1
|
Cholico GN, Nault R, Zacharewski T. Cell-specific AHR-driven differential gene expression in the mouse liver cell following acute TCDD exposure. BMC Genomics 2024; 25:809. [PMID: 39198768 PMCID: PMC11351262 DOI: 10.1186/s12864-024-10730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that disrupts hepatic function leading to steatotic liver disease (SLD)-like pathologies, such as steatosis, steatohepatitis, and fibrosis. These effects are mediated by the aryl hydrocarbon receptor following changes in gene expression. Although diverse cell types are involved, initial cell-specific changes in gene expression have not been reported. In this study, differential gene expression in hepatic cell types was examined in male C57BL/6 mice gavaged with 30 µg/kg of TCDD using single-nuclei RNA-sequencing. Ten liver cell types were identified with the proportions of most cell types remaining unchanged, except for neutrophils which increased at 72 h. Gene expression suggests TCDD induced genes related to oxidative stress in hepatocytes as early as 2 h. Lipid homeostasis was disrupted in hepatocytes, macrophages, B cells, and T cells, characterized by the induction of genes associated with lipid transport, steroid hormone biosynthesis, and the suppression of β-oxidation, while linoleic acid metabolism was altered in hepatic stellate cells (HSCs), B cells, portal fibroblasts, and plasmacytoid dendritic cells. Pro-fibrogenic processes were also enriched, including the induction retinol metabolism genes in HSCs and the early induction of anti-fibrolysis genes in hepatocytes, endothelial cells, HSCs, and macrophages. Hepatocytes also had gene expression changes consistent with hepatocellular carcinoma. Collectively, these findings underscore the effects of TCDD in initiating SLD-like phenotypes and identified cell-specific gene expression changes related to oxidative stress, steatosis, fibrosis, cell proliferation and the development of HCC.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
2
|
Weinisch P, Raffler J, Römisch-Margl W, Arnold M, Mohney RP, Rist MJ, Prehn C, Skurk T, Hauner H, Daniel H, Suhre K, Kastenmüller G. The HuMet Repository: Watching human metabolism at work. Cell Rep 2024; 43:114416. [PMID: 39033506 PMCID: PMC11513335 DOI: 10.1016/j.celrep.2024.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
Metabolism oscillates between catabolic and anabolic states depending on food intake, exercise, or stresses that change a multitude of metabolic pathways simultaneously. We present the HuMet Repository for exploring dynamic metabolic responses to oral glucose/lipid loads, mixed meals, 36-h fasting, exercise, and cold stress in healthy subjects. Metabolomics data from blood, urine, and breath of 15 young, healthy men at up to 56 time points are integrated and embedded within an interactive web application, enabling researchers with and without computational expertise to search, visualize, analyze, and contextualize the dynamic metabolite profiles of 2,656 metabolites acquired on multiple platforms. With examples, we demonstrate the utility of the resource for research into the dynamics of human metabolism, highlighting differences and similarities in systemic metabolic responses across challenges and the complementarity of metabolomics platforms. The repository, providing a reference for healthy metabolite changes to six standardized physiological challenges, is freely accessible through a web portal.
Collapse
Affiliation(s)
- Patrick Weinisch
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Digital Medicine, University Hospital of Augsburg, Augsburg, Germany
| | - Werner Römisch-Margl
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Manuela J Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany; Institute for Nutritional Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hannelore Daniel
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
3
|
Peng H, Feng K, Jia W, Li Y, Lv Q, Zhang Y. An integrated investigation of sulfotransferases (SULTs) in hepatocellular carcinoma and identification of the role of SULT2A1 on stemness. Apoptosis 2024; 29:898-919. [PMID: 38411862 DOI: 10.1007/s10495-024-01938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes, which are widely expressed in the liver and mainly mediate the sulfation of numerous xenobiotics and endogenous compounds. However, the role of various SULTs genes has not been reported in hepatocellular carcinoma (HCC). This study aims to analyze the expression and potential functional roles of SULTs genes in HCC and to identify the role of SULT2A1 in HCC stemness as well as the possible mechanism. We found that all of the 12 SULTs genes were differentially expressed in HCC. Moreover, clinicopathological features and survival rates were also investigated. Multivariate regression analysis showed that SULT2A1 and SULT1C2 could be used as independent prognostic factors in HCC. SULT1C4, SULT1E1, and SULT2A1 were significantly associated with immune infiltration. SULT2A1 deficiency in HCC promoted chemotherapy resistance and stemness maintenance. Mechanistically, silencing of SULT2A1 activated the AKT signaling pathway, on the one hand, promoted the expression of downstream stemness gene c-Myc, on the other hand, facilitated the NRF2 expression to reduce the accumulation of ROS, and jointly increased HCC stemness. Moreover, knockdown NR1I3 was involved in the transcriptional regulation of SULT2A1 in stemness maintenance. In addition, SULT2A1 knockdown HCC cells promoted the proliferation and activation of hepatic stellate cells (HSCs), thereby exerting a potential stroma remodeling effect. Our study revealed the expression and role of SULTs genes in HCC and identified the contribution of SULT2A1 to the initiation and progression of HCC.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Weilu Jia
- Medical School, Southeast University, Nanjing, 210009, China
| | - Yunxin Li
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing, 210009, China.
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Silva IMD, Vacario BGL, Okuyama NCM, Barcelos GRM, Fuganti PE, Guembarovski RL, Cólus IMDS, Serpeloni JM. Polymorphisms in drug-metabolizing genes and urinary bladder cancer susceptibility and prognosis: Possible impacts and future management. Gene 2024; 907:148252. [PMID: 38350514 DOI: 10.1016/j.gene.2024.148252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.
Collapse
Affiliation(s)
- Isabely Mayara da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Beatriz Geovana Leite Vacario
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil; Center of Health Sciences, State University of West Paraná (UNIOESTE), Francisco Beltrão-Paraná, 85605-010, Brazil.
| | - Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute for Health and Society, Federal University of São Paulo (UNIFESP), Santos 11.060-001, Brazil.
| | | | - Roberta Losi Guembarovski
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| |
Collapse
|
5
|
Duffel MW. Cytosolic sulfotransferases in endocrine disruption. Essays Biochem 2024:EBC20230101. [PMID: 38699885 PMCID: PMC11531609 DOI: 10.1042/ebc20230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
The mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of endocrine hormones as well as a broad array of drugs, environmental chemicals, and other xenobiotics. Many endocrine-disrupting chemicals (EDCs) interact with these SULTs as substrates and inhibitors, and thereby alter sulfation reactions responsible for metabolism and regulation of endocrine hormones such as estrogens and thyroid hormones. EDCs or their metabolites may also regulate expression of SULTs through direct interaction with nuclear receptors and other transcription factors. Moreover, some sulfate esters derived from EDCs (EDC-sulfates) may serve as ligands for endocrine hormone receptors. While the sulfation of an EDC can lead to its excretion in the urine or bile, it may also result in retention of the EDC-sulfate through its reversible binding to serum proteins and thereby enable transport to other tissues for intracellular hydrolysis and subsequent endocrine disruption. This mini-review outlines the potential roles of SULTs and sulfation in the effects of EDCs and our evolving understanding of these processes.
Collapse
Affiliation(s)
- Michael W Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
6
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
7
|
Huang Y, Guan Q, Zhang Z, Wang P, Li C. Oleacein: A comprehensive review of its extraction, purification, absorption, metabolism, and health effects. Food Chem 2024; 433:137334. [PMID: 37660602 DOI: 10.1016/j.foodchem.2023.137334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Extra virgin olive oil (EVOO) consumption reduces the risk of cardiovascular disease in high-risk groups and the polyphenols in EVOO play an important health effect on it. As one of the most abundant polyphenols in EVOO, oleacein (OLEA) has many health benefits. However, there is no review article that focus comprehensively on OLEA, and most articles have limited data and information on OLEA. The purpose of this review is to summarize the results of all available studies, to present and compare the main traditional and novel techniques for the extraction and isolation and purification of OLEA, to elucidate the absorption and metabolic pathways of OLEA, and finally, to illustrate the health-promoting properties. Hopefully, this review can promote the use of OLEA in functional foods and therapeutic fields.
Collapse
Affiliation(s)
- Yunfei Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyun Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuoya Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengxiang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
8
|
Stancil SL, Pearce RE, Staggs VS, Leeder JS. Ontogeny of Scaling Factors for Pediatric Physiologically Based Pharmacokinetic Modeling and Simulation: Cytosolic Protein Per Gram of Liver. Drug Metab Dispos 2023; 51:1578-1582. [PMID: 37735064 PMCID: PMC10658907 DOI: 10.1124/dmd.123.001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Scaling factors are necessary for translating in vitro drug biotransformation data to in vivo clearance values in physiologically-based pharmacokinetic modeling and simulation. Values for microsomal protein per gram of liver are available from several sources for use as a scaling factor to estimate hepatic clearance from microsomal drug biotransformation data. However, data regarding the distribution of cytosolic protein per gram of liver (CPPGL) values across the lifespan are limited, and sparse pediatric data have been published to date. Thus, CPPGL was determined in 160 liver samples from pediatric (n = 129) and adult (n = 31) donors obtained from multiple sources: the University of Maryland Brain and Tissue Bank, tissue retrieval services at the University of Minnesota and University of Pittsburgh, and Sekisui-XenoTech. Tissues were homogenized and subjected to differential centrifugation to isolate cytosolic fractions. Cytosolic protein content was determined by BCA assay. CPPGL varied from two- to sixfold within each age group/developmental stage. Tissue source and sex did not contribute substantially to variability in protein content. Regression analyses revealed minimal change in CPPGL over the first two decades of life (logCPPGL increases 0.1 mg/g per decade). A mean ± S.D. CPPGL value of 44.4 ± 17.4 mg/g or median 41.0 mg/g is representative of values observed between birth and early adulthood (0-18 years, n = 129). SIGNIFICANCE STATEMENT: Cytosolic protein per gram of liver (CPPGL) is a scaling factor required for physiologically based pharmacokinetic modeling and simulation of drug biotransformation by cytosolic enzymes, but pediatric data are limited. Although CPPGL varies from two- to sixfold within developmental stages, a value of 44.4 ± 17.4 mg/g (mean ± S.D.) is representative of the pediatric period (0-18 years, n = 129).
Collapse
Affiliation(s)
- Stephani L Stancil
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Vincent S Staggs
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
9
|
Toews JNC, Philippe TJ, Dordevic M, Hill LA, Hammond GL, Viau V. Corticosteroid-Binding Globulin (SERPINA6) Consolidates Sexual Dimorphism of Adult Rat Liver. Endocrinology 2023; 165:bqad179. [PMID: 38015819 PMCID: PMC10699879 DOI: 10.1210/endocr/bqad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Produced by the liver, corticosteroid-binding globulin (CBG) regulates the plasma distribution and actions of glucocorticoids. A sex difference in pituitary growth hormone secretion patterns established during puberty in rats results in increased hepatic CBG production and 2-fold higher plasma corticosterone levels in females. Glucocorticoids control hepatic development and metabolic activities, and we have therefore examined how disrupting the SerpinA6 gene encoding CBG influences plasma corticosterone dynamics, as well as liver gene expression in male and female rats before and after puberty. Comparisons of corticosterone plasma clearance and hepatic uptake in adult rats, with or without CBG, indicated that CBG limits corticosterone clearance by reducing its hepatic uptake. Hepatic transcriptomic profiling revealed minor sex differences (207 differentially expressed genes) and minimal effect of CBG deficiency in 30-day-old rats before puberty. While liver transcriptomes in 60-day-old males lacking CBG remained essentially unchanged, 2710 genes were differentially expressed in wild-type female vs male livers at this age. Importantly, ∼10% of these genes lost their sexually dimorphic expression in adult females lacking CBG, including those related to cholesterol biosynthesis, inflammation, and lipid and amino acid catabolism. Another 203 genes were altered by the loss of CBG specifically in adult females, including those related to xenobiotic metabolism, circadian rhythm, and gluconeogenesis. Our findings reveal that CBG consolidates the sexual dimorphism of the rat liver initiated by sex differences in growth hormone secretion patterns and provide insight into how CBG deficiencies are linked to glucocorticoid-dependent diseases.
Collapse
Affiliation(s)
- Julia N C Toews
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Dordevic
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
10
|
Dou Y, Pei S, Li Y, Wang M, Liu Z, Li J, Cao J, Qin J, Zhang M, Hou L, Sun H. Farnesoid X receptor represses human sulfotransferase 1A3 expression through direct binding to the promoter. Chem Biol Drug Des 2023; 102:1014-1023. [PMID: 37487659 DOI: 10.1111/cbdd.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Human sulfotransferases 1A3 (SULT1A3) has received particular interest, due to their functions of catalyzing the sulfonation of numerous phenolic substrates, including bioactive endogenous molecules and therapeutic agents. However, the regulation of SULT1A3 expression and the underlying mechanism remain unclear. Here, we aimed to investigate the regulation effects of bile acid-activated farnesoid X receptor (FXR) on SULT1A3 expression, and to shed light on the mechanism thereof. Our results demonstrated that FXR agonists (CDCA and GW4064) significantly inhibit the expression of SULT1A3 at mRNA and protein levels. In addition, overexpression of FXR led to decrease in SULT1A3 expression and knockdown of FXR significantly induced the expression of SULT1A3 in protein and mRNA levels, confirming that FXR expression manifestly showed negative regulatory effect on basal SULT1A3 expression. Furthermore, a combination of luciferase reporter gene and CHIP assays showed that FXR repressed SULT1A3 transcription through direct binding to the region at base pair positions -664 to -654. In conclusion, this study for the first time confirmed FXR was a negative transcriptional regulator of human SULT1A3 enzyme.
Collapse
Affiliation(s)
- Yuanyuan Dou
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shuhua Pei
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yingying Li
- School of Pharmacy, Henan University, Kaifeng, China
| | - Mengqing Wang
- School of Pharmacy, Henan University, Kaifeng, China
| | | | - Jiqin Li
- School of Pharmacy, Henan University, Kaifeng, China
| | - Jinlan Cao
- School of Pharmacy, Henan University, Kaifeng, China
| | - Jia Qin
- School of Pharmacy, Henan University, Kaifeng, China
| | - Mingzhu Zhang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lili Hou
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hua Sun
- School of Pharmacy, Henan University, Kaifeng, China
- Academy for advanced interdisciplinary studies, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Huang R, Wang C, Wu ZE, Zhao Q, Duan J, Huang W, Cheng Y, Zhu B, Li F. Metabolomics reveals that sulfotransferase 1 may regulate colchicine-induced liver injury. Chem Biol Interact 2023; 386:110776. [PMID: 39492502 DOI: 10.1016/j.cbi.2023.110776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Colchicine is widely used to treat gouty arthritis for years. Previous studies showed that colchicine overdose can cause liver damage, yet the mechanism underlying its hepatotoxicity remains unclear. In this study, hepatotoxicity of colchicine was investigated in vivo. Metabolomic analysis of colchicine metabolites and endogenous metabolites was performed using Ultra High Performance Liquid Chromatography (UHPLC) - mass spectrometry (MS). Seventeen metabolites of colchicine were identified, including 3 novel sulfated metabolites. Meanwhile, endogenous sulfated metabolites were found to be decreased by colchicine. Colchicine might regulate sulfotransferase 1 (SULT1) through perixisome proliferation-activated receptor ɑ (PPARα), and inhibition of SULT1 reduced the levels of sulfated metabolites of colchicine. Inhibition of SULT1 aggravated colchicine-induced liver injury, whereas activation of SULT1 attenuated its liver injury. The supplementation of endogenous sulfated metabolites indoxyl sulfate (IS) or p-cresol sulfate (PCS) alleviated colchicine-induced liver injury through modulation of the CASPASE-1-gasdermin D (GSDMD) pathway. These results indicated that colchicine might cause hepatotoxicity through inhibition of SULT1and decreased production of bioactive sulfated endogenous metabolites IS and PCS. Our results provided evidence for potential therapeutic targets and agents to prevent liver injury caused by colchicine. Targeting the SULT1 enzyme and administration of IS and PCS may be useful in alleviating colchicine hepatotoxicity.
Collapse
Affiliation(s)
- Ruoyue Huang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, And State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyan Wang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, And State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhanxuan E Wu
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, And State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Zhao
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, And State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyi Duan
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, And State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Huang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, And State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Cheng
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, And State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China; Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China.
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, And State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Day F, O’Sullivan J, Pook C. 4-Ethylphenol-fluxes, metabolism and excretion of a gut microbiome derived neuromodulator implicated in autism. Front Mol Biosci 2023; 10:1267754. [PMID: 37900921 PMCID: PMC10602680 DOI: 10.3389/fmolb.2023.1267754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Gut-microbiome-derived metabolites, such as 4-Ethylphenol [4EP], have been shown to modulate neurological health and function. Although the source of such metabolites is becoming better understood, knowledge gaps remain as to the mechanisms by which they enter host circulation, how they are transported in the body, how they are metabolised and excreted, and the way they exert their effects. High blood concentrations of host-modified 4EP, 4-ethylphenol sulfate [4EPS], are associated with an anxiety phenotype in autistic individuals. We have reviewed the existing literature and discuss mechanisms that are proposed to contribute influx from the gut microbiome, metabolism, and excretion of 4EP. We note that increased intestinal permeability is common in autistic individuals, potentially explaining increased flux of 4EP and/or 4EPS across the gut epithelium and the Blood Brain Barrier [BBB]. Similarly, kidney dysfunction, another complication observed in autistic individuals, impacts clearance of 4EP and its derivatives from circulation. Evidence indicates that accumulation of 4EPS in the brain of mice affects connectivity between subregions, particularly those linked to anxiety. However, we found no data on the presence or quantity of 4EP and/or 4EPS in human brains, irrespective of neurological status, likely due to challenges sampling this organ. We argue that the penetrative ability of 4EP is dependent on its form at the BBB and its physicochemical similarity to endogenous metabolites with dedicated active transport mechanisms across the BBB. We conclude that future research should focus on physical (e.g., ingestion of sorbents) or metabolic mechanisms (e.g., conversion to 4EP-glucuronide) that are capable of being used as interventions to reduce the flux of 4EP from the gut into the body, increase the efflux of 4EP and/or 4EPS from the brain, or increase excretion from the kidneys as a means of addressing the neurological impacts of 4EP.
Collapse
Affiliation(s)
- Francesca Day
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
| | - Justin O’Sullivan
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Australian Parkinson’s Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Chris Pook
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Weinisch P, Raffler J, Römisch-Margl W, Arnold M, Mohney RP, Rist MJ, Prehn C, Skurk T, Hauner H, Daniel H, Suhre K, Kastenmüller G. The HuMet Repository: Watching human metabolism at work. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.550079. [PMID: 37609175 PMCID: PMC10441358 DOI: 10.1101/2023.08.08.550079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The human metabolism constantly responds to stimuli such as food intake, fasting, exercise, and stress, triggering adaptive biochemical processes across multiple metabolic pathways. To understand the role of these processes and disruptions thereof in health and disease, detailed documentation of healthy metabolic responses is needed but still scarce on a time-resolved metabolome-wide level. Here, we present the HuMet Repository, a web-based resource for exploring dynamic metabolic responses to six physiological challenges (exercise, 36 h fasting, oral glucose and lipid loads, mixed meal, cold stress) in healthy subjects. For building this resource, we integrated existing and newly derived metabolomics data measured in blood, urine, and breath samples of 15 young healthy men at up to 56 time points during the six highly standardized challenge tests conducted over four days. The data comprise 1.1 million data points acquired on multiple platforms with temporal profiles of 2,656 metabolites from a broad range of biochemical pathways. By embedding the dataset into an interactive web application, we enable users to easily access, search, filter, analyze, and visualize the time-resolved metabolomic readouts and derived results. Users can put metabolites into their larger context by identifying metabolites with similar trajectories or by visualizing metabolites within holistic metabolic networks to pinpoint pathways of interest. In three showcases, we outline the value of the repository for gaining biological insights and generating hypotheses by analyzing the wash-out of dietary markers, the complementarity of metabolomics platforms in dynamic versus cross-sectional data, and similarities and differences in systemic metabolic responses across challenges. With its comprehensive collection of time-resolved metabolomics data, the HuMet Repository, freely accessible at https://humet.org/, is a reference for normal, healthy responses to metabolic challenges in young males. It will enable researchers with and without computational expertise, to flexibly query the data for their own research into the dynamics of human metabolism.
Collapse
Affiliation(s)
- Patrick Weinisch
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Digital Medicine, University Hospital of Augsburg, Augsburg, Germany
| | - Werner Römisch-Margl
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany
- Else Kröner Fresenius Center of Nutritional Medicine, Department of Food and Nutrition, Technical University of Munich, Freising, Germany
| | - Hans Hauner
- Else Kröner Fresenius Center of Nutritional Medicine, Department of Food and Nutrition, Technical University of Munich, Freising, Germany
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hannelore Daniel
- Department of Food and Nutrition, Technical University of Munich, Freising, Germany
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
14
|
Isali I, Khooblall P, Helstrom E, Bukavina L. Targeting bladder cancer: A sex sensitive perspective in mutations and outcomes. Urol Oncol 2023:S1078-1439(23)00166-7. [PMID: 37349215 DOI: 10.1016/j.urolonc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
The incidence of bladder cancer (BC) is more common in males, however, the clinical outcome for females tends to be more unfavorable, as demonstrated by a 21% increase in mortality compared to males within two years of diagnosis. While it was previously believed that the differences in outcome were solely the result of differences in sex chromosomes and hormones, it is now acknowledged that a more intricate interplay of factors is at play. By acquiring a more comprehensive understanding of these sex-specific effects, future efforts in precision medicine can be customized to an individual's biological sex. This narrative review aims to summarize our knowledge of the molecular classification of sex differences in BC by compiling the existing evidence on genetic disparities between males and females and evaluating these disparities in both noninvasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). Our findings emphasize the significance of considering sex as a factor in future clinical trials and registry studies due to established differences in immune composition, molecular profiling, and genetic mutations between males and females. Further investigation into the molecular processes involved in the evasion or resistance of immune-based therapies, such as Bacillus Calmette-Guérin and other immunotherapies, is essential to identify markers of response or resistance that vary between male and female patients. This will aid in optimizing treatment and promoting equitable outcomes, particularly in NMIBC cases.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - Prajit Khooblall
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Emma Helstrom
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA
| | - Laura Bukavina
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH; Department of Urology, Fox Chase Cancer Center, Philadelphia, PA.
| |
Collapse
|
15
|
Wang YS, Young MJ, Liu CY, Chen YC, Hung JJ. Tp53 haploinsufficiency is involved in hotspot mutations and cytoskeletal remodeling in gefitinib-induced drug-resistant EGFR L858R-lung cancer mice. Cell Death Discov 2023; 9:96. [PMID: 36918558 PMCID: PMC10015023 DOI: 10.1038/s41420-023-01393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Tumor heterogeneity is the major factor for inducing drug resistance. p53 is the major defender to maintain genomic stability, which is a high proportion mutated in most of the cancer types. In this study, we established in vivo animal models of gefitinib-induced drug-resistant lung cancer containing EGFRL858R and EGFRL858R*Tp53+/- mice to explore the molecular mechanisms of drug resistance by studying the genomic integrity and global gene expression. The cellular morphology of the lung tumors between gefitinib-induced drug-resistant mice and drug-sensitive mice were very different. In addition, in drug-resistant mice, the expression of many cytoskeleton-related genes were changed, accompanied by decreased amounts of actin filaments and increased amounts of microtubule, indicating that significant cytoskeletal remodeling is induced in gefitinib-induced drug-resistant EGFRL858R and EGFRL858R*Tp53+/- lung cancer mice. The gene expression profiles and involved pathways were different in gefitinib-sensitive, gefitinib-resistant and Tp53+/--mice. Increases in drug resistance and nuclear size (N/C ratio) were found in EGFRL858R*Tp53+/- drug-resistant mice. Mutational hotspot regions for drug resistance via Tp53+/+- and Tp53+/--mediated pathways are located on chromosome 1 and chromosome 11, respectively, and are related to prognosis of lung cancer cohorts. This study not only builds up a gefitinib-induced drug-resistant EGFRL858R lung cancer animal model, but also provides a novel mutation profile in a Tp53+/+- or Tp53+/--mediated manner and induced cytoskeleton remodeling during drug resistance, which could contribute to the prevention of drug resistance during cancer therapy.
Collapse
Affiliation(s)
- Yi-Shiang Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Ching Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jan-Jong Hung
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Angelin B, Domingues MR, Li X, Kutter C, Korach-André M. Molecular programming modulates hepatic lipid metabolism and adult metabolic risk in the offspring of obese mothers in a sex-specific manner. Commun Biol 2022; 5:1057. [PMID: 36195702 PMCID: PMC9532402 DOI: 10.1038/s42003-022-04022-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Male and female offspring of obese mothers are known to differ extensively in their metabolic adaptation and later development of complications. We investigate the sex-dependent responses in obese offspring mice with maternal obesity, focusing on changes in liver glucose and lipid metabolism. Here we show that maternal obesity prior to and during gestation leads to hepatic steatosis and inflammation in male offspring, while female offspring are protected. Females from obese mothers display important changes in hepatic transcriptional activity and triglycerides profile which may prevent the damaging effects of maternal obesity compared to males. These differences are sustained later in life, resulting in a better metabolic balance in female offspring. In conclusion, sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in offspring liver, explaining the sexual dimorphism in obesity-associated metabolic risk. Sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in the livers of female and male offspring, contributing to the sexual dimorphism in obesity-associated metabolic risk.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | | | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bo Angelin
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden. .,Department of Gene Technology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden.
| |
Collapse
|
17
|
Pei S, Dou Y, Zhang W, Qi D, Li Y, Wang M, Li W, Shi H, Gao Z, Yao C, Fang D, Sun H, Xie S. O-Sulfation disposition of curcumin and quercetin in SULT1A3 overexpressing HEK293 cells: the role of arylsulfatase B in cellular O-sulfation regulated by transporters. Food Funct 2022; 13:10558-10573. [PMID: 36156668 DOI: 10.1039/d2fo01436j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive phase II metabolic reactions (i.e., glucuronidation and sulfation) have resulted in low bioavailability and decreased biological effects of curcumin and quercetin. Compared to glucuronidation, information on the sulfation disposition of curcumin and quercetin is limited. In this study, we identified that BCRP and MRP4 played a critical role in the cellular excretion of curcumin-O-sulfate (C-O-S) and quercetin-O-sulfate (Q-O-S) by integrating chemical inhibition with transporter knock-down experiments. Inhibited excretion of sulfate (C-O-S and Q-O-S) caused significant reductions in cellular O-sulfation of curcumin (a maximal 74.4% reduction) and quercetin (a maximal 76.9% reduction), revealing a strong interplay of sulfation with efflux transport. It was further identified that arylsulfatase B (ARSB) played a crucial role in the regulation of cellular O-sulfation by transporters. ARSB overexpression significantly enhanced the reduction effect of MK-571 on the cellular O-sulfation (fmet) of the model compound (38.8% reduction for curcumin and 44.2% reduction for quercetin). On the contrary, ARSB knockdown could reverse the effect of MK-571 on the O-sulfation disposition of the model compound (29.7% increase for curcumin and 47.3% increase for quercetin). Taken together, ARSB has been proven to be involved in cellular O-sulfation, accounting for transporter-dependent O-sulfation of curcumin and quercetin. A better understanding of the interplay beneath metabolism and transport will contribute to the exact prediction of in vivo drug disposition and drug-drug interactions.
Collapse
Affiliation(s)
- Shuhua Pei
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Yuanyuan Dou
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Wenke Zhang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Defei Qi
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Yingying Li
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Mengqing Wang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Wenqi Li
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Hongxiang Shi
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Zixuan Gao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Chaoyan Yao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Dong Fang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Hua Sun
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Songqiang Xie
- Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| |
Collapse
|
18
|
Zhao M, Shi J, Li W, Guan C, Sun C, Peng Y, Zheng J. Metabolic Activation of Gemfibrozil Mediated by Cytochrome P450 Enzymes and Sulfotransferases. Chem Res Toxicol 2022; 35:1257-1266. [PMID: 35763595 DOI: 10.1021/acs.chemrestox.2c00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gemfibrozil (GEM), a lipid regulator, is a fibric acid derivative widely used in the treatment of hyperlipidemia. It has been reported that GEM can induce acute liver injury in the course of therapy in clinical practice, so it is necessary to elucidate the mechanisms of toxic action. The present study focused on metabolic activation of GEM, possibly participating in GEM-mediated liver injury. A benzylic alcohol metabolite (M1), along with a phenol metabolite (M2), was detected in microsomal incubations, rat primary hepatocyte culturing, and rats given GEM. A GSH conjugate (M3) was detected in cultured rat hepatocytes after exposure to GEM. Formation of M1 was found to be NADPH dependent, and generation of M3 required M1 and 3'-phosphoadenosine-5'-phosphosulfate. It is most likely that GEM was biotransformed to M1, which was further metabolized to a sulfate. The resulting sulfate was reactive to bio-thiols. Cytochrome P450 and sulfotransferases participated in the phase I and phase II reactions, respectively. M1 and M3 were chemically synthesized, and their structures were characterized by mass spectrometry and NMR. The present study has particular value for elucidating the mechanism of liver injury caused by GEM.
Collapse
Affiliation(s)
- Min Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Junzu Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chunjing Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
19
|
The concerted elevation of conjugation reactions is associated with the aggravation of acetaminophen toxicity in Akr1a-knockout mice with an ascorbate insufficiency. Life Sci 2022; 304:120694. [DOI: 10.1016/j.lfs.2022.120694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022]
|
20
|
Xu P, Xi Y, Wang P, Luka Z, Xu M, Tung HC, Wang J, Ren S, Feng D, Gao B, Singhi AD, Monga SP, York JD, Ma X, Huang Z, Xie W. Inhibition of p53 Sulfoconjugation Prevents Oxidative Hepatotoxicity and Acute Liver Failure. Gastroenterology 2022; 162:1226-1241. [PMID: 34954226 PMCID: PMC8934304 DOI: 10.1053/j.gastro.2021.12.260] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Sulfoconjugation of small molecules or protein peptides is a key mechanism to ensure biochemical and functional homeostasis in mammals. The PAPS synthase 2 (PAPSS2) is the primary enzyme to synthesize the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF), in which oxidative stress is a key pathogenic event, whereas sulfation of APAP contributes to its detoxification. The goal of this study was to determine whether and how PAPSS2 plays a role in APAP-induced ALF. METHODS Gene expression was analyzed in APAP-induced ALF in patients and mice. Liver-specific Papss2-knockout mice using Alb-Cre (Papss2ΔHC) or AAV8-TBG-Cre (Papss2iΔHC) were created and subjected to APAP-induced ALF. Primary human and mouse hepatocytes were used for in vitro mechanistic analysis. RESULTS The hepatic expression of PAPSS2 was decreased in APAP-induced ALF in patients and mice. Surprisingly, Papss2ΔHC mice were protected from APAP-induced hepatotoxicity despite having a decreased APAP sulfation, which was accompanied by increased hepatic antioxidative capacity through the activation of the p53-p2-Nrf2 axis. Treatment with a sulfation inhibitor also ameliorated APAP-induced hepatotoxicity. Gene knockdown experiments showed that the hepatoprotective effect of Papss2ΔHC was Nrf2, p53, and p21 dependent. Mechanistically, we identified p53 as a novel substrate of sulfation. Papss2 ablation led to p53 protein accumulation by preventing p53 sulfation, which disrupts p53-MDM2 interaction and p53 ubiquitination and increases p53 protein stability. CONCLUSIONS We have uncovered a previously unrecognized and p53-mediated role of PAPSS2 in controlling oxidative response. Inhibition of p53 sulfation may be explored for the clinical management of APAP overdose.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengcheng Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Aatur D. Singhi
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John D. York
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
21
|
DHEA Protects Human Cholangiocytes and Hepatocytes against Apoptosis and Oxidative Stress. Cells 2022; 11:cells11061038. [PMID: 35326489 PMCID: PMC8947473 DOI: 10.3390/cells11061038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a rare chronic cholestatic and immune-mediated liver disease of unknown aetiology that targets intrahepatic bile duct cells (cholangiocytes) and primarily affects postmenopausal women, when their estrogen levels sharply decrease. An impaired cholangiocyte response to estrogen characterizes the terminal stage of the disease, as this is when an inefficiency of cholangiocyte proliferation, in balancing the loss of intrahepatic bile ducts, is observed. Here, we report that the estrogen precursor dehydroepiandrosterone (DHEA) and its sulfate metabolites, DHEA-S and 17 β-estradiol, enhance the proliferation of cholangiocytes and hepatocytes in vitro. Flow cytometry analysis showed that DHEA and DHEA-S decreased glyco-chenodeoxycholic acid (GCDC)-driven apoptosis in cholangiocytes. Cell viability assay (MTT) indicated that ER-α, -β, and the G-protein-coupled estrogen receptor, are involved in the protection of DHEA against oxidative stress in cholangiocytes. Finally, immunoblot analysis showed an elevated level of steroid sulfatase and a reduced level of sulfotransferase 1E1 enzymes, involved in the desulfation/sulfation process of estrogens in cirrhotic PBC, and primary sclerosis cholangitis (PSC) liver tissues, another type of chronic cholestatic and immune-mediated liver disease. Taken together, these results suggest that DHEA can prevent the deleterious effects of certain potentially toxic bile acids and reactive oxygen species, delaying the onset of liver disease.
Collapse
|
22
|
Vansell NR. Mechanisms by Which Inducers of Drug Metabolizing Enzymes Alter Thyroid Hormones in Rats. Drug Metab Dispos 2022; 50:508-517. [DOI: 10.1124/dmd.121.000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
|
23
|
Wang K, Chan YC, So PK, Liu X, Feng L, Cheung WT, Lee SST, Au SWN. Structure of mouse cytosolic sulfotransferase SULT2A8 provides insight into sulfonation of 7α-hydroxyl bile acids. J Lipid Res 2021; 62:100074. [PMID: 33872606 PMCID: PMC8134075 DOI: 10.1016/j.jlr.2021.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) catalyze the transfer of a sulfonate group from the cofactor 3'-phosphoadenosine 5'-phosphosulfate to a hydroxyl (OH) containing substrate and play a critical role in the homeostasis of endogenous compounds, including hormones, neurotransmitters, and bile acids. In human, SULT2A1 sulfonates the 3-OH of bile acids; however, bile acid metabolism in mouse is dependent on a 7α-OH sulfonating SULT2A8 via unknown molecular mechanisms. In this study, the crystal structure of SULT2A8 in complex with adenosine 3',5'-diphosphate and cholic acid was resolved at a resolution of 2.5 Å. Structural comparison with human SULT2A1 reveals different conformations of substrate binding loops. In addition, SULT2A8 possesses a unique substrate binding mode that positions the target 7α-OH of the bile acid close to the catalytic site. Furthermore, mapping of the critical residues by mutagenesis and enzyme activity assays further highlighted the importance of Lys44 and His48 for enzyme catalysis and Glu237 in loop 3 on substrate binding and stabilization. In addition, limited proteolysis and thermal shift assays suggested that the cofactor and substrates have protective roles in stabilizing SULT2A8 protein. Together, the findings unveil the structural basis of bile acid sulfonation targeting 7α-OH and shed light on the functional diversity of bile acid metabolism across species.
Collapse
Affiliation(s)
- Kai Wang
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Yan-Chun Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xing Liu
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lu Feng
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing-Tai Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susanna Sau-Tuen Lee
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shannon Wing-Ngor Au
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|