized into training and testing subsets. Radiomics features were extracted from regions of interest segmented in the hepatobiliary phase images. The fivefold cross-validated models (2-dimensional-(2D) and 3-dimensional-(3D) based) differentiating cholestatic cirrhosis from noncholestatic etiologies had the best accuracy (87.5%, 85.6%), sensitivity (97.6%, 95.6%), predictive value (0.883, 0.877), and area under curve (AUC) (0.960, 0.910). The AUC was larger in the 2D-model for viral hepatitis, cholestatic cirrhosis, and NASH-associated cirrhosis (P-value of 0.05, 0.05, 0.87, respectively). In alcoholic cirrhosis, the AUC for the 3D model was larger (P = 0.01). The overall intra-class correlation coefficient (ICC) estimates and their 95% confident intervals (CI) for all features combined was 0.68 (CI 0.56-0.87) for 2D and 0.71 (CI 0.61-0.93) for 3D measurements suggesting moderate reliability. Radiomics-based analysis of hepatobiliary phase images of gadoxetic acid-enhanced MRI may be a promising noninvasive method for identifying the etiology of liver cirrhosis with better performance of the 2D- compared with the 3D-generated models.
Collapse
Affiliation(s)
- Aboelyazid Elkilany
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Uli Fehrenbach
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Timo Alexander Auer
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Tobias Müller
- Division of Gastroenterology and Hepatology, Department of Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wenzel Schöning
- Department of General, Visceral and Transplantation Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd Hamm
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dominik Geisel
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
9
|
Zhou X, Long L, Mo Z, Li Y. OATP1B3 Expression in Hepatocellular Carcinoma Correlates with Intralesional Gd-EOB-DTPA Uptake and Signal Intensity on Gd-EOB-DTPA-Enhanced MRI. Cancer Manag Res 2021; 13:1169-1177. [PMID: 33603462 PMCID: PMC7882717 DOI: 10.2147/cmar.s292197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To evaluate the predictive value of the OATP1B3 expression in hepatocellular carcinoma (HCC) for the gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) uptake and the signal intensity (SI) in the hepatobiliary (HB) phase. METHODS In this retrospective study, we analyzed 69 liver nodules of 64 patients who underwent Gd-EOB-DTPA enhancement magnetic resonance imaging (MRI) before operation. Based on the SI in the HB phase, the patients were categorized into the hypointense HCC and iso- or hyperintense HCC groups. The OATP1B3 expression was detected by polymerase chain reaction (PCR) and immunohistochemistry. The differences between the expression of OATP1B3 and Gd-EOB-DTPA enhanced magnetic resonance imaging between the two groups of hepatocellular carcinoma were compared. The relationship between the OATP1B3 expression and the SI and relative enhancement (RE) was analyzed. RESULTS The examined HCC nodules were 59 hypointense HCC and 10 iso- or hyperintense. The relative expressions of OATP1B3, HB-phase signal, and the RE of the HB phase in iso- or hyperintense were significantly higher than those of the hypointense HCC, while the RE of the HB phase increased with an increase in the OATP1B3 expression (P < 0.05). CONCLUSION The OATP1B3 expression in HCC can predict the uptake of Gd-EOB-DTPA and the SI of the HB phase. We believe that the evaluation of OATP1B3 expression will facilitate the comprehension of imaging performance of HCC in Gd-EOB-DTPA-enhanced MRI.
Collapse
Affiliation(s)
- Xiaojiao Zhou
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Zhiqing Mo
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yajuan Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
10
|
High-performance hepatobiliary dysprosium contrast agent for ultra-high-field magnetic resonance imaging. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
12
|
Hernández Lozano I, Langer O. Use of imaging to assess the activity of hepatic transporters. Expert Opin Drug Metab Toxicol 2020; 16:149-164. [PMID: 31951754 PMCID: PMC7055509 DOI: 10.1080/17425255.2020.1718107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Introduction: Membrane transporters of the SLC and ABC families are abundantly expressed in the liver, where they control the transfer of drugs/drug metabolites across the sinusoidal and canalicular hepatocyte membranes and play a pivotal role in hepatic drug clearance. Noninvasive imaging methods, such as PET, SPECT or MRI, allow for measuring the activity of hepatic transporters in vivo, provided that suitable transporter imaging probes are available.Areas covered: We give an overview of the working principles of imaging-based assessment of hepatic transporter activity. We discuss different currently available PET/SPECT radiotracers and MRI contrast agents and their applications to measure hepatic transporter activity in health and disease. We cover mathematical modeling approaches to obtain quantitative parameters of transporter activity and provide a critical assessment of methodological limitations and challenges associated with this approach.Expert opinion: PET in combination with pharmacokinetic modeling can be potentially applied in drug development to study the distribution of new drug candidates to the liver and their clearance mechanisms. This approach bears potential to mechanistically assess transporter-mediated drug-drug interactions, to assess the influence of disease on hepatic drug disposition and to validate and refine currently available in vitro-in vivo extrapolation methods to predict hepatic clearance of drugs.
Collapse
Affiliation(s)
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
13
|
Yang D, Li D, Li J, Yang Z, Wang Z. Systematic review: The diagnostic efficacy of gadoxetic acid-enhanced MRI for liver fibrosis staging. Eur J Radiol 2020; 125:108857. [PMID: 32113153 DOI: 10.1016/j.ejrad.2020.108857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/07/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the diagnostic efficacy of gadoxetic acid-enhanced MRI for the staging of liver fibrosis by meta-analysis. METHODS PubMed/Medline, EMBASE, the Web of Science, and the Cochrane Library were searched. Studies were included according to their eligibility and the exclusion criteria. The Quality Assessment of Diagnostic Accuracy Studies 2 tool was used to assess the methodologic quality. The bivariate random-effects model was used to obtain the pooled summary estimates, heterogeneity, and the area under summary receiver operating characteristic curves (AUROC). Meta-regression was performed to discover the source of heterogeneity and compare certain some subsets for their capacity to stage hepatic fibrosis by AUROC comparison. RESULTS A total of 20 original articles (1936 patients) were included. Most studies had a low risk of bias and minimal concerns regarding applicability. The summary AUROC values of gadoxetic acid-enhanced MRI in staging the liver fibrosis ≥ F1, ≥ F2, ≥ F3, and F4 subsets were 0.92, 0.87, 0.89, and 0.91, respectively. Studies with populations equal to or more than 100 had a significantly higher sensitivity (84 %) and specificity (91 %) than those with populations less than 100 (70 % and 77 %, respectively, P < 0.01). Studies of a prospective design exhibited a significantly higher sensitivity (94 %) and specificity (94 %) than those of a retrospective design (75 % and 84 %, respectively, P < 0.01). CONCLUSIONS Our meta-analysis shows the high diagnostic efficacy of gadoxetic acid-enhanced MRI in the staging of liver fibrosis. A prospective study with more than one hundred patients showed higher diagnostic efficacy.
Collapse
Affiliation(s)
- Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing 100050, China.
| | - Dan Li
- Department of Radiology, Beijing Changping Hospital, Beijing 102200, China.
| | - Jinshui Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
14
|
Frisch K, Kjærgaard K, Horsager J, Schacht AC, Munk OL. Human biodistribution, dosimetry, radiosynthesis and quality control of the bile acid PET tracer [N-methyl- 11C]cholylsarcosine. Nucl Med Biol 2019; 72-73:55-61. [PMID: 31330413 DOI: 10.1016/j.nucmedbio.2019.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 07/11/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION [N-methyl-11C]cholylsarcosine ([11C]CSar) is a tracer for imaging and quantitative assessment of intrahepatic cholestatic liver diseases and drug-induced cholestasis by positron emission tomography (PET). The purpose of this study is to determine whole-body biodistribution and dosimetry of [11C]CSar in healthy humans. The results are compared with findings in a patient with primary sclerosing cholangitis (PSC) and a patient with primary biliary cholangitis (PBC) as well as with preclinical findings in pigs. Radiosynthesis and quality control for preparation of [11C]CSar for clinical use are also presented. METHODS Radiosynthesis and quality control of [11C]CSar were set up in compliance with Danish/European regulations. Both healthy participants (3 females, 3 males) and patients underwent whole-body PET/CT to determine the biodistribution of [11C]CSar. The two patients were under treatment with ursodeoxycholic acid at the time of the study. Dosimetry was estimated from the PET data using the Olinda 2.0 software. RESULTS The radiosynthesis provided [11C]CSar in a solution ready for injection. The biodistribution studies revealed that gallbladder wall, small intestine, and liver were critical organs in both healthy participants and patients with the gallbladder wall receiving the highest dose (up to 0.5 mGy/MBq). The gender-averaged (±SD) effective dose for the healthy participants was 6.2 ± 1.4 μSv/MBq. The effective dose for the PSC and the PBC patient was 5.2 and 7.0 μSv/MBq, respectively. CONCLUSION A radiosynthesis for preparation of [11C]CSar for clinical use was developed and approved by the Danish Medicines Agency. The most critical organ was the gallbladder wall although the amount of [11C]CSar in the gallbladder was found to vary significantly between individuals. The estimated effective dose for humans was comparable to that estimated in anesthetized pigs although the absorbed dose estimates to some organs, such as the stomach, was different. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: [11C]CSar PET/CT enables detailed quantitative assessment of patients with cholestatic liver disease by tracing the separate hepatobiliary transport steps of endogenous bile acids. The present work offers a radiosynthetic method and dosimetry data suitable for clinical implementation of [11C]CSar.
Collapse
Affiliation(s)
- Kim Frisch
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark.
| | - Kristoffer Kjærgaard
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Anna Christina Schacht
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
15
|
Shuboni-Mulligan DD, Parys M, Blanco-Fernandez B, Mallett CL, Schnegelberger R, Takada M, Chakravarty S, Hagenbuch B, Shapiro EM. Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes. Diabetes 2019; 68:271-280. [PMID: 30487262 PMCID: PMC6341305 DOI: 10.2337/db18-0525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/10/2018] [Indexed: 12/19/2022]
Abstract
Diabetes is associated with hepatic metabolic dysfunction predisposing patients to drug-induced liver injury. Mouse models of type 2 diabetes (T2D) have dramatically reduced expression of organic anion transporting polypeptide (OATP)1A1, a transporter expressed in hepatocytes and in the kidneys. The effects of diabetes on OATP1B2 expression are less studied and less consistent. OATP1A1 and OATP1B2 both transport endogenous substrates such as bile acids and hormone conjugates as well as numerous drugs including gadoxetate disodium (Gd-EOB-DTPA). As master pharmacokinetic regulators, the altered expression of OATPs in diabetes could have a profound and clinically significant influence on drug therapies. Here, we report a method to noninvasively measure OATP activity in T2D mice by quantifying the transport of hepatobiliary-specific gadolinium-based contrast agents (GBCAs) within the liver and kidneys using dynamic contrast-enhanced MRI (DCE-MRI). By comparing GBCA uptake in control and OATP knockout mice, we confirmed liver clearance of the hepatobiliary-specific GBCAs, Gd-EOB-DTPA, and gadobenate dimeglumine, primarily though OATP transporters. Then, we measured a reduction in the hepatic uptake of these hepatobiliary GBCAs in T2D ob/ob mice, which mirrored significant reductions in the mRNA and protein expression of OATP1A1 and OATP1B2. As these GBCAs are U.S. Food and Drug Administration-approved agents and DCE-MRI is a standard clinical protocol, studies to determine OATP1B1/1B3 deficiencies in human individuals with diabetes can be easily envisioned.
Collapse
Affiliation(s)
- Dorela D Shuboni-Mulligan
- Department of Radiology, Michigan State University, East Lansing, MI
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI
| | - Maciej Parys
- Department of Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI
| | - Barbara Blanco-Fernandez
- Department of Radiology, Michigan State University, East Lansing, MI
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI
| | - Christiane L Mallett
- Department of Radiology, Michigan State University, East Lansing, MI
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI
| | - Regina Schnegelberger
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, MO
| | - Marilia Takada
- Department of Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI
| | - Shatadru Chakravarty
- Department of Radiology, Michigan State University, East Lansing, MI
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, MO
| | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI
| |
Collapse
|
16
|
Karageorgis A, Lenhard SC, Yerby B, Forsgren MF, Liachenko S, Johansson E, Pilling MA, Peterson RA, Yang X, Williams DP, Ungersma SE, Morgan RE, Brouwer KLR, Jucker BM, Hockings PD. A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function. PLoS One 2018; 13:e0197213. [PMID: 29771932 PMCID: PMC5957399 DOI: 10.1371/journal.pone.0197213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity.
Collapse
Affiliation(s)
- Anastassia Karageorgis
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Stephen C. Lenhard
- Bioimaging, Platform Technology and Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Brittany Yerby
- Research Imaging Sciences, Amgen, Thousand Oaks, California, United States of America
| | - Mikael F. Forsgren
- Center for Medical Image Science and Visualization (CMIV), Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Wolfram MathCore, Linköping, Sweden
| | - Serguei Liachenko
- National Center for Toxicological Research, Division of Neurotoxicology, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Edvin Johansson
- Personalised Healthcare and Biomarkers, Imaging group, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mark A. Pilling
- Biostatistics, Quantitative Biology, Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Cambridge, United Kingdom
| | - Richard A. Peterson
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, United States of America
| | - Xi Yang
- National Center for Toxicological Research, Division of Systems Biology, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Dominic P. Williams
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, AstraZeneca, Cambridge, United Kingdom
| | - Sharon E. Ungersma
- Research Imaging Sciences, Amgen, Thousand Oaks, California, United States of America
| | - Ryan E. Morgan
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of N orth Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beat M. Jucker
- Bioimaging, Platform Technology and Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Paul D. Hockings
- Antaros Medical, BioVenture Hub, Mölndal, Sweden
- MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
17
|
Abstract
Transporter systems involved in the permeation of drugs and solutes across biological membranes are recognized as key determinants of pharmacokinetics. Typically, the action of membrane transporters on drug exposure to tissues in living organisms is inferred from invasive procedures, which cannot be applied in humans. In recent years, imaging methods have greatly progressed in terms of instruments, synthesis of novel imaging probes as well as tools for data analysis. Imaging allows pharmacokinetic parameters in different tissues and organs to be obtained in a non-invasive or minimally invasive way. The aim of this overview is to summarize the current status in the field of molecular imaging of drug transporters. The overview is focused on human studies, both for the characterization of transport systems for imaging agents as well as for the determination of drug pharmacokinetics, and makes reference to animal studies where necessary. We conclude that despite certain methodological limitations, imaging has a great potential to study transporters at work in humans and that imaging will become an important tool, not only in drug development but also in medicine. Imaging allows the mechanistic aspects of transport proteins to be studied, as well as elucidating the influence of genetic background, pathophysiological states and drug-drug interactions on the function of transporters involved in the disposition of drugs.
Collapse
Affiliation(s)
- Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Functional shift with maintained regenerative potential following portal vein ligation. Sci Rep 2017; 7:18065. [PMID: 29273725 PMCID: PMC5741735 DOI: 10.1038/s41598-017-18309-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/08/2017] [Indexed: 02/08/2023] Open
Abstract
Selective portal vein ligation (PVL) allows the two-stage surgical resection of primarily unresectable liver tumours by generating the atrophy and hypertrophy of portally ligated (LL) and non-ligated lobes (NLL), respectively. To evaluate critically important underlying functional alterations, present study characterised in vitro and vivo liver function in male Wistar rats (n = 106; 210-250 g) before, and 24/48/72/168/336 h after PVL. Lobe weights and volumes by magnetic resonance imaging confirmed the atrophy-hypertrophy complex. Proper expression and localization of key liver transporters (Ntcp, Bsep) and tight junction protein ZO-1 in isolated hepatocytes demonstrated constantly present viable and well-polarised cells in both lobes. In vitro taurocholate and bilirubin transport, as well as in vivo immunohistochemical Ntcp and Mrp2 expressions were bilaterally temporarily diminished, whereas LL and NLL structural acinar changes were divergent. In vivo bile and bilirubin-glucuronide excretion mirrored macroscopic changes, whereas serum bilirubin levels remained unaffected. In vivo functional imaging (indocyanine-green clearance test; 99mTc-mebrofenin hepatobiliary scintigraphy; confocal laser endomicroscopy) indicated transitionally reduced global liver uptake and -excretion. While LL functional involution was permanent, NLL uptake and excretory functions recovered excessively. Following PVL, functioning cells remain even in LL. Despite extensive bilateral morpho-functional changes, NLL functional increment restores temporary declined transport functions, emphasising liver functional assessment.
Collapse
|
19
|
Ørntoft N, Frisch K, Ott P, Keiding S, Sørensen M. Functional assessment of hepatobiliary secretion by 11C-cholylsarcosine positron emission tomography. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1240-1244. [PMID: 29197661 DOI: 10.1016/j.bbadis.2017.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/26/2023]
Abstract
Positron emission tomography (PET) with 11C-cholylsarcosine (11C-CSar), a radiolabelled synthetic N-methylglycine (sarcosine) conjugate of cholic acid, is a novel molecular imaging technique that enables quantitative assessment of the individual transport steps involved in hepatic secretion of conjugated bile acids. Here, we present the method and discuss its potential clinical and scientific applications based on findings in the first human study of healthy subjects and patients with cholestasis. We also present a clinical example of a patient studied during and six months after an episode of drug-induced cholestatic liver injury.
Collapse
Affiliation(s)
- Nikolaj Ørntoft
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Kim Frisch
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Peter Ott
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Susanne Keiding
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark; Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Michael Sørensen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark.
| |
Collapse
|
20
|
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F. Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
21
|
Haimerl M, Utpatel K, Verloh N, Zeman F, Fellner C, Nickel D, Teufel A, Fichtner-Feigl S, Evert M, Stroszczynski C, Wiggermann P. Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis. Sci Rep 2017; 7:41429. [PMID: 28128291 PMCID: PMC5269752 DOI: 10.1038/srep41429] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Gd-EOB-DTPA, a liver-specific contrast agent with T1-shortening effects, is routinely used in clinical routine for detection and characterization of focal liver lesions and has recently received increasing attention as a tool for the quantitative analyses of liver function. We report the relationship between the extent of Gd-EOB-DTPA- induced T1 relaxation and the degree of liver fibrosis, which was assessed according to the METAVIR score. For the T1 relaxometry, a transverse 3D VIBE sequence with inline T1 calculation was acquired prior to and 20 minutes after Gd-EOB-DTPA administration. The reduction rates of the T1 relaxation time (rrT1) between the pre- and postcontrast images were calculated, and the optimal cutoff values for the fibrosis stages were determined with receiver operating characteristic (ROC) curve analyses. The rrT1 decreased with the severity of liver fibrosis and regression analysis revealed a significant correlation of the rrT1 with the stage of liver fibrosis (r = -0.906, p < 0.001). ROC analysis revealed sensitivities ≥78% and specificities ≥94% for the differentiation of different fibrosis stages. Gd-EOB-DTPA-enhanced T1 relaxometry is a reliable tool for both the detection of initial hepatic fibrosis and the staging of hepatic fibrosis.
Collapse
Affiliation(s)
- Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - Niklas Verloh
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Trials, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Fellner
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens AG, Healthcare GmbH, Erlangen, Germany
| | - Andreas Teufel
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | - Matthias Evert
- Department of Pathology, University Regensburg, Regensburg, Germany
| | | | - Philipp Wiggermann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Visentin M, van Rosmalen BV, Hiller C, Bieze M, Hofstetter L, Verheij J, Kullak-Ublick GA, Koepsell H, Phoa SS, Tamai I, Bennink RJ, van Gulik TM, Stieger B. Impact of Organic Cation Transporters (OCT-SLC22A) on Differential Diagnosis of Intrahepatic Lesions. Drug Metab Dispos 2016; 45:166-173. [DOI: 10.1124/dmd.116.072371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/28/2016] [Indexed: 01/20/2023] Open
|
23
|
Liver Perfusion Modifies Gd-DTPA and Gd-BOPTA Hepatocyte Concentrations Through Transfer Clearances Across Sinusoidal Membranes. Eur J Drug Metab Pharmacokinet 2016; 42:657-667. [DOI: 10.1007/s13318-016-0382-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Mann A, Han H, Eyal S. Imaging transporters: Transforming diagnostic and therapeutic development. Clin Pharmacol Ther 2016; 100:479-488. [PMID: 27327047 DOI: 10.1002/cpt.416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows noninvasive assessment of drug distribution across pharmacological barriers. Thus, it plays an increasingly important role in efforts to understand the interactions of molecules with membrane transporters during drug development and in clinical pharmacology. We describe established and emerging imaging modalities utilized for studying transporter expression and function. We further present examples of how molecular imaging could provide insights into the contribution of transporters to drug disposition and effects.
Collapse
Affiliation(s)
- A Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - H Han
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - S Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel. .,The David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
25
|
Agostini A, Kircher MF, Do R, Borgheresi A, Monti S, Giovagnoni A, Mannelli L. Magnetic Resonance Imaging of the Liver (Including Biliary Contrast Agents) Part 1: Technical Considerations and Contrast Materials. Semin Roentgenol 2016; 51:308-316. [PMID: 27743567 DOI: 10.1053/j.ro.2016.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- A Agostini
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY; Department of Radiology, School of Radiology, Universita' Politecnica delle Marche Ancona, Italy
| | - M F Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - R Do
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - A Borgheresi
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY; Department of Radiology, School of Radiology, Universita' degli Studi di Firenze Firenze, Italy
| | | | - A Giovagnoni
- Department of Radiology, School of Radiology, Universita' Politecnica delle Marche Ancona, Italy
| | - L Mannelli
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.
| |
Collapse
|
26
|
Pastor CM. How transfer rates generate Gd-BOPTA concentrations in rat liver compartments: implications for clinical liver imaging with hepatobiliary contrast agents. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:291-8. [DOI: 10.1002/cmmi.1691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/08/2016] [Accepted: 02/17/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Catherine M. Pastor
- Centre de Recherche sur l'Inflammation U1149 INSERM and University Paris-Diderot; Paris France
- Département de Radiologie; Hôpitaux Universitaires de Genève; Switzerland
| |
Collapse
|
27
|
Cheng Y, El-Kattan A, Zhang Y, Ray AS, Lai Y. Involvement of Drug Transporters in Organ Toxicity: The Fundamental Basis of Drug Discovery and Development. Chem Res Toxicol 2016; 29:545-63. [DOI: 10.1021/acs.chemrestox.5b00511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical
Candidate Optimization, Bristol-Myers Squibb Company, 3551 Lawrenceville
Road, Princeton, New Jersey 08540, United States
| | - Ayman El-Kattan
- Department
of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., 610 Main
Street, Cambridge, Massachusetts 02139, United States
| | - Yan Zhang
- Drug
Metabolism and Biopharmaceutics, Incyte Corporation, 1801 Augustine
Cutoff, Wilmington, Delaware 19803, United States
| | - Adrian S. Ray
- Department
of Drug Metabolism, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yurong Lai
- Pharmaceutical
Candidate Optimization, Bristol-Myers Squibb Company, 3551 Lawrenceville
Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
28
|
Vilgrain V, Van Beers BE, Pastor CM. Insights into the diagnosis of hepatocellular carcinomas with hepatobiliary MRI. J Hepatol 2016; 64:708-16. [PMID: 26632635 DOI: 10.1016/j.jhep.2015.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
Abstract
The incidence of hepatocellular carcinomas (HCCs) has increased worldwide in line with an improved screening by high-resolution imaging of cirrhotic livers. Besides abdominal ultrasonography and computerised tomography, magnetic resonance imaging (MRI) is an important tool to detect HCCs. With commercialisation of MR hepatobiliary contrast agents that cross membrane transporters in hepatocytes or tumour cells, MRI adds new information to detect and characterise HCCs. When tumour cells lose organic anion transporting polypeptides (OATP1B1/B3) in cell membranes facing sinusoidal blood, tumours appear hypointense (decreased contrast agent concentrations) in comparison to surrounding normal or cirrhotic liver that retains OATP1B1/B3 expression. However, expression, regulation, and prognostic significance of transporter evolution along carcinogenesis are not completely known. Moreover, understanding signal intensities in focal lesions also relies on transport functions of cellular efflux transporters. This manuscript reviews all the publications that associate liver imaging with hepatobiliary contrast agents and expression of transporters. The regulation of transporters along carcinogenesis to anticipate the prognosis of focal lesions is also included.
Collapse
Affiliation(s)
- Valérie Vilgrain
- Department of Radiology, University Hospitals Paris Nord Val-de-Seine, Beaujon, 100 Boulevard du Général Leclerc, 92118 Clichy, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bernard E Van Beers
- Department of Radiology, University Hospitals Paris Nord Val-de-Seine, Beaujon, 100 Boulevard du Général Leclerc, 92118 Clichy, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France; Inserm U1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Catherine M Pastor
- University Paris Diderot, Sorbonne Paris Cité, Paris, France; Département d'imagerie et des sciences de l'information médicale, Hôpitaux Universitaires de Genève, Geneva, Switzerland.
| |
Collapse
|
29
|
Mann A, Semenenko I, Meir M, Eyal S. Molecular Imaging of Membrane Transporters' Activity in Cancer: a Picture is Worth a Thousand Tubes. AAPS JOURNAL 2015; 17:788-801. [PMID: 25823669 DOI: 10.1208/s12248-015-9752-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/09/2015] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows the non-invasive assessment of membrane transporter expression and function in living subjects. Such technologies have the potential to become diagnostic and prognostic tools, allowing detection, localization, and prediction of response of tumors and their metastases to therapy. Beyond tumors, imaging can also help understand the role of transporters in adverse drug effects and drug clearance. Here, we review molecular imaging technologies that monitor transporter-mediated processes. We emphasize emerging probe substrates and potential clinical applications of imaging the function of membrane transporters in cancer.
Collapse
Affiliation(s)
- Aniv Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Room 613, Ein Kerem, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
30
|
Quantification of drug transport function across the multiple resistance-associated protein 2 (Mrp2) in rat livers. Int J Mol Sci 2014; 16:135-47. [PMID: 25547484 PMCID: PMC4307239 DOI: 10.3390/ijms16010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023] Open
Abstract
To understand the transport function of drugs across the canalicular membrane of hepatocytes, it would be important to measure concentrations in hepatocytes and bile. However, these concentration gradients are rarely provided. The aim of the study is then to measure these concentrations and define parameters to quantify the canalicular transport of drugs through the multiple resistance associated-protein 2 (Mrp2) in entire rat livers. Besides drug bile excretion rates, we measured additional parameters to better define transport function across Mrp2: (1) Concentration gradients between hepatocyte and bile concentrations over time; and (2) a unique parameter (canalicular concentration ratio) that represents the slope of the non-linear regression curve between hepatocyte and bile concentrations. This information was obtained in isolated rat livers perfused with gadobenate dimeglumine (BOPTA) and mebrofenin (MEB), two hepatobiliary drugs used in clinical liver imaging. Interestingly, despite different transport characteristics including excretion rates into bile and hepatocyte clearance into bile, BOPTA and MEB have a similar canalicular concentration ratio. In contrast, the ratio was null when BOPTA was not excreted in bile in hepatocytes lacking Mrp2. The canalicular concentration ratio is more informative than bile excretion rates because it is independent of time, bile flows, and concentrations perfused in portal veins. It would be interesting to apply such information in human liver imaging where hepatobiliary compounds are increasingly investigated.
Collapse
|
31
|
Stieger B, Unadkat JD, Prasad B, Langer O, Gali H. Role of (drug) transporters in imaging in health and disease. Drug Metab Dispos 2014; 42:2007-15. [PMID: 25249691 DOI: 10.1124/dmd.114.059873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This report is the summary of presentations at the symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics, April 26-30, at Experimental Biology 2014 in San Diego, CA. The presentations focused on the role of transporters in imaging in health and disease and on assessing transporter function in vivo. Imaging is an important diagnostic tool in clinics and is a novel tool for in vivo visualization of transporter function. Many imaging substrates and endogenous markers for organ function are organic anions. In this symposium, the bile salt transporter sodium taurocholate cotransporting polypeptide and the liver organic anion transporting polypeptides (OATPs) as well as the renal organic anion transporters (OATs) were addressed in detail; e.g., OATPs mediate transport of contrast agents used for magnetic resonance imaging of the liver or transport agents used for hepatobiliary scintigraphy, and OATs transport substances used in renography. In addition, the symposium also focused on the multidrug-resistance transporter 1 (MDR1 or P-gp), which is the most important gatekeeper in epithelial or endothelial barriers for preventing entry of potentially harmful substances into organs. Novel substrates suitable for positron emission tomography (PET) allow the study of such transporters at the blood-brain barrier or while they are mediating uptake of drugs into hepatocytes, and, importantly, PET tracers also now allow renography. Finally, quantitative data on transporter expression in human organs allow the development of improved physiologically based pharmacokinetic (PBPK) models for drug disposition. Hence, the combined efforts using novel substrates for in vivo visualization of transporters and quantification of transporters will lead to a deeper understanding of transporter function in disease and allow development of novel PBPK models for disease states.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Jashvant D Unadkat
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Bhagwat Prasad
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Oliver Langer
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Hariprasad Gali
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| |
Collapse
|
32
|
Schuetz JD, Swaan PW, Tweedie DJ. The role of transporters in toxicity and disease. Drug Metab Dispos 2014; 42:541-5. [PMID: 24598705 PMCID: PMC3965901 DOI: 10.1124/dmd.114.057539] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
The significance of transporters in the disposition, metabolism, and elimination of drugs is well recognized. One gap in our knowledge is a comprehensive understanding of how drug transporters change functionality (their amount and activity) in response to disease and how disease and its inevitable pathology change transporter expression. In this issue of Drug Metabolism and Disposition a series of review and primary research articles are presented to highlight the importance of transporters in toxicity and disease. Because of the central role of the liver in drug metabolism, many of the articles in this theme issue focus on transporters in the liver and how pathology or alterations in physiology affects transporter expression. The contributing authors have also considered the role of transporters in drug interactions as well as drug-induced liver injury. Noninvasive approaches to assessing transporter function in vivo are also described. Several articles highlight important issues in oncology where toxicity must be balanced against efficacy. In total, this theme issue will provide a stepping-stone to future studies that will establish a more comprehensive understanding of transporters in disease.
Collapse
Affiliation(s)
- John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (J.D.S); Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S); and Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.J.T.)
| | | | | |
Collapse
|