1
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
2
|
Jia K, Yan L, Jia Y, Xu S, Yan Z, Wang S. aflN Is Involved in the Biosynthesis of Aflatoxin and Conidiation in Aspergillus flavus. Toxins (Basel) 2021; 13:toxins13110831. [PMID: 34822615 PMCID: PMC8617700 DOI: 10.3390/toxins13110831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aspergillus flavus poses a threat to society economy and public health due to aflatoxin production. aflN is a gene located in the aflatoxin gene cluster, but the function of AflN is undefined in Aspergillus flavus. In this study, aflN is knocked out and overexpressed to study the function of AflN. The results indicated that the loss of AflN leads to the defect of aflatoxin biosynthesis. AflN is also found to play a role in conidiation but not hyphal growth and sclerotia development. Moreover, AlfN is related to the response to environmental oxidative stress and intracellular levels of reactive oxygen species. At last, AflN is involved in the pathogenicity of Aspergillus flavus to host. These results suggested that AflN played important roles in aflatoxin biosynthesis, conidiation and reactive oxygen species generation in Aspergillus flavus, which will be helpful for the understanding of aflN function, and will be beneficial to the prevention and control of Aspergillus flavus and aflatoxins contamination.
Collapse
|
3
|
Vrzal R. Genetic and Enzymatic Characteristics of CYP2A13 in Relation to Lung Damage. Int J Mol Sci 2021; 22:12306. [PMID: 34830188 PMCID: PMC8625632 DOI: 10.3390/ijms222212306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cytochrome P450 2A13 is an omitted brother of CYP2A6 that has an important role in the drug metabolism of liver. Due to extrahepatic expression, it has gained less attention than CYP2A6, despite the fact that it plays a significant role in toxicant-induced pulmonary lesions and, therefore, lung cancer. The purpose of this mini-review is to summarize the basic knowledge about this enzyme in relation to the substrates, inhibitors, genetic polymorphisms, and transcriptional regulation that are known so far (September 2021).
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
4
|
Wu Z, Liu Q, Wang L, Zheng M, Guan M, Zhang M, Zhao W, Wang C, Lu S, Cheng J, Leng S. The essential role of CYP2E1 in metabolism and hepatotoxicity of N,N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study. Arch Toxicol 2019; 93:3169-3181. [PMID: 31501917 DOI: 10.1007/s00204-019-02567-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
N,N-Dimethylformamide (DMF) is a widespread contaminant of leather factories and their surrounding environment. There is a lack of direct in vivo evidence supporting CYP2E1 as a primary enzyme responsible for DMF metabolism and hepatotoxicity. In this study, a novel Cyp2e1 knockout (KO) mouse model was generated and used to assess whether DMF metabolism and hepatotoxicity is CYP2E1 dependent using an acute toxicity protocol with a single dose of 1500 mg DMF/kg. An epidemiological study in 698 DMF-exposed workers and 188 non-DMF-exposed controls was conducted to investigate the associations between functional polymorphisms of CYP2E1 (rs6413432/rs2031920) and DMF metabolite (N-methylcarbmoylated-hemoglobin [NMHb]). We successfully established Cyp2e1 KO mice with evidence from DNA sequence analysis, which showed 1-bp insertion at 65 bp (C) site of Cyp2e1 Exon 1. In addition, western blot and in vivo pharmacokinetic study also showed a complete absence of CYP2E1 protein and a 92% and 88% reduction in CYP2E1 activity among males and females, respectively. DMF metabolism as evidenced by increased blood NMHb, and hepatotoxicity as evidenced by elevated liver/body weight ratio, activity of liver enzymes and massive liver necrosis were detected in wild-type (WT) mice but were completely abrogated in KO mice, strongly supporting a CYP2E1-dependent pattern of DMF metabolism and hepatotoxicity. Moreover, variant allele of CYP2E1-rs6413432 was also significantly associated with higher NMHb levels in DMF-exposed workers (P = 0.045). The increase of glucose-regulated protein 94 detected in WT mice but not in KO mice suggested CYP2E1-dependent endoplasmic reticulum stress may be a key mechanism underlying DMF-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhijun Wu
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qiang Liu
- Department of Environmental Health, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Lei Wang
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Min Zheng
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Mingyue Guan
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Man Zhang
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wenjin Zhao
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Chunmin Wang
- Department of Physical and Chemical Laboratory, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Songwen Lu
- Department of Environmental Health, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Juan Cheng
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Shuguang Leng
- School of Public Health, Qingdao University, Shandong, 266021, China.
| |
Collapse
|
5
|
Jia K, Zhang D, Wang Y, Liu Y, Kong X, Yang Q, Chen H, Xie C, Wang S. Generation and characterization of a monoclonal antibody against human BCL6 for immunohistochemical diagnosis. PLoS One 2019; 14:e0216470. [PMID: 31063496 PMCID: PMC6504089 DOI: 10.1371/journal.pone.0216470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Background Human B-cell lymphoma 6 (BCL6) gene, usually coding protein of 706 amino acids, is closely associated with large B cell lymphoma. Researches showed that protein mutation or change of expression levels usually happened in the mounting non-hodgkin lymphoma (NHL). Thus BCL6 is considered to be involved in germinal center (GC)-derived lymphoma. Results The BCL61-350 gene codons were optimized for prokaryotic system. After expression of BCL61-350 in E. coli, the BCL61-350 protein was purified with Ni column. Then the BCL61-350 protein, mixing with QuickAntibody-Mouse5W adjuvant, was injected into Balb/c mice. After immunization and cell fusion, a stable cell line named 1E6A4, which can secrete anti-BCL6 antibody, was obtained. The isotype of 1E6A4 mAb was determined as IgG2a, and the affinity constant reached 5.12×1010 L/mol. Furthermore, the specificity of the mAb was determined with ELISA, western blot and immunohistochemistry. Results indicated that the 1E6A4 mAb was able to detect BCL6 specifically and sensitively. Conclusions BCL61-350 antigen has been successfully generated with an effective and feasible method, and a highly specific antibody named 1E6A4 against BCL6 has been screened and characterized in this study, which was valuable in clinical diagnosis.
Collapse
Affiliation(s)
- Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| | - Danping Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Yaju Liu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzhu Kong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | - Chengjie Xie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Jia K, Zhang D, Jia Q, Zhang Q. Regulation of Fgf15 expression in the intestine by glucocorticoid receptor. Mol Med Rep 2019; 19:2953-2959. [PMID: 30720089 PMCID: PMC6423556 DOI: 10.3892/mmr.2019.9915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/31/2018] [Indexed: 01/20/2023] Open
Abstract
Fibroblast growth factor 15 (FGF15) was previously identified to be highly expressed in the ileum and functions as an endocrine factor to regulate bile acid synthesis in the liver. FGF15 targets its receptor fibroblast growth factor receptor 4 in the liver and serves important roles in energy metabolism, including bile acid homeostasis, glucose metabolism and protein synthesis. The expression of FGF15 is known to be regulated by the transcription factor farnesoid X receptor (FXR). In the present study, reverse transcription-quantitative polymerase chain reaction was used for measuring Fgf15 expression from the animal and tissue culture experiments, and it was identified that dexamethasone, a drug widely used in anti-inflammation therapy, and a classical inducer of glucocorticoid receptor (GR)- and pregnane X receptor (PXR)-target genes, may downregulate Fgf15 expression in the ileum. GR was identified to be highly expressed in the ileum by western blot analysis. Furthermore, it was demonstrated that the downregulation of Fgf15 by dexamethasone is due to the repression of ileal FXR activity via GR; however, not PXR, in the ileum. The present results provide insight for a better understanding of the adverse effects associated with dexamethasone therapy.
Collapse
Affiliation(s)
- Kunzhi Jia
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Danping Zhang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Qing‑Yu Zhang
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York, Albany, NY 12201, USA
| |
Collapse
|
7
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
8
|
Cruzan G, Bus JS, Andersen ME, Carlson GP, Banton MI, Sarang SS, Waites R. Based on an analysis of mode of action, styrene-induced mouse lung tumors are not a human cancer concern. Regul Toxicol Pharmacol 2018; 95:17-28. [DOI: 10.1016/j.yrtph.2018.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
|
9
|
Li L, Zhang QY, Ding X. A CYP2B6-humanized mouse model and its potential applications. Drug Metab Pharmacokinet 2018; 33:2-8. [PMID: 29402634 DOI: 10.1016/j.dmpk.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/12/2017] [Indexed: 01/03/2023]
Abstract
CYP2B6 is a human microsomal cytochrome P450 enzyme with broad substrate selectivity. CYP2B6 is the only functional member of the human CYP2B gene subfamily, which differs from the situation in rodents, such as mouse, where multiple functional Cyp2b genes are expressed. Recent studies with Cyp2b knockout or knockdown mouse models have yielded insights into the in vivo roles of mouse CYP2B enzymes in drug disposition and xenobiotic toxicity. A CYP2B6-humanized mouse model (CYP2A13/2B6/2F1-transgenic/Cyp2abfgs-null), which expresses human CYP2B6 in the liver, and human CYP2A13 and CYP2F1 in the respiratory tract, but not any of the mouse Cyp2b genes, has also been established. In the CYP2B6-humanized mouse, the CYP2B6 transgene is expressed primarily in the liver, where it was found to be active toward prototype CYP2B6 substrate drugs. The regulatory elements of the CYP2B6 transgene appear to be compatible with mouse nuclear receptors that mediate CYP2B induction. Therefore, the CYP2B6-humanized mouse is a valuable animal model for studying the impact of CYP2B6 expression or induction on drug metabolism, drug efficacy, drug-drug interaction, and drug/xenobiotic toxicity. In this mini-review, we provide a brief background on CYP2B6 and the Cyp2b-knockout and CYP2B6-humanized mice, and discuss the potential applications and limitations of the current models.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, NY, 12201, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
10
|
Ji M, Zhang Y, Li N, Wang C, Xia R, Zhang Z, Wang SL. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101221. [PMID: 29027939 PMCID: PMC5664722 DOI: 10.3390/ijerph14101221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Yudong Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Na Li
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
11
|
Li L, Carratt S, Hartog M, Kovalchik N, Jia K, Wang Y, Zhang QY, Edwards P, Winkle LV, Ding X. Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067004. [PMID: 28599267 PMCID: PMC5743450 DOI: 10.1289/ehp844] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND The potential carcinogenicity of naphthalene (NA), a ubiquitous environmental pollutant, in human respiratory tract is a subject of intense debate. Chief among the uncertainties in risk assessment for NA is whether human lung CYP2A13 and CYP2F1 can mediate NA's respiratory tract toxicity. OBJECTIVES We aimed to assess the in vivo function of CYP2A13 and CYP2F1 in NA bioactivation and NA-induced respiratory tract toxicity in mouse models. METHODS Rates of microsomal NA bioactivation and the effects of an anti-CYP2A antibody were determined for lung and nasal olfactory mucosa (OM) from Cyp2abfgs-null, CYP2A13-humanized, and CYP2A13/2F1-humanized mice. The extent of NA respiratory toxicity was compared among wild-type, Cyp2abfgs-null, and CYP2A13/2F1-humanized mice following inhalation exposure at an occupationally relevant dose (10 ppm for 4 hr). RESULTS In vitro studies indicated that the NA bioactivation activities in OM and lung of the CYP2A13/2F1-humanized mice were primarily contributed by, respectively, CYP2A13 and CYP2F1. CYP2A13/2F1-humanized mice showed greater sensitivity to NA than Cyp2abfgs-null mice, with greater depletion of nonprotein sulfhydryl and occurrence of cytotoxicity (observable by routine histology) in the OM, at 2 or 20 hr after termination of NA exposure, in humanized mice. Focal, rather than gross, lung toxicity was observed in Cyp2abfgs-null and CYP2A13/2F1-humanized mice; however, the extent of NA-induced lung injury (shown as volume fraction of damaged cells) was significantly greater in the terminal bronchioles of CYP2A13/2F1-humanized mice than in Cyp2abfgs-null mice. CONCLUSION CYP2F1 is an active enzyme. Both CYP2A13 and CYP2F1 are active toward NA in the CYP2A13/2F1-humanized mice, where they play significant roles in NA-induced respiratory tract toxicity. https://doi.org/10.1289/EHP844.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Sarah Carratt
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Matthew Hartog
- College of Nanoscale Science and Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York, USA
| | - Nataliia Kovalchik
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kunzhi Jia
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Yanan Wang
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Patricia Edwards
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Laura Van Winkle
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Xinxin Ding
- College of Nanoscale Science and Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York, USA
| |
Collapse
|