1
|
Moriyama A, Ueda H, Narumi K, Asano S, Furugen A, Saito Y, Kobayashi M. Contribution of aldehyde oxidase to methotrexate-induced hepatotoxicity: in vitro and pharmacoepidemiological approaches. Expert Opin Drug Metab Toxicol 2024; 20:399-406. [PMID: 38706380 DOI: 10.1080/17425255.2024.2352453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Methotrexate (MTX) is partially metabolized by aldehyde oxidase (AOX) in the liver and its clinical impact remains unclear. In this study, we aimed to demonstrate how AOX contributes to MTX-induced hepatotoxicity in vitro and clarify the relationship between concomitant AOX inhibitor use and MTX-associated liver injury development using the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS We assessed intracellular MTX accumulation and cytotoxicity using HepG2 cells. We used the FAERS database to detect reporting odds ratio (ROR)-based MTX-related hepatotoxicity event signals. RESULTS AOX inhibition by AOX inhibitor raloxifene and siRNA increased the MTX accumulation in HepG2 cells and enhanced the MTX-induced cell viability reduction. In the FAERS analysis, the ROR for MTX-related hepatotoxicity increased with non-overlap of 95% confidence interval when co-administered with drugs with higher Imax, u (maximum unbound plasma concentration)/IC50 (half-maximal inhibitory concentration for inhibition of AOX) calculated based on reported pharmacokinetic data. CONCLUSION AOX inhibition contributed to MTX accumulation in the liver, resulting in increased hepatotoxicity. Our study raises concerns regarding MTX-related hepatotoxicity when co-administered with drugs that possibly inhibit AOX activity at clinical concentrations.
Collapse
Affiliation(s)
- Ayako Moriyama
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hinata Ueda
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shuho Asano
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Saito
- Department of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Hammid A, Fallon JK, Vellonen KS, Lassila T, Reinisalo M, Urtti A, Gonzalez F, Tolonen A, Smith PC, Honkakoski P. Aldehyde oxidase 1 activity and protein expression in human, rabbit, and pig ocular tissues. Eur J Pharm Sci 2023; 191:106603. [PMID: 37827455 DOI: 10.1016/j.ejps.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Aldehyde oxidase (AOX) is a cytosolic drug-metabolizing enzyme which has attracted increasing attention in drug development due to its high hepatic expression, broad substrate profile and species differences. In contrast, there is limited information on the presence and activity of AOX in extrahepatic tissues including ocular tissues. Because several ocular drugs are potential substrates for AOX, we performed a comprehensive analysis of the AOX1 expression and activity profile in seven ocular tissues from humans, rabbits, and pigs. AOX activities were determined using optimized assays for the established human AOX1 probe substrates 4-dimethylamino-cinnamaldehyde (DMAC) and phthalazine. Inhibition studies were undertaken in conjunctival and retinal homogenates using well-established human AOX1 inhibitors menadione and chlorpromazine. AOX1 protein contents were quantitated with targeted proteomics and confirmed by immunoblotting. Overall, DMAC oxidation rates varied over 10-fold between species (human ˃˃ rabbit ˃ pig) and showed 2- to 6-fold differences between tissues from the same species. Menadione seemed a more potent inhibitor of DMAC oxidation across species than chlorpromazine. Human AOX1 protein levels were highest in the conjunctiva, followed by most posterior tissues, whereas anterior tissues showed low levels. The rabbit AOX1 expression was high in the conjunctiva, retinal pigment epithelial (RPE), and choroid while lower in the anterior tissues. Quantification of pig AOX1 was not successful but immunoblotting confirmed the presence of AOX1 in all species. DMAC oxidation rates and AOX1 contents correlated quite well in humans and rabbits. This study provides, for the first time, insights into the ocular expression and activity of AOX1 among multiple species.
Collapse
Affiliation(s)
- Anam Hammid
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland.
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7355, Chapel Hill, NC 27599-7355, United States
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| | - Toni Lassila
- Admescope Ltd, Typpitie 1, FI-90620 Oulu, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland; Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Francisco Gonzalez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Service of Ophthalmology, University Hospital of Santiago de Compostela, and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Ari Tolonen
- Admescope Ltd, Typpitie 1, FI-90620 Oulu, Finland
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7355, Chapel Hill, NC 27599-7355, United States
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| |
Collapse
|
3
|
Subash S, Singh DK, Ahire DS, Khojasteh SC, Murray BP, Zientek MA, Jones RS, Kulkarni P, Smith BJ, Heyward S, Cronin CN, Prasad B. Dissecting Parameters Contributing to the Underprediction of Aldehyde Oxidase-Mediated Metabolic Clearance of Drugs. Drug Metab Dispos 2023; 51:1362-1371. [PMID: 37429730 DOI: 10.1124/dmd.123.001379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
We investigated the effect of variability and instability in aldehyde oxidase (AO) content and activity on the scaling of in vitro metabolism data. AO content and activity in human liver cytosol (HLC) and five recombinant human AO preparations (rAO) were determined using targeted proteomics and carbazeran oxidation assay, respectively. AO content was highly variable as indicated by the relative expression factor (REF; i.e., HLC to rAO content) ranging from 0.001 to 1.7 across different in vitro systems. The activity of AO in HLC degrades at a 10-fold higher rate in the presence of the substrate as compared with the activity performed after preincubation without substrate. To scale the metabolic activity from rAO to HLC, a protein-normalized activity factor (pnAF) was proposed wherein the activity was corrected by AO content, which revealed up to sixfold higher AO activity in HLC versus rAO systems. A similar value of pnAF was observed for another substrate, ripasudil. Physiologically based pharmacokinetic (PBPK) modeling revealed a significant additional clearance (CL; 66%), which allowed for the successful prediction of in vivo CL of four other substrates, i.e., O-benzyl guanine, BIBX1382, zaleplon, and zoniporide. For carbazeran, the metabolite identification study showed that the direct glucuronidation may be contributing to around 12% elimination. Taken together, this study identified differential protein content, instability of in vitro activity, role of additional AO clearance, and unaccounted metabolic pathways as plausible reasons for the underprediction of AO-mediated drug metabolism. Consideration of these factors and integration of REF and pnAF in PBPK models will allow better prediction of AO metabolism. SIGNIFICANCE STATEMENT: This study elucidated the plausible reasons for the underprediction of aldehyde oxidase (AO)-mediated drug metabolism and provided recommendations to address them. It demonstrated that integrating protein content and activity differences and accounting for the loss of AO activity, as well as consideration of extrahepatic clearance and additional pathways, would improve the in vitro to in vivo extrapolation of AO-mediated drug metabolism using physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Sandhya Subash
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Dilip K Singh
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Deepak S Ahire
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - S Cyrus Khojasteh
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Bernard P Murray
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Michael A Zientek
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Robert S Jones
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Bill J Smith
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Ciarán N Cronin
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)
| |
Collapse
|
4
|
Belkadi A, Thareja G, Abbaszadeh F, Badii R, Fauman E, Albagha OM, Suhre K. Identification of PCSK9-like human gene knockouts using metabolomics, proteomics, and whole-genome sequencing in a consanguineous population. CELL GENOMICS 2022; 3:100218. [PMID: 36777185 PMCID: PMC9903797 DOI: 10.1016/j.xgen.2022.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/16/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Natural human knockouts of genes associated with desirable outcomes, such as PCSK9 with low levels of LDL-cholesterol, can lead to the discovery of new drug targets and treatments. Rare loss-of-function variants are more likely to be found in the homozygous state in consanguineous populations, and deep molecular phenotyping of blood samples from homozygous carriers can help to discriminate between silent and functional variants. Here, we combined whole-genome sequencing with proteomics and metabolomics for 2,935 individuals from the Qatar Biobank (QBB) to evaluate the power of this approach for finding genes of clinical and pharmaceutical interest. As proof-of-concept, we identified a homozygous carrier of a very rare PCSK9 variant with extremely low circulating PCSK9 levels and low LDL. Our study demonstrates that the chances of finding such variants are about 168 times higher in QBB compared with GnomAD and emphasizes the potential of consanguineous populations for drug discovery.
Collapse
Affiliation(s)
- Aziz Belkadi
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA
| | - Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Omar M.E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar,Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA,Corresponding author
| |
Collapse
|
5
|
Gajula SNR, Nathani TN, Patil RM, Talari S, Sonti R. Aldehyde oxidase mediated drug metabolism: an underpredicted obstacle in drug discovery and development. Drug Metab Rev 2022; 54:427-448. [PMID: 36369949 DOI: 10.1080/03602532.2022.2144879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aldehyde oxidase (AO) has garnered curiosity as a non-CYP metabolizing enzyme in drug development due to unexpected consequences such as toxic metabolite generation and high metabolic clearance resulting in the clinical failure of new drugs. Therefore, poor AO mediated clearance prediction in preclinical nonhuman species remains a significant obstacle in developing novel drugs. Various isoforms of AO, such as AOX1, AOX3, AOX3L1, and AOX4 exist across species, and different AO activity among humans influences the AO mediated drug metabolism. Therefore, carefully considering the unique challenges is essential in developing successful AO substrate drugs. The in vitro to in vivo extrapolation underpredicts AO mediated drug clearance due to the lack of reliable representative animal models, substrate-specific activity, and the discrepancy between absolute concentration and activity. An in vitro tool to extrapolate in vivo clearance using a yard-stick approach is provided to address the underprediction of AO mediated drug clearance. This approach uses a range of well-known AO drug substrates as calibrators for qualitative scaling new drugs into low, medium, or high clearance category drugs. So far, in vivo investigations on chimeric mice with humanized livers (humanized mice) have predicted AO mediated metabolism to the best extent. This review addresses the critical aspects of the drug discovery stage for AO metabolism studies, challenges faced in drug development, approaches to tackle AO mediated drug clearance's underprediction, and strategies to decrease the AO metabolism of drugs.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Tanaaz Navin Nathani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Rashmi Madhukar Patil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Sasikala Talari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| |
Collapse
|
6
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
7
|
Ueda H, Narumi K, Furugen A, Saito Y, Kobayashi M. The rs35217482 (T755I) single-nucleotide polymorphism in aldehyde oxidase-1 attenuates prot ein dimer formation and reduces the rates of phthalazine metabolism. Drug Metab Dispos 2022; 50:DMD-AR-2022-000902. [PMID: 35842227 DOI: 10.1124/dmd.122.000902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Aldehyde oxidase 1 (AOX1) is a molybdenum-containing enzyme that catalyzes the oxidation of a range of aldehyde compounds and clinical drugs, including azathioprine and methotrexate. The purpose of this study was to elucidate the effects of single-nucleotide polymorphisms (SNPs) in the coding regions of the human AOX1 gene on protein dimer formation and metabolic activity. Six variants (Q314R [rs58185012], I598N [rs143935618], T755I [rs35217482], A1083G [rs139092129], N1135S [rs55754655], and H1297R [rs3731722]), with allele frequencies greater than 0.01 in 1 or more population, were obtained from the genome aggregation and 1000 Genomes project databases. Protein expression and dimer formation were evaluated using HEK293T cells expressing the wild-type (WT) or different SNP variants of AOX1. Kinetic analyses of phthalazine oxidation were performed using S9 fractions of HEK293T cells expressing WT or each the different mutant AOX1. Although we detected no significant differences among WT AOX1 and the different variants with respect to total protein expression, native PAGE analysis indicated that one of the SNP variants, T755I, found in East Asian populations, dimerizes less efficiently than the WT AOX1. Kinetic analysis, using phthalazine as a typical substrate, revealed that this mutation contributes to a reduction in the maximal rates of reaction without affecting enzyme affinity for phthalazine. Our observation thus indicates that the T755I variant has significantly negative effects on both the dimer formation and in vitro catalytic activity of AOX1. These findings may provide valuable insights into the mechanisms underlying the inter-individual differences in the therapeutic efficacy or toxicity of AOX1 substrate drugs. Significance Statement The T755l (rs35217482) SNP variant of the AOX1 protein, which is prominent in East Asian populations, suppresses protein dimer formation, resulting in a reduction in the reaction velocity of phthalazine oxidation to less than half of that of wild-type AOX1.
Collapse
Affiliation(s)
| | - Katsuya Narumi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Ayako Furugen
- Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | | | | |
Collapse
|
8
|
Mota C, Diniz A, Coelho C, Santos-Silva T, Esmaeeli M, Leimkühler S, Cabrita EJ, Marcelo F, Romão MJ. Interrogating the Inhibition Mechanisms of Human Aldehyde Oxidase by X-ray Crystallography and NMR Spectroscopy: The Raloxifene Case. J Med Chem 2021; 64:13025-13037. [PMID: 34415167 DOI: 10.1021/acs.jmedchem.1c01125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.
Collapse
Affiliation(s)
- Cristiano Mota
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Diniz
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Coelho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Mariam Esmaeeli
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Eurico J Cabrita
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filipa Marcelo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria João Romão
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Garrido C, Leimkühler S. The Inactivation of Human Aldehyde Oxidase 1 by Hydrogen Peroxide and Superoxide. Drug Metab Dispos 2021; 49:729-735. [PMID: 34183377 DOI: 10.1124/dmd.121.000549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mammalian aldehyde oxidases (AOX) are molybdo-flavoenzymes of pharmacological and pathophysiologic relevance that are involved in phase I drug metabolism and, as a product of their enzymatic activity, are also involved in the generation of reactive oxygen species. So far, the physiologic role of aldehyde oxidase 1 in the human body remains unknown. The human enzyme hAOX1 is characterized by a broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into their corresponding carboxylic acids, and hydroxylating various heteroaromatic rings. The enzyme uses oxygen as terminal electron acceptor to produce hydrogen peroxide and superoxide during turnover. Since hAOX1 and, in particular, some natural variants produce not only H2O2 but also high amounts of superoxide, we investigated the effect of both ROS molecules on the enzymatic activity of hAOX1 in more detail. We compared hAOX1 to the high-O2 .--producing natural variant L438V for their time-dependent inactivation with H2O2/O2 .- during substrate turnover. We show that the inactivation of the hAOX1 wild-type enzyme is mainly based on the production of hydrogen peroxide, whereas for the variant L438V, both hydrogen peroxide and superoxide contribute to the time-dependent inactivation of the enzyme during turnover. Further, the level of inactivation was revealed to be substrate-dependent: using substrates with higher turnover numbers resulted in a faster inactivation of the enzymes. Analysis of the inactivation site of the enzyme identified a loss of the terminal sulfido ligand at the molybdenum active site by the produced ROS during turnover. SIGNIFICANCE STATEMENT: This work characterizes the substrate-dependent inactivation of human aldehyde oxidase 1 under turnover by reactive oxygen species and identifies the site of inactivation. The role of ROS in the inhibition of human aldehyde oxidase 1 will have a high impact on future studies.
Collapse
Affiliation(s)
- Claudia Garrido
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
10
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
11
|
Abbasi A, Joswig-Jones CA, Jones JP. Site-Directed Mutagenesis at the Molybdenum Pterin Cofactor Site of the Human Aldehyde Oxidase: Interrogating the Kinetic Differences Between Human and Cynomolgus Monkey. Drug Metab Dispos 2020; 48:1364-1371. [PMID: 33020066 DOI: 10.1124/dmd.120.000187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022] Open
Abstract
The estimation of the drug clearance by aldehyde oxidase (AO) has been complicated because of this enzyme's atypical kinetics and species and substrate specificity. Since human AO (hAO) and cynomolgus monkey AO (mAO) have a 95.1% sequence identity, cynomolgus monkeys may be the best species for estimating AO clearance in humans. Here, O6-benzylguanine (O6BG) and dantrolene were used under anaerobic conditions, as oxidative and reductive substrates of AO, respectively, to compare and contrast the kinetics of these two species through numerical modeling. Whereas dantrolene reduction followed the same linear kinetics in both species, the oxidation rate of O6BG was also linear in mAO and did not follow the already established biphasic kinetics of hAO. In an attempt to determine why hAO and mAO are kinetically distinct, we have altered the hAO V811 and F885 amino acids at the oxidation site adjacent to the molybdenum pterin cofactor to the corresponding alanine and leucine in mAO, respectively. Although some shift to a more monkey-like kinetics was observed for the V811A mutant, five more mutations around the AO cofactors still need to be investigated for this purpose. In comparing the oxidative and reductive rates of metabolism under anaerobic conditions, we have come to the conclusion that despite having similar rates of reduction (4-fold difference), the oxidation rate in mAO is more than 50-fold slower than hAO. This finding implies that the presence of nonlinearity in AO kinetics is dependent upon the degree of imbalance between the rates of oxidation and reduction in this enzyme. SIGNIFICANCE STATEMENT: Although they have as much as 95.1% sequence identity, human and cynomolgus monkey aldehyde oxidase are kinetically distinct. Therefore, monkeys may not be good estimators of drug clearance in humans.
Collapse
Affiliation(s)
- Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
12
|
Sudsakorn S, Bahadduri P, Fretland J, Lu C. 2020 FDA Drug-drug Interaction Guidance: A Comparison Analysis and Action Plan by Pharmaceutical Industrial Scientists. Curr Drug Metab 2020; 21:403-426. [DOI: 10.2174/1389200221666200620210522] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022]
Abstract
Background:
In January 2020, the US FDA published two final guidelines, one entitled “In vitro Drug
Interaction Studies - Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry”
and the other entitled “Clinical Drug Interaction Studies - Cytochrome P450 Enzyme- and Transporter-Mediated
Drug Interactions Guidance for Industry”. These were updated from the 2017 draft in vitro and clinical DDI
guidance.
Methods:
This study is aimed to provide an analysis of the updates along with a comparison of the DDI guidelines
published by the European Medicines Agency (EMA) and Japanese Pharmaceuticals and Medical Devices Agency
(PMDA) along with the current literature.
Results:
The updates were provided in the final FDA DDI guidelines and explained the rationale of those changes
based on the understanding from research and literature. Furthermore, a comparison among the FDA, EMA, and
PMDA DDI guidelines are presented in Tables 1, 2 and 3.
Conclusion:
The new 2020 clinical DDI guidance from the FDA now has even higher harmonization with the
guidance (or guidelines) from the EMA and PMDA. A comparison of DDI guidance from the FDA 2017, 2020,
EMA, and PMDA on CYP and transporter based DDI, mathematical models, PBPK, and clinical evaluation of DDI
is presented in this review.
Collapse
Affiliation(s)
- Sirimas Sudsakorn
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Praveen Bahadduri
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Jennifer Fretland
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Chuang Lu
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| |
Collapse
|
13
|
Cronin CN, Liu J, Grable N, Strelevitz TJ, Obach RS, Carlo A. Production of active recombinant human aldehyde oxidase (AOX) in the baculovirus expression vector system (BEVS) and deployment in a pre-clinical fraction-of-control AOX compound exposure assay. Protein Expr Purif 2020; 177:105749. [PMID: 32911062 DOI: 10.1016/j.pep.2020.105749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Human aldehyde oxidase (AOX) has emerged as a key enzyme activity for consideration in modern drug discovery. The enzyme catalyzes the oxidation of a wide variety of compounds, most notably azaheterocyclics that often form the building blocks of small molecule therapeutics. Failure to consider and assess AOX drug exposure early in the drug development cycle can have catastrophic consequences for novel compounds entering the clinic. AOX is a complex molybdopterin-containing iron-sulfur flavoprotein comprised of two identical 150 kDa subunits that has proven difficult to produce in recombinant form, and a commercial source of the purified human enzyme is currently unavailable. Thus, the potential exposure of novel drug development candidates to human AOX metabolism is usually assessed by using extracts of pooled human liver cytosol as a source of the enzyme. This can complicate the assignment of AOX-specific compound exposure due to its low activity and the presence of contaminating enzymes that may have overlapping substrate specificities. Herein is described a two-step process for the isolation of recombinant human AOX dimers to near homogeneity following production in the baculovirus expression vector system (BEVS). The deployment of this BEVS-produced recombinant human AOX as a substitute for human liver extracts in a fraction-of-control AOX compound-exposure screening assay is described. The ability to generate this key enzyme activity readily in a purified recombinant form provides for a more accurate and convenient approach to the assessment of new compound exposure to bona fide AOX drug metabolism.
Collapse
Affiliation(s)
- Ciarán N Cronin
- Structural Biology and Protein Sciences, Pfizer Global Research and Development, La Jolla, CA, USA.
| | - JianHua Liu
- Hit Discovery and Optimization Group, Pfizer Global Research and Development, Groton, CT, USA
| | - Nicole Grable
- Structural Biology and Protein Sciences, Pfizer Global Research and Development, La Jolla, CA, USA
| | - Timothy J Strelevitz
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT, USA
| | - R Scott Obach
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT, USA
| | - Anthony Carlo
- Hit Discovery and Optimization Group, Pfizer Global Research and Development, Groton, CT, USA
| |
Collapse
|
14
|
Ferreira P, Cerqueira NMFSA, Fernandes PA, Romão MJ, Ramos MJ. Catalytic Mechanism of Human Aldehyde Oxidase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pedro Ferreira
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nuno M. F. Sousa A. Cerqueira
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria João Romão
- UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria João Ramos
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Terao M, Garattini E, Romão MJ, Leimkühler S. Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J Biol Chem 2020; 295:5377-5389. [PMID: 32144208 PMCID: PMC7170512 DOI: 10.1074/jbc.rev119.007741] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Maria João Romão
- UCIBIO-Applied Biomolecular Sciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
16
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
17
|
Kimoto E, Obach RS, Varma MV. Identification and quantitation of enzyme and transporter contributions to hepatic clearance for the assessment of potential drug-drug interactions. Drug Metab Pharmacokinet 2020; 35:18-29. [DOI: 10.1016/j.dmpk.2019.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
|
18
|
Manevski N, King L, Pitt WR, Lecomte F, Toselli F. Metabolism by Aldehyde Oxidase: Drug Design and Complementary Approaches to Challenges in Drug Discovery. J Med Chem 2019; 62:10955-10994. [PMID: 31385704 DOI: 10.1021/acs.jmedchem.9b00875] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldehyde oxidase (AO) catalyzes oxidations of azaheterocycles and aldehydes, amide hydrolysis, and diverse reductions. AO substrates are rare among marketed drugs, and many candidates failed due to poor pharmacokinetics, interspecies differences, and adverse effects. As most issues arise from complex and poorly understood AO biology, an effective solution is to stop or decrease AO metabolism. This perspective focuses on rational drug design approaches to modulate AO-mediated metabolism in drug discovery. AO biological aspects are also covered, as they are complementary to chemical design and important when selecting the experimental system for risk assessment. The authors' recommendation is an early consideration of AO-mediated metabolism supported by computational and in vitro experimental methods but not an automatic avoidance of AO structural flags, many of which are versatile and valuable building blocks. Preferably, consideration of AO-mediated metabolism should be part of the multiparametric drug optimization process, with the goal to improve overall drug-like properties.
Collapse
Affiliation(s)
- Nenad Manevski
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Lloyd King
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - William R Pitt
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Fabien Lecomte
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Francesca Toselli
- UCB BioPharma , Chemin du Foriest 1 , 1420 Braine-l'Alleud , Belgium
| |
Collapse
|
19
|
Inhibition of vertebrate aldehyde oxidase as a therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis. Eur J Med Chem 2019; 187:111948. [PMID: 31877540 DOI: 10.1016/j.ejmech.2019.111948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The aldehyde oxidases (AOXs) are a small sub-family of cytosolic molybdo-flavoenzymes, which are structurally conserved proteins and broadly distributed from plants to animals. AOXs play multiple roles in both physiological and pathological processes and AOX inhibition is of increasing significance in the development of novel drugs and therapeutic strategies. This review provides an overview of the evolution and the action mechanism of AOX and the role of each domain. The review provides an update of the polymorphisms in the human AOX. This review also summarises the physiology of AOX in different organs and its role in drug metabolism. The inhibition of AOX is a promising therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis.
Collapse
|
20
|
Coelho C, Muthukumaran J, Santos‐Silva T, João Romão M. Systematic exploration of predicted destabilizing nonsynonymous single nucleotide polymorphisms (nsSNPs) of human aldehyde oxidase: A Bio-informatics study. Pharmacol Res Perspect 2019; 7:e00538. [PMID: 31768259 PMCID: PMC6874515 DOI: 10.1002/prp2.538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 11/07/2022] Open
Abstract
Aldehyde Oxidase (hAOX1) is a cytosolic enzyme involved in the metabolism of drugs and xenobiotic compounds. The enzyme belongs to the xanthine oxidase (XO) family of Mo containing enzyme and is a homo-dimer of two 150 kDa monomers. Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) of hAOX1 have been reported as affecting the ability of the enzyme to metabolize different substrates. Some of these nsSNPs have been biochemically and structurally characterized but the lack of a systematic and comprehensive study regarding all described and validated nsSNPs is urgent, due to the increasing importance of the enzyme in drug development, personalized medicine and therapy, as well as in pharmacogenetic studies. The objective of the present work was to collect all described nsSNPs of hAOX1 and utilize a series of bioinformatics tools to predict their effect on protein structure stability with putative implications on phenotypic functional consequences. Of 526 nsSNPs reported in NCBI-dbSNP, 119 are identified as deleterious whereas 92 are identified as nondeleterious variants. The stability analysis was performed for 119 deleterious variants and the results suggest that 104 nsSNPs may be responsible for destabilizing the protein structure, whereas five variants may increase the protein stability. Four nsSNPs do not have any impact on protein structure (neutral nsSNPs) of hAOX1. The prediction results of the remaining six nsSNPs are nonconclusive. The in silico results were compared with available experimental data. This methodology can also be used to identify and prioritize the stabilizing and destabilizing variants in other enzymes involved in drug metabolism.
Collapse
Affiliation(s)
- Catarina Coelho
- UCIBIOChemistry DepartmentFaculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
| | - Jayaraman Muthukumaran
- UCIBIOChemistry DepartmentFaculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
| | - Teresa Santos‐Silva
- UCIBIOChemistry DepartmentFaculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
| | - Maria João Romão
- UCIBIOChemistry DepartmentFaculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
21
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
22
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
23
|
Mota C, Esmaeeli M, Coelho C, Santos-Silva T, Wolff M, Foti A, Leimkühler S, Romão MJ. Human aldehyde oxidase (hAOX1): structure determination of the Moco-free form of the natural variant G1269R and biophysical studies of single nucleotide polymorphisms. FEBS Open Bio 2019; 9:925-934. [PMID: 30985987 PMCID: PMC6487702 DOI: 10.1002/2211-5463.12617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022] Open
Abstract
Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug‐metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug‐metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)‐free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild‐type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 °C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. Enzymes Aldehyde oxidase (EC1.2.3.1); xanthine dehydrogenase (EC1.17.1.4); xanthine oxidase (EC1.1.3.2). Databases Structural data are available in the Protein Data Bank under the accession number 6Q6Q.
Collapse
Affiliation(s)
- Cristiano Mota
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Mariam Esmaeeli
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Catarina Coelho
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Martin Wolff
- Department of Physical Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Alessandro Foti
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Maria João Romão
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
24
|
Guillocheau GM, El Hou A, Meersseman C, Esquerré D, Rebours E, Letaief R, Simao M, Hypolite N, Bourneuf E, Bruneau N, Vaiman A, Vander Jagt CJ, Chamberlain AJ, Rocha D. Survey of allele specific expression in bovine muscle. Sci Rep 2019; 9:4297. [PMID: 30862965 PMCID: PMC6414783 DOI: 10.1038/s41598-019-40781-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/22/2019] [Indexed: 02/04/2023] Open
Abstract
Allelic imbalance is a common phenomenon in mammals that plays an important role in gene regulation. An Allele Specific Expression (ASE) approach can be used to detect variants with a cis-regulatory effect on gene expression. In cattle, this type of study has only been done once in Holstein. In our study we performed a genome-wide analysis of ASE in 19 Limousine muscle samples. We identified 5,658 ASE SNPs (Single Nucleotide Polymorphisms showing allele specific expression) in 13% of genes with detectable expression in the Longissimus thoraci muscle. Interestingly we found allelic imbalance in AOX1, PALLD and CAST genes. We also found 2,107 ASE SNPs located within genomic regions associated with meat or carcass traits. In order to identify causative cis-regulatory variants explaining ASE we searched for SNPs altering binding sites of transcription factors or microRNAs. We identified one SNP in the 3’UTR region of PRNP that could be a causal regulatory variant modifying binding sites of several miRNAs. We showed that ASE is frequent within our muscle samples. Our data could be used to elucidate the molecular mechanisms underlying gene expression imbalance.
Collapse
Affiliation(s)
| | - Abdelmajid El Hou
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Cédric Meersseman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,GMA, INRA, Université de Limoges, 87060, Limoges, France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Emmanuelle Rebours
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Rabia Letaief
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Morgane Simao
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Hypolite
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Emmanuelle Bourneuf
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,CEA, DRF/iRCM/SREIT/LREG, Jouy-en-Josas, France
| | - Nicolas Bruneau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBiociences Centre, Bundoora, Victoria, Australia
| | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
25
|
Fast Methods for Prediction of Aldehyde Oxidase-Mediated Site-of-Metabolism. Comput Struct Biotechnol J 2019; 17:345-351. [PMID: 30949305 PMCID: PMC6429535 DOI: 10.1016/j.csbj.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Aldehyde Oxidase (AO) is an enzyme involved in the metabolism of aldehydes and N-containing heterocyclic compounds. Many drug compounds contain heterocyclic moieties, and AO metabolism has lead to failure of several late-stage drug candidates. Therefore, it is important to take AO-mediated metabolism into account early in the drug discovery process, and thus, to have fast and reliable models to predict the site of metabolism (SOM). We have collected a dataset of 78 substrates of human AO with a total of 89 SOMs and 347 non-SOMs and determined atomic descriptors for each compound. The descriptors comprise NMR shielding and ESP charges from density functional theory (DFT), NMR chemical shift from ChemBioDraw, and Gasteiger charges from RDKit. Additionally, atomic accessibility was considered using 2D-SASA and relative span descriptors from SMARTCyp. Finally, stability of the product, the metabolite, was determined with DFT and also used as a descriptor. All descriptors have AUC larger than 0.75. In particular, descriptors related to the chemical shielding and chemical shift (AUC = 0.96) and ESP charges (AUC = 0.96) proved to be good descriptors. We recommend two simple methods to identify the SOM for a given molecule: 1) use ChemBioDraw to calculate the chemical shift or 2) calculate ESP charges or chemical shift using DFT. The first approach is fast but somewhat difficult to automate, while the second is more time-consuming, but can easily be automated. The two methods predict correctly 93% and 91%, respectively, of the 89 experimentally observed SOMs.
Collapse
|
26
|
Kulandaisamy A, Priya SB, Sakthivel R, Frishman D, Gromiha MM. Statistical analysis of disease‐causing and neutral mutations in human membrane proteins. Proteins 2019; 87:452-466. [DOI: 10.1002/prot.25667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 11/11/2022]
Affiliation(s)
- A. Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras Chennai Tamil Nadu India
| | - S. Binny Priya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras Chennai Tamil Nadu India
| | - R. Sakthivel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras Chennai Tamil Nadu India
| | - Dmitrij Frishman
- Department of BioinformaticsPeter the Great St. Petersburg Polytechnic University St. Petersburg Russian Federation
- Department of BioinformaticsTechnische Universität München, Wissenschaftszentrum Weihenstephan Freising Germany
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology Madras Chennai Tamil Nadu India
- Advanced Computational Drug Discovery Unit (ACDD)Institute of Innovative Research, Tokyo Institute of Technology Yokohama Kanagawa Japan
| |
Collapse
|
27
|
Paragas E, Humphreys SC, Min J, Joswig-Jones CA, Leimkühler S, Jones JP. ecoAO: A Simple System for the Study of Human Aldehyde Oxidases Role in Drug Metabolism. ACS OMEGA 2017; 2:4820-4827. [PMID: 28884164 PMCID: PMC5579547 DOI: 10.1021/acsomega.7b01054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Although aldehyde oxidase (AO) is an important hepatic drug-metabolizing enzyme, it remains understudied and is consequently often overlooked in preclinical studies, an oversight that has resulted in the failure of multiple clinical trials. AO's preclusion to investigation stems from the following: (1) difficulties synthesizing metabolic standards due to the chemospecificity and regiospecificity of the enzyme and (2) significant inherent variability across existing in vitro systems including liver cytosol, S9 fractions, and primary hepatocytes, which lack specificity and generate discordant expression and activity profiles. Here, we describe a practical bacterial biotransformation system, ecoAO, addressing both issues simultaneously. ecoAO is a cell paste of MoCo-producing Escherichia coli strain TP1017 expressing human AO. It exhibits specific activity toward known substrates, zoniporide, 4-trans-(N,N-dimethylamino)cinnamaldehyde, O6-benzylguanine, and zaleplon; it also has utility as a biocatalyst, yielding milligram quantities of synthetically challenging metabolite standards such as 2-oxo-zoniporide. Moreover, ecoAO enables routine determination of kcat and V/K, which are essential parameters for accurate in vivo clearance predictions. Furthermore, ecoAO has potential as a preclinical in vitro screening tool for AO activity, as demonstrated by its metabolism of 3-aminoquinoline, a previously uncharacterized substrate. ecoAO promises to provide easy access to metabolites with the potential to improve pharmacokinetic clearance predictions and guide drug development.
Collapse
Affiliation(s)
- Erickson
M. Paragas
- Department
of Chemistry, Washington State University, 99164-4630 Pullman, Washington, United States
| | - Sara C. Humphreys
- Department
of Chemistry, Washington State University, 99164-4630 Pullman, Washington, United States
| | - Joshua Min
- Department
of Chemistry, Washington State University, 99164-4630 Pullman, Washington, United States
| | - Carolyn A. Joswig-Jones
- Department
of Chemistry, Washington State University, 99164-4630 Pullman, Washington, United States
| | - Silke Leimkühler
- Department
of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Jeffrey P. Jones
- Department
of Chemistry, Washington State University, 99164-4630 Pullman, Washington, United States
| |
Collapse
|
28
|
Foti A, Dorendorf F, Leimkühler S. A single nucleotide polymorphism causes enhanced radical oxygen species production by human aldehyde oxidase. PLoS One 2017; 12:e0182061. [PMID: 28750088 PMCID: PMC5531472 DOI: 10.1371/journal.pone.0182061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/11/2017] [Indexed: 12/23/2022] Open
Abstract
Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. The physiological function of mammalian AOX isoenzymes is still unclear, however, human AOX (hAOX1) is an emerging enzyme in phase-I drug metabolism. Indeed, the number of xenobiotics acting as hAOX1 substrates is increasing. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified within the hAOX1 gene. SNPs are a major source of inter-individual variability in the human population, and SNP-based amino acid exchanges in hAOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. In this report we selected ten novel SNPs resulting in amino acid exchanges in proximity to the FAD site of hAOX1 and characterized the purified enzymes after heterologous expression in Escherichia coli. The hAOX1 variants were characterized carefully by quantitative differences in their ability to produce superoxide radical. ROS represent prominent key molecules in physiological and pathological conditions in the cell. Our data reveal significant alterations in superoxide anion production among the variants. In particular the SNP-based amino acid exchange L438V in proximity to the isoalloxanzine ring of the FAD cofactor resulted in increased rate of superoxide radical production of 75%. Considering the high toxicity of the superoxide in the cell, the hAOX1-L438V SNP variant is an eventual candidate for critical or pathological roles of this natural variant within the human population.
Collapse
Affiliation(s)
- Alessandro Foti
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Dorendorf
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
29
|
Kücükgöze G, Terao M, Garattini E, Leimkühler S. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse. Drug Metab Dispos 2017; 45:947-955. [DOI: 10.1124/dmd.117.075937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022] Open
|
30
|
Romão MJ, Coelho C, Santos-Silva T, Foti A, Terao M, Garattini E, Leimkühler S. Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics. Curr Opin Chem Biol 2017; 37:39-47. [DOI: 10.1016/j.cbpa.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
31
|
Rashidi MR, Soltani S. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery. Expert Opin Drug Discov 2017; 12:305-316. [DOI: 10.1080/17460441.2017.1284198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|