1
|
Li X, Sabbatini D, Pegoraro E, Bello L, Clemens P, Guglieri M, van den Anker J, Damsker J, McCall J, Dang UJ, Hoffman EP, Jusko WJ. Assessing Pharmacogenomic loci Associated with the Pharmacokinetics of Vamorolone in Boys with Duchenne Muscular Dystrophy. J Clin Pharmacol 2024; 64:1130-1140. [PMID: 38682893 PMCID: PMC11357888 DOI: 10.1002/jcph.2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Human genetic variation (polymorphisms) in genes coding proteins involved in the absorption, distribution, metabolism, and elimination (ADME) of drugs can have a strong effect on drug exposure and downstream efficacy and safety outcomes. Vamorolone, a dissociative steroidal anti-inflammatory drug for treating Duchenne muscular dystrophy (DMD), primarily undergoes oxidation by CYP3A4 and CYP3A5 and glucuronidation by UDP-glucuronosyltransferases. This work assesses the pharmacokinetics (PKs) of vamorolone and sources of interindividual variability (IIV) in 81 steroid-naïve boys with DMD aged 4 to <7 years old considering the genetic polymorphisms of CYPS3A4 (CYP3A4*22, CYP3A4*1B), CYP3A5 (CYP3A5*3), and UGT1A1 (UGT1A1*60) utilizing population PK modeling. A one-compartment model with zero-order absorption (Tk0, duration of absorption), linear clearance (CL/F), and volume (V/F) describes the plasma PK data for boys with DMD receiving a wide range of vamorolone doses (0.25-6 mg/kg/day). The typical CL/F and V/F values of vamorolone were 35.8 L/h and 119 L, with modest IIV. The population Tk0 was 3.14 h yielding an average zero-order absorption rate (k0) of 1.16 mg/kg/h with similar absorption kinetics across subjects at the same vamorolone dose (i.e., no IIV on Tk0). The covariate analysis showed that none of the genetic covariates had any significant impact on the PKs of vamorolone in boys with DMD. Thus, the PKs of vamorolone is very consistent in these young boys with DMD.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Paula Clemens
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michela Guglieri
- John Walton Centre for Neuromuscular Disease, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - John van den Anker
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC, USA
- ReveraGen BioPharma, Rockville, MD, USA
| | | | | | - Utkarsh J. Dang
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Eric P. Hoffman
- ReveraGen BioPharma, Rockville, MD, USA
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
2
|
Öeren M, Hunt PA, Wharrick CE, Tabatabaei Ghomi H, Segall MD. Predicting routes of phase I and II metabolism based on quantum mechanics and machine learning. Xenobiotica 2024; 54:379-393. [PMID: 37966132 DOI: 10.1080/00498254.2023.2284251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Unexpected metabolism could lead to the failure of many late-stage drug candidates or even the withdrawal of approved drugs. Thus, it is critical to predict and study the dominant routes of metabolism in the early stages of research.We describe the development and validation of a 'WhichEnzyme' model that accurately predicts the enzyme families most likely to be responsible for a drug-like molecule's metabolism. Furthermore, we combine this model with our previously published regioselectivity models for Cytochromes P450, Aldehyde Oxidases, Flavin-containing Monooxygenases, UDP-glucuronosyltransferases and Sulfotransferases - the most important Phase I and Phase II drug metabolising enzymes - and a 'WhichP450' model that predicts the Cytochrome P450 isoform(s) responsible for a compound's metabolism.The regioselectivity models are based on a mechanistic understanding of these enzymes' actions and use quantum mechanical simulations with machine learning methods to accurately predict sites of metabolism and the resulting metabolites. We train heuristics based on the outputs of the 'WhichEnzyme', 'WhichP450', and regioselectivity models to determine the most likely routes of metabolism and metabolites to be observed experimentally.Finally, we demonstrate that this combination delivers high sensitivity in identifying experimentally reported metabolites and higher precision than other methods for predicting in vivo metabolite profiles.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Cambridge, UK
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Cambridge, UK
| | | | | | | |
Collapse
|
3
|
Kanayama M, Tsai HL, Wang H, Antonarakis ES, Denmeade SR, Luo J. Baseline serum testosterone and differential efficacy of bipolar androgen therapy and enzalutamide in the randomized TRANSFORMER trial. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00844-w. [PMID: 38714781 DOI: 10.1038/s41391-024-00844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/10/2024]
Abstract
Bipolar androgen therapy (BAT) is effective in a subset of metastatic castration-resistant prostate cancer (mCRPC) patients. Treatment selection biomarkers are needed due to other therapies that can be equally efficacious. We performed post-hoc analysis to determine whether baseline serum testosterone (T) is a treatment selection marker in the TRANSFORMER study, a randomized trial of abiraterone-pretreated mCRPC patients assigned to BAT (n = 94) or enzalutamide (n = 101). The findings suggest that patients with poor outcomes to abiraterone and serum T ≥ 20 ng/dL may benefit preferentially from BAT over enzalutamide. Baseline testosterone could be considered in the treatment selection process when BAT is an option.
Collapse
Affiliation(s)
- Mayuko Kanayama
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600N Wolfe St, Baltimore, MD, 21287, USA
| | - Hua-Ling Tsai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401N Broadway, Baltimore, MD, 21231, USA
| | - Hao Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401N Broadway, Baltimore, MD, 21231, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Masonic Cancer Center, University of Minnesota Medical Center, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| | - Samuel R Denmeade
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600N Wolfe St, Baltimore, MD, 21287, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401N Broadway, Baltimore, MD, 21231, USA
| | - Jun Luo
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600N Wolfe St, Baltimore, MD, 21287, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401N Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
4
|
Hu Y, Wu J, Cheng B, You R, Yin X, Chen G, Yang L, Zhang Y, Si L, Jiang H, Zhang Y, Huang J, Huang J. Effect of food and polymorphisms in SLCO2B1, CYP3A4 and UGT1A4 on pharmacokinetics of abiraterone and its metabolites in Chinese volunteers. Br J Clin Pharmacol 2024; 90:247-263. [PMID: 37574850 DOI: 10.1111/bcp.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
AIMS Abiraterone acetate, a prodrug of abiraterone (ABI), provides an efficient therapeutic option for metastatic castration-resistant prostate cancer patients. ABI undergoes extensive metabolism in vivo and is transformed into active metabolites Δ4 -abiraterone and 3-keto-5α-abiraterone as well as inactive metabolites abiraterone sulfate and abiraterone N-oxide sulfate. We aimed to examine the effect of polymorphisms in SLCO2B1, CYP3A4 and UGT1A4 on the pharmacokinetics of ABI and its metabolites. METHODS In this study, 81 healthy Chinese subjects were enrolled and divided into 2 groups for fasted (n = 45) and fed (n = 36) studies. Plasma samples were collected after administering a 250 mg abiraterone acetate tablet followed by liquid chromatography-tandem mass spectrometry analysis. Genotyping was performed on a MassARRAY system. The association between SLCO2B1, CYP3A4, UGT1A4 genotype and pharmacokinetic parameters of ABI and its metabolites was assessed. RESULTS Food effect study demonstrated high fat meal remarkedly increased systemic exposure of ABI and its metabolites. The geometric mean ratio and 90% confidence interval of area under the plasma concentration-time curve from time 0 to the time of the last quantifiable concentration (AUC0-t ) and maximum plasma concentration (Cmax ) of ABI in fed state vs. fasted state were 351.64% (286.86%-431.04%) and 478.45% (390.01%-586.94%), respectively, while the corresponding results were ranging from 145.11% to 269.42% and 150.10% to 478.45% for AUC0-t and Cmax of ABI metabolites in fed state vs. fasted state, respectively. The SLCO2B1 rs1077858 had a significant influence on AUC0-t and Cmax , while 7 other SLCO2B1 variants prolonged half-life of ABI under both fasted and fed conditions. As for ABI metabolites, the systemic exposure of Δ4 -abiraterone, abiraterone sulfate and abiraterone N-oxide sulfate as well as the elimination of 3-keto-5α-abiraterone were significantly affected by SLCO2B1 polymorphisms. Polymorphisms in CYP3A4 and UGT1A4 did not significantly affect pharmacokinetics of ABI and its metabolites. CONCLUSION Polymorphisms in SLCO2B1 were significantly related to the pharmacokinetic variability of ABI and its metabolites under both fasted and fed conditions.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bingyu Cheng
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli You
- Department of Pharmacology, Beijing Zhendong Pharmaceutical Research Institute Co, Ltd, Beijing, China
| | - Xueyan Yin
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| | - Guiying Chen
- Wuhan Hongren Biopharmaceutical Inc., Wuhan, China
| | - Ling Yang
- Wuhan Hongzhi Biomedical Inc., Wuhan, China
| | - Yang Zhang
- Wuhan Hongren Biopharmaceutical Inc., Wuhan, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongliang Jiang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Zhang
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| | - Jianying Huang
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Birukova V, Scherbakov A, Ilina A, Salnikova D, Andreeva O, Dzichenka Y, Zavarzin I, Volkova Y. Discovery of highly potent proapoptotic antiestrogens in a series of androst-5,16-dienes D-modified with imidazole-annulated pendants. J Steroid Biochem Mol Biol 2023; 231:106309. [PMID: 37037385 DOI: 10.1016/j.jsbmb.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Heterocyclic derivatives of steroid hormones are potent anticancer agents, which are used in the chemotherapy of breast and prostate cancers. Here, we describe a novel series of androstenes, D-modified with imidazole-annulated pendants, with significant anticancer activity. Novel C17-linked imidazole-annulated heterocyclic derivatives of dehydropregnenolone acetate were synthesized by the cyclocondensation with amidines using 3β-acetoxy-21-bromopregna-5,16-dien-20-one as the substrate. The antiproliferative potency of all the synthesized compounds was evaluated against human prostate (22Rv1) and human breast (MCF7) cancer cell lines and cytochromes P450. The lead compound, imidazo[1,2-a]pyridine derivative 3h, was revealed to be a promising candidate for future anticancer drug design, particularly against ERα-positive breast cancer. Lead compound 3h was found to be selective against MCF7 cells with IC50 of 0.1μM and to act as both a potent selective agent blocking estrogen receptor α, which is involved in the stimulation of breast cancer growth, and an effective apoptosis inducer. The potential ability of compound 3h to bind to ERα was studded using molecular docking and molecular dynamics simulation. The selectivity analysis showed that lead steroid 3h produces no effects on cytochromes P450 CYP17A1, CYP7A1, and CYP21A2.
Collapse
Affiliation(s)
- Valentina Birukova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Anastasia Ilina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Diana Salnikova
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Olga Andreeva
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevich str., 220141, Minsk, Belarus
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| |
Collapse
|
6
|
Hou Z, Huang S, Li Z. Androgens in prostate cancer: A tale that never ends. Cancer Lett 2021; 516:1-12. [PMID: 34052327 DOI: 10.1016/j.canlet.2021.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Androgens play an essential role in prostate cancer. Clinical treatments that target steroidogenesis and the androgen receptor (AR) successfully postpone disease progression. Abiraterone and enzalutamide, the next-generation androgen receptor pathway inhibitors (ARPI), emphasize the function of the androgen-AR axis even in castration-resistant prostate cancer (CRPC). However, with the increased incidence in neuroendocrine prostate cancer (NEPC) showing resistance to ARPI, the importance of androgen-AR axis in further disease management remains elusive. Herein we review the steroidogenic pathways associated with different disease stages and discuss the potential targets for disease management after manifesting resistance to abiraterone and enzalutamide.
Collapse
Affiliation(s)
- Zemin Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
7
|
Zhou QH, Qin WW, Finel M, He QQ, Tu DZ, Wang CR, Ge GB. A broad-spectrum substrate for the human UDP-glucuronosyltransferases and its use for investigating glucuronidation inhibitors. Int J Biol Macromol 2021; 180:252-261. [PMID: 33741369 DOI: 10.1016/j.ijbiomac.2021.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Strong inhibition of the human UDP-glucuronosyltransferase enzymes (UGTs) may lead to undesirable effects, including hyperbilirubinaemia and drug/herb-drug interactions. Currently, there is no good way to examine the inhibitory effects and specificities of compounds toward all the important human UGTs, side-by-side and under identical conditions. Herein, we report a new, broad-spectrum substrate for human UGTs and its uses in screening and characterizing of UGT inhibitors. Following screening a variety of phenolic compound(s), we have found that methylophiopogonanone A (MOA) can be readily O-glucuronidated by all tested human UGTs, including the typical N-glucuronidating enzymes UGT1A4 and UGT2B10. MOA-O-glucuronidation yielded a single mono-O-glucuronide that was biosynthesized and purified for structural characterization and for constructing an LC-UV based MOA-O-glucuronidation activity assay, which was then used for investigating MOA-O-glucuronidation kinetics in recombinant human UGTs. The derived Km values were crucial for selecting the most suitable assay conditions for assessing inhibitory potentials and specificity of test compound(s). Furthermore, the inhibitory effects and specificities of four known UGT inhibitors were reinvestigated by using MOA as the substrate for all tested UGTs. Collectively, MOA is a broad-spectrum substrate for the human UGTs, which offers a new and practical tool for assessing inhibitory effects and specificities of UGT inhibitors.
Collapse
Affiliation(s)
- Qi-Hang Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Wei Qin
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Finland
| | - Qing-Qing He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong-Zhu Tu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao-Ran Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Dillenburg Weiss TL, Gössling G, Venzon Antunes M, Schwartsmann G, Linden R, Gasparin Verza S. Evaluation of dried blood spots as an alternative matrix for therapeutic drug monitoring of abiraterone and delta(4)-abiraterone in prostate cancer patients. J Pharm Biomed Anal 2020; 195:113861. [PMID: 33373824 DOI: 10.1016/j.jpba.2020.113861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic drug monitoring (TDM) approaches may benefit patients treated with abiraterone acetate (AA) as drug efficacy is imprecise and important pharmacokinetic variability is known. Current methods based on the analysis of plasma present the disadvantage of the fast degradation of the analytes in the liquid sample. Dried blood spots (DBS) consist of a minimally invasive and unexplored sampling strategy to monitor the levels of abiraterone (ABI) and delta(4)-abiraterone (D4A) in patients. This study presents the development and validation of a precise and accurate method to monitor ABI and D4A in DBS samples by UPLC-MS/MS. Bioanalytical method validation was carried out according to current guidelines, evaluating the impact of DBS-specific parameters such as hematocrit and spot volume on accuracy. Based on the analysis of quality control samples prepared at low, medium and high concentrations, the method was precise with CV ≤ 6.97 % and 10.26 % for ABI and D4A, respectively. The method was also highly accurate, between 93.6-106.8 % for ABI and 96.0-108.5 % for D4A. The DBS method is compatible with the analysis of samples of unknown volume and hematocrit range of the studied population. In addition, ABI and D4A were stable for 7 days in DBS at room temperature, which is feasible for sample transportation in postal service and analysis in the laboratory. Method application to 16 clinical samples revealed good correlation between measured plasma concentrations and estimated plasma concentrations for ABI (r = 0.884, P < 0.05) and D4A (r = 0.920, P < 0.05). Passing-Bablok regression analysis and Bland-Altmann plots indicated correlation between the results obtained from DBS and plasma, with a slight overestimation of the concentrations of ABI in DBS, which could be related to the small study cohort. Therefore, the results of this first work indicate that DBS consist of a promising alternative sampling strategy in TDM studies of AA.
Collapse
Affiliation(s)
- Thaís Luise Dillenburg Weiss
- Graduate Program in Toxicology and Analytical Toxicology, Institute of Health Sciences, University Feevale, Novo Hamburgo, Brazil
| | - Gustavo Gössling
- Department of Oncology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marina Venzon Antunes
- Graduate Program in Toxicology and Analytical Toxicology, Institute of Health Sciences, University Feevale, Novo Hamburgo, Brazil
| | | | - Rafael Linden
- Graduate Program in Toxicology and Analytical Toxicology, Institute of Health Sciences, University Feevale, Novo Hamburgo, Brazil
| | - Simone Gasparin Verza
- Graduate Program in Toxicology and Analytical Toxicology, Institute of Health Sciences, University Feevale, Novo Hamburgo, Brazil.
| |
Collapse
|