1
|
Lagrange E, Loriot MA, Chaudhary NK, Schultz P, Dirks AC, Guissart C, James TY, Vernoux JP, Camu W, Tripathi A, Spencer PS. Corrected speciation and gyromitrin content of false morels linked to ALS patients with mostly slow-acetylator phenotypes. eNeurologicalSci 2024; 35:100502. [PMID: 38770222 PMCID: PMC11103407 DOI: 10.1016/j.ensci.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
A case-control study of sporadic amyotrophic lateral sclerosis (ALS) in a mountainous village in the French Alps discovered an association of cases with a history of eating wild fungi (false morels) collected locally and initially identified and erroneously reported as Gyromitra gigas. Specialist re-examination of dried specimens of the ALS-associated fungi demonstrated they were members of the G. esculenta group, namely G. venenata and G. esculenta, species that have been reported to contain substantially higher concentrations of gyromitrin than present in G. gigas. Gyromitrin is metabolized to monomethylhydrazine, which is responsible not only for the acute oral toxic and neurotoxic properties of false morels but also has genotoxic potential with proposed mechanistic relevance to the etiology of neurodegenerative disease. Most ALS patients had a slow- or intermediate-acetylator phenotype predicted by N-acetyltransferase-2 (NAT2) genotyping, which would increase the risk for neurotoxic and genotoxic effects of gyromitrin metabolites.
Collapse
Affiliation(s)
- Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, European Georges-Pompidou hospital, Assistance Publique–Hôpitaux de Paris, University Paris Cité, INSERM UMR-S1138, Centre de Recherches des Cordeliers, 75908 Paris Cedex 15, France
| | - Nirmal K. Chaudhary
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pam Schultz
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alden C. Dirks
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claire Guissart
- Laboratoire de Biochimie et Biologie Moleculaire, CHU Nimes, Nimes, Motoneuron Disease: Pathophysiology and Therapy, INM, Univ. Montpellier, Montpellier, France
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean Paul Vernoux
- Unité de Recherche Aliments Bioprocédés Toxicologie Environnements (ABTE) EA 4651, Normandie University, UNICAEN, 14000 Caen, France
| | - William Camu
- NM, Université Montpellier, INSERM, CNRS, Montpellier, France
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, 48109, USA
| | | |
Collapse
|
2
|
Habil MR, Salazar-González RA, Doll MA, Hein DW. N-acetyltransferase 2 acetylator genotype-dependent N-acetylation and toxicity of the arylamine carcinogen β-naphthylamine in cryopreserved human hepatocytes. Arch Toxicol 2022; 96:3257-3263. [PMID: 36112171 PMCID: PMC9641657 DOI: 10.1007/s00204-022-03381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
We used cryopreserved human hepatocytes that express rapid, intermediate, and slow acetylator N-acetyltransferase 2 (NAT2) genotypes to measure the N-acetylation of β-naphthylamine (BNA) which is one of the aromatic amines found in cigarette smoke including E-cigarettes. We investigated the role of NAT2 genetic polymorphism in genotoxicity and oxidative stress induced by BNA. In vitro BNA NAT2 activities in rapid acetylators was 1.6 and 3.5-fold higher than intermediate (p < 0.01) and slow acetylators (p < 0.0001). BNA N-acetylation in situ was 3 to 4- fold higher in rapid acetylators than slow acetylators, following incubation with 10 and 100 µM BNA (p < 0.01). DNA damage was two to threefold higher in the rapid versus slow acetylators (p < 0.0001) and 2.5-fold higher in intermediate versus slow acetylators following BNA treatment at 100 and 1000 μM, ROS/RNS level was the highest in rapid acetylators followed by intermediate and then slow acetylators (p < 0.0001). Our findings show that the N-acetylation of BNA is NAT2 genotype dependent in cryopreserved human hepatocytes and our data further document an important role for NAT2 genetic polymorphism in modifying BNA-induced genotoxicity and oxidative damage.
Collapse
Affiliation(s)
- Mariam R Habil
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Toselli F, Golding M, Nicolaï J, Gillent E, Chanteux H. Drug clearance by aldehyde oxidase: can we avoid clinical failure? Xenobiotica 2022; 52:890-903. [PMID: 36170034 DOI: 10.1080/00498254.2022.2129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite increased awareness of aldehyde oxidase (AO) as a major drug-metabolising enzyme, predicting the pharmacokinetics of its substrates remains challenging. Several drug candidates have been terminated due to high clearance, which were subsequently discovered to be AO substrates. Even retrospective extrapolation of human clearance, from models more sensitive to AO activity, often resulted in underprediction.The questions of the current work thus were: Is there an acceptable degree of in vitro AO metabolism that does not result in high in vivo human clearance? And, if so, how can this be predicted?We built an in vitro/in vivo correlation using known AO substrates, combining multiple in vitro parameters to calculate the blood metabolic clearance mediated by AO (CLbAO). This value was compared with observed blood clearance (CLb-obs), establishing cut-off CLbAO values, to discriminate between low and high CLb-obs. The model was validated using additional literature compounds, and CLb-obs was predicted in the correct category.This simple, categorical, semi-quantitative yet multi-factorial model is readily applicable in drug discovery. Further, it is valuable for high-clearance compounds, as it predicts the CLb group, rather than an exact CLb value, for the substrates of this poorly-characterised enzyme.
Collapse
Affiliation(s)
| | | | - Johan Nicolaï
- Development Science, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Eric Gillent
- Development Science, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Hugues Chanteux
- Development Science, UCB Biopharma, Braine-l'Alleud, Belgium
| |
Collapse
|
4
|
Babayeva M, Azzi B, Loewy ZG. Pharmacogenomics Informs Cardiovascular Pharmacotherapy. Methods Mol Biol 2022; 2547:201-240. [PMID: 36068466 DOI: 10.1007/978-1-0716-2573-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precision medicine exemplifies the emergence of personalized treatment options which may benefit specific patient populations based upon their genetic makeup. Application of pharmacogenomics requires an understanding of how genetic variations impact pharmacokinetic and pharmacodynamic properties. This particular approach in pharmacotherapy is helpful because it can assist in and improve clinical decisions. Application of pharmacogenomics to cardiovascular pharmacotherapy provides for the ability of the medical provider to gain critical knowledge on a patient's response to various treatment options and risk of side effects.
Collapse
Affiliation(s)
| | | | - Zvi G Loewy
- Touro College of Pharmacy, New York, NY, USA.
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
5
|
Dumouchel JL, Kramlinger VM. Case Study 10: A Case to Investigate Acetyl Transferase Kinetics. Methods Mol Biol 2021; 2342:781-808. [PMID: 34272717 DOI: 10.1007/978-1-0716-1554-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Major routes of metabolism for marketed drugs are predominately driven by enzyme families such as cytochromes P450 and UDP-glucuronosyltransferases. Less studied conjugative enzymes, like N-acetyltransferases (NATs), are commonly associated with detoxification pathways. However, in the clinic, the high occurrence of NAT polymorphism that leads to slow and fast acetylator phenotypes in patient populations has been linked to toxicity for a multitude of drugs. A key example of this is the observed clinical toxicity in patients who exhibit the slow acetylator phenotype and were treated with isoniazid. Toxicity in patients has led to detailed characterization of the two NAT isoforms and their polymorphic genotypes. Investigation in recombinant enzymes, genotyped hepatocytes, and in vivo transgenic models coupled with acetylator status-driven clinical studies have helped understand the role of NATs in drug development, clinical study design and outcomes, and potential roles in human disease models. The selected case studies herein document NAT enzyme kinetics to explore substrate overlap from two human isoforms, preclinical species considerations, and clinical genotype population concerns.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Molecular Pharmacology and Physiology Graduate Training Program, Brown University, Providence, RI, USA.
| | - Valerie M Kramlinger
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| |
Collapse
|
6
|
Hein DW, Millner LM. Arylamine N-acetyltransferase acetylation polymorphisms: paradigm for pharmacogenomic-guided therapy- a focused review. Expert Opin Drug Metab Toxicol 2021; 17:9-21. [PMID: 33094670 PMCID: PMC7790970 DOI: 10.1080/17425255.2021.1840551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The N-acetylation polymorphism has been the subject of comprehensive reviews describing the role of arylamine N-acetyltransferase 2 (NAT2) in the metabolism of numerous aromatic amine and hydrazine drugs. AREAS COVERED We describe and review data that more clearly defines the effects of NAT2 haplotypes and genotypes on the expression of acetylator phenotype towards selected drugs within human hepatocytes in vitro, within human hepatocyte cultures in situ, and clinical measures such as bioavailability, plasma metabolic ratios of parent to N-acetyl metabolite, elimination rate constants and plasma half-life, and/or clearance determinations in human subjects. We review several drugs (isoniazid, hydralazine, sulfamethazine, amifampridine, procainamide, sulfasalazine, amonafide and metamizole) for which NAT2 phenotype-guided therapy may be important. The value of pharmacogenomics-guided isoniazid therapy for the prevention and treatment of tuberculosis is presented as a paradigm for NAT2 phenotype-dependent dosing strategies. EXPERT OPINION Studies in human subjects and cryopreserved human hepatocytes show evidence for rapid, intermediate and slow acetylator phenotypes, with further data suggesting genetic heterogeneity within the slow acetylator phenotype. Incorporation of more robust NAT2 genotype/phenotypes relationships, including genetic heterogeneity within the slow acetylator phenotype, should lead to further advancements in both health outcomes and cost benefit for prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- David W. Hein
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lori M. Millner
- Bluewater Diagnostic Laboratory, Mount Washington, Kentucky, USA
| |
Collapse
|
7
|
N-acetyltransferase 2 acetylator genotype-dependent N-acetylation of 4-aminobiphenyl in cryopreserved human hepatocytes. Pharmacogenet Genomics 2020; 30:61-65. [PMID: 31895247 DOI: 10.1097/fpc.0000000000000394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arylamine N-acetyltransferases are xenobiotic-metabolizing enzymes responsible for detoxification of many drugs and carcinogens. Two N-acetyltransferase proteins (NAT1 and NAT2) are expressed in humans and they both N-acetylate aromatic amine carcinogens such as 4-aminobiphenyl. Arylamines such as 4-aminobiphenyl represent a large class of chemical carcinogens. Exposure to 4-aminobiphenyl occurs in the chemical, dye and rubber industries as well as in hair dyes, paints, and cigarette smoke. NAT2 is subject to a genetic polymorphism resulting in rapid, intermediate and slow acetylator phenotypes. We investigated the role of the NAT2 genetic polymorphisms on the N-acetylation of 4-aminobiphenyl in cryopreserved human hepatocytes in which NAT2 genotype and deduced phenotype were determined. Differences in sulfamethazine (selectively N-acetylated via NAT2) and 4-aminobiphenyl (N-acetylated by both NAT1 and NAT2) N-acetylation rates among rapid, intermediate, and slow NAT2 acetylator genotypes were tested for significance by one-way analysis of variance. In vitro 4-aminobiphenyl N-acetyltransferase activities differed significantly between rapid, intermediate and slow acetylators at 10 µM (P = 0.0102) or 100 µM (P = 0.0028). N-acetylation of 4-aminobiphenyl in situ also differed significantly between human hepatocytes from rapid, intermediate, and slow acetylators at 10 µM (P = 0.0015) and 100 µM (P = 0.0216). A gene dose-response relationship was exhibited as intermediate acetylators catalyzed 4-aminobiphenyl N-acetylation both in vitro and in situ at rates arithmetically between rapid and slow acetylators. In conclusion, N-acetylation of 4-aminobiphenyl is NAT2 genotype-dependent in human hepatocytes. These results suggest refinement of the exposure limit and safety for arylamine carcinogens according to NAT2 genotype.
Collapse
|
8
|
Collins KS, Raviele ALJ, Elchynski AL, Woodcock AM, Zhao Y, Cooper-DeHoff RM, Eadon MT. Genotype-Guided Hydralazine Therapy. Am J Nephrol 2020; 51:764-776. [PMID: 32927458 DOI: 10.1159/000510433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Despite its approval in 1953, hydralazine hydrochloride continues to be used in the management of resistant hypertension, a condition frequently managed by nephrologists and other clinicians. Hydralazine hydrochloride undergoes metabolism by the N-acetyltransferase 2 (NAT2) enzyme. NAT2 is highly polymorphic as approximately 50% of the general population are slow acetylators. In this review, we first evaluate the link between NAT2 genotype and phenotype. We then assess the evidence available for genotype-guided therapy of hydralazine, specifically addressing associations of NAT2 acetylator status with hydralazine pharmacokinetics, antihypertensive efficacy, and toxicity. SUMMARY There is a critical need to use hydralazine in some patients with resistant hypertension. Available evidence supports a significant link between genotype and NAT2 enzyme activity as 29 studies were identified with an overall concordance between genotype and phenotype of 92%. The literature also supports an association between acetylator status and hydralazine concentration, as fourteen of fifteen identified studies revealed significant relationships with a consistent direction of effect. Although fewer studies are available to directly link acetylator status with hydralazine antihypertensive efficacy, the evidence from this smaller set of studies is significant in 7 of 9 studies identified. Finally, 5 studies were identified which support the association of acetylator status with hydralazine-induced lupus. Clinicians should maintain vigilance when prescribing maximum doses of hydralazine. Key Messages: NAT2 slow acetylator status predicts increased hydralazine levels, which may lead to increased efficacy and adverse effects. Caution should be exercised in slow acetylators with total daily hydralazine doses of 200 mg or more. Fast acetylators are at risk for inefficacy at lower doses of hydralazine. With appropriate guidance on the usage of NAT2 genotype, clinicians can adopt a personalized approach to hydralazine dosing and prescription, enabling more efficient and safe treatment of resistant hypertension.
Collapse
Affiliation(s)
- Kimberly S Collins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony L J Raviele
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amanda L Elchynski
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Alexander M Woodcock
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yang Zhao
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,
| |
Collapse
|
9
|
Valodara AM, SR KJ. Sexual Dimorphism in Drug Metabolism and Pharmacokinetics. Curr Drug Metab 2020; 20:1154-1166. [DOI: 10.2174/1389200220666191021094906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
Background:Sex and gender-based differences are observed well beyond the sex organs and affect several physiological and biochemical processes involved in the metabolism of drug molecules. It is essential to understand not only the sex and gender-based differences in the metabolism of the drug but also the molecular mechanisms involved in the regulation of drug metabolism for avoiding sex-related adverse effects of drugs in the human.Method:The articles on the sex and gender-based differences in the metabolism of drug molecules were retrieved from the Pub Med database. The articles were classified into the metabolism of the drug molecule, gene expression regulation of drug-metabolizing enzymes, the effect of sex hormones on the metabolism of drug, expression of drugmetabolizing enzymes, etc.Result:Several drug molecules are known, which are metabolized differently in males and females. These differences in metabolism may be due to the genomic and non-genomic action of sex hormones. Several other drug molecules still require further evaluation at the molecular level regarding the sex and gender-based differences in their metabolism. Attention is also required at the effect of signaling cascades associated with the metabolism of drug molecules.Conclusion:Sex and gender-based differences in the metabolism of drugs exist at various levels and it may be due to the genomic and non-genomic action of sex hormones. Detailed understanding of the effect of sex and related condition on the metabolism of drug molecules will help clinicians to determine the effective therapeutic doses of drugs dependingon the condition of patient and disease.
Collapse
Affiliation(s)
- Askhi M. Valodara
- Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kaid Johar SR
- Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
10
|
Han LW, Ryu RJ, Cusumano M, Easterling TR, Phillips BR, Risler LJ, Shen DD, Hebert MF. Effect of N-Acetyltransferase 2 Genotype on the Pharmacokinetics of Hydralazine During Pregnancy. J Clin Pharmacol 2019; 59:1678-1689. [PMID: 31257615 DOI: 10.1002/jcph.1477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/11/2019] [Indexed: 11/11/2022]
Abstract
Hydralazine, an antihypertensive agent used during pregnancy, undergoes N-acetylation primarily via N-acetyltransferase 2 (NAT2) to form 3-methyl-1,2,4-triazolo[3,4-a]phthalazine (MTP). To characterize the steady-state pharmacokinetics (PK) of hydralazine during pregnancy and evaluate the effects of NAT2 genotype on hydralazine and MTP PK during pregnancy, 12 pregnant subjects received oral hydralazine (5-25 mg every 6 hours) in mid- (n = 5) and/or late pregnancy (n = 8). Serial blood samples were collected over 1 dosing interval, and steady-state noncompartmental PK parameters were estimated. Subjects were classified as either (rapid acetylators, n = 6) or slow acetylators (SAs, n = 6) based on NAT2 genotype. During pregnancy, when compared with the SA group, the RA group had faster weight-adjusted hydralazine apparent oral clearance (70.0 ± 13.6 vs 20.1 ± 6.9 L/h, P < .05), lower dose-normalized area under the concentration-time curve (AUC; 1.5 ± 0.8 vs 5.9 ± 3.7 ng·h/mL, P < .05), lower dose-normalized peak concentrations (0.77 ± 0.51 vs 4.04 ± 3.18 ng/mL, P < .05), and larger weight-adjusted apparent oral volume of distribution (302 ± 112 vs 116 ± 45 L/kg, P < .05). Furthermore, the MTP/hydralazine AUC ratio was ∼10-fold higher in the RA group (78 ± 30 vs 8 ± 3, P < .05) than in the SA group. No gestational age or dose-dependent effects were observed, possibly because of the small sample size. This study describes for the first time, the PK of oral hydralazine and its metabolite, MTP, during pregnancy, and confirmed that the PK of oral hydralazine is NAT2 genotype dependent during pregnancy.
Collapse
Affiliation(s)
- Lyrialle W Han
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rachel J Ryu
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Michael Cusumano
- Hospital Sisters Health System St. John's Hospital, Springfield, IL, USA
| | - Thomas R Easterling
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Brian R Phillips
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Linda J Risler
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Mary F Hebert
- Department of Pharmacy, University of Washington, Seattle, WA, USA.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Yang X, Johnson N, Di L. Evaluation of Cytochrome P450 Selectivity for Hydralazine as an Aldehyde Oxidase Inhibitor for Reaction Phenotyping. J Pharm Sci 2019; 108:1627-1630. [DOI: 10.1016/j.xphs.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022]
|
12
|
Expression and genotype-dependent catalytic activity of N-acetyltransferase 2 (NAT2) in human peripheral blood mononuclear cells and its modulation by Sirtuin 1. Biochem Pharmacol 2018; 156:340-347. [PMID: 30149019 DOI: 10.1016/j.bcp.2018.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/21/2018] [Indexed: 01/15/2023]
Abstract
N-acetyltransferase 2 (NAT2) catalyzes the biotransformation of numerous arylamine and hydrazine drugs and carcinogens. Genetic polymorphisms of NAT2 modify drug efficacy and toxicity and susceptibility to diseases such as cancer and type 2 diabetes. Expression of NAT2 has been documented in the liver and gastrointestinal tract but not in other tissues. Deacetylation of cytosolic proteins by sirtuins is a post-translational modification important in regulatory networks of diverse cellular processes. The aim of the present study was to investigate NAT2 expression in peripheral blood mononuclear cells (PBMC) and the effects of NAT2 genotype and Sirtuin 1 (SIRT1). Both NAT2 and SIRT1 proteins were expressed on PBMC. Their expression was more prevalent on CD3+ compared to CD19+ and CD56+ cell populations. N-acetylation capacity of PBMC exhibited a NAT2 gene-dose response toward the N-acetylation of isoniazid. Subjects with rapid NAT2 genotype showed an apparent Vmax of 42.1 ± 2.4; intermediate NAT2 genotypes an apparent Vmax of 22.6 ± 2.2; and slow acetylator NAT2 genotypes an apparent Vmax of 19.9 ± 1.7 nM acetyl-isoniazid/24 h/million cells. The N-acetylation capacity of NAT2 in the presence of SIRT1 enhancer was significantly decreased (p < 0.001), conversely, the transient silencing of SIRT1 resulted in an increase of N-acetylation capacity (p < 0.001). These findings are the first report of NAT2 genotype-dependent expression on PBMC and post-translational modification by SIRT1. These findings constitute a substantial advance in our understanding of human N-acetyltransferase expression and a new much less invasive method for measurement of human NAT2 expression and phenotype.
Collapse
|