1
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
2
|
Yao J, Peng T, Shao C, Liu Y, Lin H, Liu Y. The Antioxidant Action of Astragali radix: Its Active Components and Molecular Basis. Molecules 2024; 29:1691. [PMID: 38675511 PMCID: PMC11052376 DOI: 10.3390/molecules29081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.
Collapse
Affiliation(s)
- Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Ting Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Changxin Shao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yuanyuan Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| | - Huanhuan Lin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yongqi Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| |
Collapse
|
3
|
Xu X, Sun XY, Chang M, Hu ZL, Cheng TT, Hang TJ, Song M. Gemcitabine enhances pharmacokinetic exposure of the major components of Danggui Buxue Decoction in rat via the promotion of intestinal permeability and down-regulation of CYP3A for combination treatment of non-small cell lung cancer. PHARMACEUTICAL BIOLOGY 2023; 61:1298-1309. [PMID: 37606265 PMCID: PMC10446811 DOI: 10.1080/13880209.2023.2246500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/24/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
CONTEXT Danggui Buxue Decoction (DBD), a traditional Chinese medicine formula, has the potential to enhance the antitumor effect of gemcitabine in non-small cell lung cancer (NSCLC) treatment by increasing gemcitabine's active metabolites. However, whether gemcitabine affects the pharmacokinetics of DBD's major components remains unclear. OBJECTIVE This study evaluates the herb-drug interaction between DBD's major components and gemcitabine and validates the underlying pharmacokinetic mechanism. MATERIALS AND METHODS The pharmacokinetics of 3.6 g/kg DBD with and without a single-dose administration of 50 mg/kg gemcitabine was investigated in Sprague-Dawley rats. The effects of gemcitabine on intestinal permeability, hepatic microsomal enzymes in rat tissues, and CYP3A overexpressing HepG2 cells were determined using western blot analysis. RESULTS The combination of gemcitabine significantly altered the pharmacokinetic profiles of DBD's major components in rats. The Cmax and AUC of calycosin-7-O-β-d-glucoside notably increased through sodium-glucose transporter 1 (SGLT-1) expression promotion. The AUC of ligustilide and ferulic acid was also significantly elevated with the elimination half-life (t1/2) prolonged by 2.4-fold and 7.8-fold, respectively, by down-regulating hepatic CYP3A, tight junction proteins zonula occludens-1 (ZO-1) and occludin expression. DISCUSSION AND CONCLUSIONS Gemcitabine could modulate the pharmacokinetics of DBD's major components by increasing intestinal permeability, enhancing transporter expression, and down-regulating CYP3A. These findings provide critical information for clinical research on DBD as an adjuvant for NSCLC with gemcitabine and help make potential dosage adjustments more scientifically and rationally.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xi-yang Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Ming Chang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhao-liang Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Ting-ting Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Tai-jun Hang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Min Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Yue K, Mao B, Tang X, Zhang Q, Zhao J, Cui S, Chen W. Recent updates in anti-glycation strategies: selection of natural products and lactic acid bacteria as potential inhibitors based on the multi-pathway anti-glycation targets. Crit Rev Food Sci Nutr 2023; 64:11026-11043. [PMID: 37417364 DOI: 10.1080/10408398.2023.2232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The prevalence of high-sugar diets and unhealthy habits exacerbates the production of advanced glycation end products (AGEs) in the body. When AGEs excessively accumulate in the body, they accelerate the aging process while directly or indirectly causing other complications that can seriously damage the body. Prevention of glycation damage is gaining increasing attention; however, a systematic strategy to combat glycation and specific glycation inhibitors is still lacking. By analyzing the process of glycation damage, we suggest that glycation damage can be mitigated by the inhibition of AGEs production, binding to proteins, and binding to receptors for advanced glycation end products, as well as the attenuation of downstream linkage reactions. This review summarizes the process of glycation damage. According to each step of the process, the review presents the corresponding anti-glycation strategies. Based on recent anti-glycation studies, we support the fabrication of glycation inhibitors by using natural plant products and fermentation products of lactic acid bacteria that partially exhibit anti-glycation properties. This review summarizes the mechanisms by which these dietary ingredients perform anti-glycation functions, providing relevant research evidence. We hope that this review will support and assist subsequent investigations in the development of anti-glycation inhibitors.
Collapse
Affiliation(s)
- Kaiyan Yue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Liu Y, Lu Y, Li X, Zhang Z, Sun L, Wang Y, He Z, Liu Z, Zhu L, Fu L. Kaempferol suppression of acute colitis is regulated by the efflux transporters BCRP and MRP2. Eur J Pharm Sci 2022; 179:106303. [DOI: 10.1016/j.ejps.2022.106303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
|
6
|
Intestinal Glucuronidation, Prior to Hepatic Glucuronidation, Plays an Important Role in the Low Circulating Levels of Calycosin. SEPARATIONS 2022. [DOI: 10.3390/separations9050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Calycosin is a dietary flavonoid with favorable activities, which seems to be inconsistent with its low circulating levels in vivo. To address this issue, we developed a strategy to understand calycosin distribution by integrating qualitative and quantitative analyses of calycosin and its metabolites in portal vein plasma, the liver, and systemic plasma after oral administration to rats. Consequently, 21 metabolites were characterized in total, including the first report of a reductive biotransformation and 14 new metabolites. Compared with the low levels of calycosin, calycosin glucuronides were predominant in circulation, and both the hepatic and intestinal regions contributed to the high exposure of these calycosin glucuronides. However, intestinal glucuronidation, prior to hepatic glucuronidation, plays a key role in the low circulating levels of calycosin.
Collapse
|
7
|
Tang XY, Dai ZQ, Zeng JX, Li ZT, Fan CL, Yao ZH, Yao XS, Dai Y. Pharmacokinetics, hepatic disposition, and heart tissue distribution of fourteen compounds in rat after oral administration of Qi-Li-Qiang-Xin capsule via ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. J Sep Sci 2022; 45:2177-2189. [PMID: 35478323 DOI: 10.1002/jssc.202101008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
In the present study, a specific and sensitive approach using ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was developed and validated for the quantitative analysis of fourteen constituents in rat plasma, liver and heart. The method was fully validated and successfully applied to pharmacokinetic, hepatic disposition and heart tissue distribution studies of fourteen compounds after the oral administration of Qi-Li-Qiang-Xin capsule. Ginsenoside Rb1, alisol A, astragaloside IV, and periplocymarin were found to be highly exposed in rat plasma, while toxic components such as hypaconitine, mesaconitine, and periplocin had low circulation levels in vivo. Moreover, sinapine thiocyanate, neoline, formononetin, calycosin, and alisol A exhibited significant liver first-pass effects. Notably, high levels of alisol A, periplocymarin, benzoylmesaconine, and benzoylhypaconine were observed in the heart. Based on high exposure and appropriate pharmacokinetic features in the systemic plasma and heart, astragaloside IV, ginsenoside Rb1, periplocymarin, benzoylmesaconine, benzoylhypaconine and alisol A can be considered as the main potentially effective components. Ultimately, the results provide relevant information for discovery of effective substances, as well as further anti-heart failure action mechanism investigations of Qi-Li-Qiang-Xin capsule. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Xing Zeng
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zi-Ting Li
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Cai-Lian Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
8
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
9
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
10
|
Guo K, Wang X, Huang B, Wu X, Shen S, Lin Z, Zhao J, Cai Z. Comparative study on the intestinal absorption of three gastrodin analogues via the glucose transport pathway. Eur J Pharm Sci 2021; 163:105839. [PMID: 33852971 DOI: 10.1016/j.ejps.2021.105839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Gastrodin is the main active constituent of Tianma, a famous traditional Chinese herbal medicine. Our previous research has found that gastrodin is absorbed rapidly in the intestine by the sodium-dependent glucose transporter 1 (SGLT1). In the current report, gastrodin is the best glycoside compound absorbed via the glucose transport pathway. This study aimed to investigate the effect of the slight difference in chemical structure on the drug intestinal absorption via the glucose transport pathway. Traditional biopharmaceutical and computer-aided molecular docking methods were used to evaluate the intestinal absorption characteristics of three gastrodin analogues, namely, salicin, arbutin and 4-methoxyphenyl-β-D-glucoside (4-MG). The oil-water partition coefficient (logP) experiments showed that the logP values of the gastrodin analogues followed the order: 4-MG > salicin > arbutin. In vitro Caco-2 cell transport experiments demonstrated that the apparent permeability coefficient (Papp) value of arbutin was higher than those of salicin and 4-MG. In situ single-pass intestinal perfusion experiments showed that the absorption of arbutin and 4-MG was better than that of salicin and that the absorption of the three compounds in the colon was lower than that in the small intestine. Quantitative real-time polymerase chain reaction results confirmed that the SGLT1 mRNA expression in the small intestine of rats was obviously higher than that in the colon of rats. In vivo pharmacokinetic experiments demonstrated that the oral bioavailability of salicin was lower than those of arbutin and 4-MG. In vitro and in vivo experiments showed that glucose or phlorizin (SGLT1 inhibitor) could decrease the intestinal absorption of the three compounds. Contrary to the above biopharmaceutical experiments, the computer-aided molecular docking test showed that the affinity of salicin to the vSGLT receptor was stronger than those of arbutin and 4-MG. In conclusion, the SGLT1 can facilitate the intestinal absorption of salicin, arbutin and 4-MG, and the slight difference in chemical structure can affect absorption.
Collapse
Affiliation(s)
- Kunkun Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Xin Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Baolin Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Xiaoyun Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Shuimei Shen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China.
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; TCM-Integrated Hospital of Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
11
|
Fermentation of Danggui Buxue Tang, an ancient Chinese herbal mixture, together with Lactobacillus plantarum enhances the anti-diabetic functions of herbal product. Chin Med 2020; 15:98. [PMID: 32944064 PMCID: PMC7488747 DOI: 10.1186/s13020-020-00379-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Danggui Buxue Tang (DBT), an ancient Chinese herbal decoction containing Astragali Radix and Angelicae Sinensis Radix at a ratio of 5: 1, is prescribed for menopausal women. Flavonoids and its flavonoid glycosides are considered as the major active ingredients within the herbal decoction; however, their amount is not controllable during the preparation. Besides, the aglycons within DBT are believed to have better gut absorption and pharmacological efficacy. Methods The herbal extract of DBT was fermented with Lactobacillus plantarum. The amounts of flavonoid glucosides and its aglycones in the fermented product were analyzed by using UPLC-MS/MS. In addition, in vitro assays were employed to evaluate the efficacy of the fermented DBT in regulating the activities of α-glucosidase, α-amylase and lipase, as well as their antioxidant capacity (DPPH and T-AOC assays) and anti-glycation property (BSA-methylglyoxal, BSA-fructose, and arginine-methylglyoxal models). Results The fermentation of DBT with L. plantarum drove a completed conversion of calycosin-7-O-β-D-glucoside and ononin to calycosin and formononetin, respectively. The chemical transformation could be probably mediated by β-glycosidase within the fermented product. Several in vitro assays corresponding to anti-diabetic functions were compared between parental DBT against its fermented product, which included the activities against α-glucosidase, α-amylase and lipase, as well as anti-oxidation and anti-glycation. The fermented DBT showed increased activities in inhibiting α-glycosidase, suppressing DPPH radical-scavenging and anti-glycation, as compared to the original herbal product. Conclusion These results suggested that DBT being fermented with the probiotic L. plantarum could pave a new direction for fermentation of herbal extract, as to strengthen its pharmacological properties in providing health benefits.
Collapse
|
12
|
Gan Q, Wang J, Hu J, Lou G, Xiong H, Peng C, Zheng S, Huang Q. The role of diosgenin in diabetes and diabetic complications. J Steroid Biochem Mol Biol 2020; 198:105575. [PMID: 31899316 DOI: 10.1016/j.jsbmb.2019.105575] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus is a chronic and common metabolic disease that seriously endangers human health. Hyperglycemia and long-term metabolic disorders in diabetes will cause damage to the whole body tissues and organs, resulting in serious complications. Nowadays, drugs for treating diabetes on the market has strong side effects, new treatments thus are urgently needed. Natural therapy of natural ingredients is a promising avenue, this is because natural ingredients are safer and they also show strong activity in the treatment of diabetes. Diosgenin is such a very biologically active natural steroidal sapogenin. The research of diosgenin in the treatment of diabetes and its complications has been widely reported. This article reviews the effects of diosgenin through multiple targets and multiple pathways in diabetes and its complications which including diabetic nephropathy, diabetic liver disease, diabetic neuropathy, diabetic vascular disease, diabetic cardiomyopathy, diabetic reproductive dysfunction, and diabetic eye disease.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Guanhua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Haijun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Chengyi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Song Zheng
- Sichuan Kaimei Chinese Medicine Co., Ltd, No.155, Section 1, Fuxing Road, Longmatan District, Luzhou, 646000, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
13
|
Barreca D, Mandalari G, Calderaro A, Smeriglio A, Trombetta D, Felice MR, Gattuso G. Citrus Flavones: An Update on Sources, Biological Functions, and Health Promoting Properties. PLANTS 2020; 9:plants9030288. [PMID: 32110931 PMCID: PMC7154817 DOI: 10.3390/plants9030288] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Citrus spp. are among the most widespread plants cultivated worldwide and every year millions of tons of fruit, juices, or processed compounds are produced and consumed, representing one of the main sources of nutrients in human diet. Among these, the flavonoids play a key role in providing a wide range of health beneficial effects. Apigenin, diosmetin, luteolin, acacetin, chrysoeriol, and their respective glycosides, that occur in concentrations up to 60 mg/L, are the most common flavones found in Citrus fruits and juices. The unique characteristics of their basic skeleton and the nature and position of the substituents have attracted and stimulated vigorous investigations as a consequence of an enormous biological potential, that manifests itself as (among other properties) antioxidant, anti-inflammatory, antiviral, antimicrobial, and anticancer activities. This review analyzes the biochemical, pharmacological, and biological properties of Citrus flavones, emphasizing their occurrence in Citrus spp. fruits and juices, on their bioavailability, and their ability to modulate signal cascades and key metabolic enzymes both in vitro and in vivo. Electronic databases including PubMed, Scopus, Web of Science, and SciFinder were used to investigate recent published articles on Citrus spp. in terms of components and bioactivity potentials.
Collapse
Affiliation(s)
- Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
- Correspondence: ; Tel.: +39-0906765187; Fax: +39-0906765186
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| | - Antonella Calderaro
- Department of Agricultural Science, Università degli Studi Mediterranea, Feo di Vito, IT-89124 Reggio Calabria, Italy;
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| | - Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| |
Collapse
|
14
|
Wang Z, Gao Z, Wang A, Jia L, Zhang X, Fang M, Yi K, Li Q, Hu H. Comparative oral and intravenous pharmacokinetics of phlorizin in rats having type 2 diabetes and in normal rats based on phase II metabolism. Food Funct 2019; 10:1582-1594. [PMID: 30806398 DOI: 10.1039/c8fo02242a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phlorizin (PHZ), a type of dihydrochalcone widely found in Rosaceae such as apples, is the first compound discovered as a sodium-glucose cotransporter (SGLT) inhibitor. It has been confirmed to improve the symptoms of diabetes and diabetic complications effectively. Like other flavonoids, the bioavailability challenge of PHZ is the wide phase I and II metabolism in the digestive tract. In this study, we investigated the pharmacokinetics and contribution of phase II metabolism after the oral and intravenous administrations of PHZ in rats having type 2 diabetes (T2D) and in normal rats. The phase II metabolism characteristics of PHZ were investigated by treating plasma samples with β-glucuronidase/sulfatase. The contribution ratio of phase II metabolism of PHZ ranged from 41.9% to 69.0% after intravenous injection with three doses of PHZ in normal rats. Compared with the observations for normal rats, AUC0-t and Cmax of PHZ significantly increased and T1/2 of PHZ significantly decreased in T2D rats. PHZ was converted into phloretin (PHT) through an enzyme-catalyzed hydrolysis reaction, and PHT was further transformed into conjugates with glycose after both oral and intravenous administrations. Moreover, it was found that the bioavailability of PHZ was about 5% in T2D rats, which was significantly higher than that in normal rats (0%). In conclusion, compared with the observations for normal rats, the pharmacokinetic characteristics of PHZ significantly changed in T2D rats through oral and intravenous administrations. The bioavailability of PHZ significantly increased in T2D rats. Besides, the phase II metabolites of PHT were the major existing forms in blood after oral and intravenous administrations. Our results indicated that the phase II metabolism characteristics of PHZ should be considered when PHZ is applied for the treatment of diabetes as a drug or functional food.
Collapse
Affiliation(s)
- Zhanguo Wang
- Chengdu Holistic Integrative Medicine Collaborative Innovation Research Center, Aba Tibetan and Qiang Medicine Quality Evaluation Innovation Research Laboratory, School of Medicine and Nursing, Chengdu University, Longquan, Chengdu 610106, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int J Mol Sci 2019; 20:E1463. [PMID: 30909474 PMCID: PMC6470777 DOI: 10.3390/ijms20061463] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. Modern pharmacological studies and clinical practices indicate that AR possesses various biological functions, including potent immunomodulation, antioxidant, anti-inflammation and antitumor activities. To date, more than 200 chemical constituents have been isolated and identified from AR. Among them, isoflavonoids, saponins and polysaccharides are the three main types of beneficial compounds responsible for its pharmacological activities and therapeutic efficacy. After ingestion of AR, the metabolism and biotransformation of the bioactive compounds were extensive in vivo. The isoflavonoids and saponins and their metabolites are the major type of constituents absorbed in plasma. The bioavailability barrier (BB), which is mainly composed of efflux transporters and conjugating enzymes, is expected to have a significant impact on the bioavailability of AR. This review summarizes studies on the phytochemistry, pharmacology and pharmacokinetics on AR. Additionally, the use of AR as a personalized medicine based on the BB is also discussed, which may provide beneficial information to achieve a better and more accurate therapeutic response of AR in clinical practice.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Qing Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
16
|
Li Y, Song W, Ou X, Luo G, Xie Y, Sun R, Wang Y, Qi X, Hu M, Liu Z, Zhu L. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Determine the Disposition of Esculetin-7-O-Glucuronide and 4-Methylesculetin-7-O-Glucuronide. Drug Metab Dispos 2019; 47:203-214. [PMID: 30602435 DOI: 10.1124/dmd.118.083493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
Esculetin (ET)-7-O-glucuronide (ET-G) and 4-methylesculetin (4-ME)-7-O-glucuronide (4-ME-G) are the main glucuronide of ET and 4-ME, respectively. The disposition mediated by efflux transporters for glucuronide has significant influence on the pharmacokinetic profile and efficacy of bioactive compounds. In the current study, transporter gene knockout mice and Caco-2 cells were used to explore the effects of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) on the disposition of ET-G and 4-ME-G. After oral or i.v. administration of ET and 4-ME, the area under the plasma concentration-time curve from time 0 to the last data point or infinity values of ET, 4-ME, and their glucuronides (ET-G and 4-ME-G) were remarkably and significantly increased in most Bcrp1-/- and Mrp2-/- mice compared with those in wild-type FVB mice (P < 0.05). These results were accompanied with a significant increase of maximum plasma concentration values (P < 0.05). In Caco-2 monolayers, the efflux and clearance rates of ET-G and 4-ME-G were markedly reduced by the BCRP inhibitor Ko143 and MRP2 inhibitor MK571 on the apical side (P < 0.05). In an intestinal perfusion study, the excretion of ET-G was significantly decreased in perfusate and increased in plasma in Bcrp1-/- mice compared with those in wild-type FVB mice (P < 0.05). The 4-ME-G concentration was also decreased in the bile in transporter gene knockout mice. ET and 4-ME showed good permeability in both Caco-2 monolayers [apparent permeability (Papp ) ≥ 0.59 × 10-5 cm/s] and duodenum (Papp ≥ 1.81). In conclusion, BCRP and MRP2 are involved in excreting ET-G and 4-ME-G. ET and 4-ME are most likely absorbed via passive diffusion in the intestines.
Collapse
Affiliation(s)
- Yuhuan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Wenjie Song
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xiaojun Ou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Guangkuo Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Yushan Xie
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Rongjin Sun
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ming Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Lijun Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| |
Collapse
|
17
|
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 2018; 82:600-610. [DOI: 10.1080/09168451.2018.1444467] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Several dietary flavonoids exhibit anti-oxidative, anti-inflammatory, and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Dietary flavonoids (glycoside forms) are enzymatically hydrolyzed and absorbed in the intestine, and are conjugated to their glucuronide/sulfate forms by phase II enzymes in epithelial cells and the liver. The intestinal microbiota plays an important role in the metabolism of flavonoids found in foods. Some specific products of bacterial transformation, such as ring-fission products and reduced metabolites, exhibit enhanced properties. Studies on the metabolism of flavonoids by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review focused on the metabolic pathways, bioavailability, and physiological role of flavonoids, especially metabolites of quercetin and isoflavone produced by the intestinal microbiota.
Collapse
Affiliation(s)
- Kaeko Murota
- Faculty of Science and Technology, Department of Life Science, Kindai University, Osaka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mariko Uehara
- Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
18
|
Ohno H, Kojima Y, Harada H, Abe Y, Endo T, Kobayashi M. Absorption, disposition, metabolism and excretion of [ 14C]mizagliflozin, a novel selective SGLT1 inhibitor, in rats. Xenobiotica 2018; 49:463-473. [PMID: 29558223 DOI: 10.1080/00498254.2018.1449269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pharmacokinetic and metabolite profiles of mizagliflozin, a novel selective sodium glucose co-transporter 1 inhibitor designed to act only in the intestine, were investigated in rats. Mizagliflozin administrated intravenously (0.3 mg/kg) and orally (3 mg/kg) declined with a short half-life (0.23 and 1.14 h, respectively). The absolute bioavailability was only 0.02%. Following intravenous administration of [14 C]mizagliflozin (0.3 mg/kg), radioactivity in plasma was also rapidly declined. Up to 24 h after oral administration of [14 C]mizagliflozin (1 mg/kg), radioactivity was recovered in the faeces (98.4%) and in the urine (0.8%). No remarkable accumulation of radioactivity in tissues was observed using tissue dissection technique and whole body autoradiography. Orally dosed [14 C]mizagliflozin was mostly metabolised to its aglycone, KP232, in the intestine. In the plasma, KP232 and its glucuronide were predominant. KP232 glucuronide was also prominent in the bile and was recovered as KP232 in the faeces possibly because of the deconjugation by gut microflora. Mizagliflozin was observed neither in the urine nor the faeces. These findings suggest that orally administered mizagliflozin is poorly absorbed, contributing to low systemic exposure; if absorbed, mizagliflozin is rapidly cleared from circulation.
Collapse
Affiliation(s)
- Hitoshi Ohno
- a Central Research Laboratories , Kissei Pharmaceutical Co., Ltd , Azumino , Japan
| | - Yasunari Kojima
- a Central Research Laboratories , Kissei Pharmaceutical Co., Ltd , Azumino , Japan
| | - Hiroshi Harada
- a Central Research Laboratories , Kissei Pharmaceutical Co., Ltd , Azumino , Japan
| | - Yoshikazu Abe
- a Central Research Laboratories , Kissei Pharmaceutical Co., Ltd , Azumino , Japan
| | - Takuro Endo
- a Central Research Laboratories , Kissei Pharmaceutical Co., Ltd , Azumino , Japan
| | - Mamoru Kobayashi
- a Central Research Laboratories , Kissei Pharmaceutical Co., Ltd , Azumino , Japan
| |
Collapse
|
19
|
UGT-mediated metabolism plays a dominant role in the pharmacokinetic behavior and the disposition of morusin in vivo and in vitro. J Pharm Biomed Anal 2018; 154:339-353. [PMID: 29571132 DOI: 10.1016/j.jpba.2018.02.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Morusin is a prenylated flavone isolated from mulberry, the branch and root bark of various Morus species, which possesses diverse pharmacological activities. However, it lacks extensive studies about its absorption and disposition. This study investigated the pharmacokinetic behavior of morusin in rat, and its first-pass metabolism in situ. The metabolic pathway of morusin was further investigated by 12 human recombinant UDP-glucuronosyltransferases (UGTs), 9 CYP450s, as well as liver and intestinal microsomes. Four mono-glucuronide metabolites (M-5-G, M-4'-G, M-2'-G, and MII-2) were identified in rat intestine and bile by LC-MS/MS, while three of them were also detected in plasma (M-5-G, M-4'-G, and MII-2). M-4'-G was the principal conjugate. However, few CYP450 metabolites were found in rat intestine and bile. Only a small amount of MI-1 could be detected in rat plasma. UGT1A1, 1A3, 1A7, and 2B7 were the major contributors to morusin glucuronidation. Morusin exhibited substrate inhibition kinetic characteristics in all UGTs. Clearance rates of M-4'-G in HLM, RLM, UGT1A1, UGT1A3, and UGT2B7 were 137.02, 127.55, 32.54, 41.18, and 35.07 ml/min/mg, respectively. Besides, CYP3A5, 3A4, and 2C19 primarily contributed to the oxidative metabolism of morusin. The pharmacokinetic curves of morusin and its conjugates presented double peaks, showing that an enterohepatic recycling may exist. In conclusion, glucuronidation was confirmed to be the crucial metabolic pathway for morusin in vivo, and M-4'-G was the main metabolite.
Collapse
|
20
|
Absorption, liver first-pass effect, pharmacokinetics and tissue distribution of calycosin-7- O -ß- d -glucopyranoside (C7G) and its major active metabolite, calycosin, following oral administration of C7G in rats by LC–MS/MS. J Pharm Biomed Anal 2018; 148:350-354. [DOI: 10.1016/j.jpba.2017.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023]
|
21
|
Zhang Q, Zhu L, Gong X, Ruan Y, Yu J, Jiang H, Wang Y, Qi X, Lu L, Liu Z. Sulfonation Disposition of Acacetin: In Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4921-4931. [PMID: 28540728 DOI: 10.1021/acs.jafc.7b00854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acacetin, an important component of acacia honey, exerts extensive therapeutic effects on many cancers. However, the sulfonation disposition of acacetin has rarely been reported. Therefore, this study aimed to investigate the sulfonation disposition of acacetin systematically. The results showed that acacetin-7-sulfate was the main metabolite mediated primarily by sulfotransferases (SULT) 1A1. Dog liver S9 presented the highest formation rate of acacetin-7-sulfate. Compared with that in wild-type Friend Virus B (FVB) mice, plasma exposure of acacetin-7-sulfate decreased significantly in multidrug resistance protein 1 knockout (Mrp1-/-) mice vut increased clearly in breast cancer resistance protein knockout (Bcrp-/-) mice. In Caco-2 monolayers, the efflux and clearance of acacetin-7-sulfate was reduced distinctly by the BCRP inhibitor Ko143 on the apical side and by the MRP1 inhibitor MK571 on the basolateral side. In conclusion, acacetin sulfonation was mediated mostly by SULT1A1. Acacetin-7-sulfate was found to be transported mainly by BCRP and MRP1. Hence, SULT1A1, BCRP, and MRP1 are responsible for acacetin-7-sulfate exposure in vivo.
Collapse
Affiliation(s)
- Qisong Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - XiaoXiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| |
Collapse
|
22
|
Yu J, Zhu L, Zheng H, Gong X, Jiang H, Chen J, Li Y, Zheng H, Qi X, Wang Y, Hu M, Lu L, Liu Z. Sulfotransferases and Breast Cancer Resistance Protein Determine the Disposition of Calycosin in Vitro and in Vivo. Mol Pharm 2017; 14:2917-2929. [DOI: 10.1021/acs.molpharmaceut.7b00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jia Yu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haihui Zheng
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiamei Chen
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuhuan Li
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hongming Zheng
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaoxiao Qi
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ming Hu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Linlin Lu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- State Key Laboratory
of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|