1
|
Hau RK, Wright SH, Cherrington NJ. Addressing the Clinical Importance of Equilibrative Nucleoside Transporters in Drug Discovery and Development. Clin Pharmacol Ther 2023; 114:780-794. [PMID: 37404197 PMCID: PMC11347013 DOI: 10.1002/cpt.2984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Stephen H Wright
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Hau RK, Wright SH, Cherrington NJ. In Vitro and In Vivo Models for Drug Transport Across the Blood-Testis Barrier. Drug Metab Dispos 2023; 51:1157-1168. [PMID: 37258305 PMCID: PMC10449102 DOI: 10.1124/dmd.123.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
3
|
Zhang T, Jiang S, Li T, Liu Y, Zhang Y. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. ACS OMEGA 2023; 8:25165-25184. [PMID: 37483233 PMCID: PMC10357434 DOI: 10.1021/acsomega.3c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023]
Abstract
Biologically equivalent replacements of key moieties in molecules rationalize scaffold hopping, patent busting, or R-group enumeration. Yet, this information may depend upon the expert-defined space, and might be subjective and biased toward the chemistries they get used to. Most importantly, these practices are often informatively incomplete since they are often compromised by a try-and-error cycle, and although they depict what kind of substructures are suitable for the replacement occurrence, they fail to explain the driving forces to support such interchanges. The protein data bank (PDB) encodes a receptor-ligand interaction pattern and could be an optional source to mine structural surrogates. However, manual decoding of PDB has become almost impossible and redundant to excavate the bioisosteric know-how. Therefore, a text parsing workflow has been developed to automatically extract the local structural replacement of a specific structure from PDB by finding spatial and steric interaction overlaps between the fragments in endogenous ligands and particular ligand fragments. Taking the glycosyl domain for instance, a total of 49 520 replacements that overlap on nucleotide ribose were identified and categorized based on their SMILE codes. A predominately ring system, such as aliphatic and aromatic rings, was observed; yet, amide and sulfonamide replacements also occur. We believe these findings may enlighten medicinal chemists on the structure design and optimization of ligands using the bioisosteric replacement strategy.
Collapse
Affiliation(s)
- Tinghao Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Shenghao Jiang
- School of
Computer Science, Northwestern Polytechnical
University, 127 West
Youyi Road, Xi’an 710072, China
| | - Ting Li
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yan Liu
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yuezhou Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
- Ningbo
Institute of Northwestern Polytechnical University, Frontiers Science
Center for Flexible Electronics (FSCFE), Key laboratory of Flexible
Electronics of Zhejiang Province, Ningbo Institute of Northwestern
Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| |
Collapse
|
4
|
Cerveny L, Karbanova S, Karahoda R, Horackova H, Jiraskova L, Ali MNH, Staud F. Assessment of the role of nucleoside transporters, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the placental transport of entecavir using in vitro, ex vivo, and in situ methods. Toxicol Appl Pharmacol 2023; 463:116427. [PMID: 36801311 DOI: 10.1016/j.taap.2023.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The nucleoside analog entecavir (ETV) is a first-line pharmacotherapy for chronic hepatitis B in adult and pediatric patients. However, due to insufficient data on placental transfer and its effects on pregnancy, ETV administration is not recommended for women after conception. To expand knowledge of safety, we focused on evaluating the contribution of nucleoside transporters (NBMPR sensitive ENTs and Na+ dependent CNTs) and efflux transporters, P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance-associated transporter 2 (ABCC2), to the placental kinetics of ETV. We observed that NBMPR and nucleosides (adenosine and/or uridine) inhibited [3H]ETV uptake into BeWo cells, microvillous membrane vesicles, and fresh villous fragments prepared from the human term placenta, while Na+ depletion had no effect. Using a dual perfusion study in an open-circuit setup, we showed that maternal-to-fetal and fetal-to-maternal clearances of [3H]ETV in the rat term placenta were decreased by NBMPR and uridine. Net efflux ratios calculated for bidirectional transport studies performed in MDCKII cells expressing human ABCB1, ABCG2, or ABCC2 were close to the value of one. Consistently, no significant decrease in fetal perfusate was observed in the closed-circuit setup of dual perfusion studies, suggesting that active efflux does not significantly reduce maternal-to-fetal transport. In conclusion, ENTs (most likely ENT1), but not CNTs, ABCB1, ABCG2, and ABCC2, contribute significantly to the placental kinetics of ETV. Future studies should investigate the placental/fetal toxicity of ETV, the impact of drug-drug interactions on ENT1, and interindividual variability in ENT1 expression on the placental uptake and fetal exposure to ETV.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | - Sara Karbanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Lucie Jiraskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Mohammed Naji Husaen Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Mullen NJ, Thakur R, Shukla SK, Chaika NV, Kollala SS, Wang D, He C, Fujii Y, Sharma S, Mulder SE, Sykes DB, Singh PK. ENT1 blockade by CNX-774 overcomes resistance to DHODH inhibition in pancreatic cancer. Cancer Lett 2023; 552:215981. [PMID: 36341997 PMCID: PMC10305837 DOI: 10.1016/j.canlet.2022.215981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Inhibitors of dihydroorotate dehydrogenase (DHODH), a key enzyme for de novo synthesis of pyrimidine nucleotides, have failed in clinical trials for various cancers despite robust efficacy in preclinical animal models. To probe for druggable mediators of DHODH inhibitor resistance, we performed a combination screen with a small molecule library against pancreatic cancer cell lines that are highly resistant to the DHODH inhibitor brequinar (BQ). The screen revealed that CNX-774, a preclinical Bruton tyrosine kinase (BTK) inhibitor, sensitizes resistant cell lines to BQ. Mechanistic studies showed that this effect is independent of BTK and instead results from inhibition of equilibrative nucleoside transporter 1 (ENT1) by CNX-774. We show that ENT1 mediates BQ resistance by taking up extracellular uridine, which is salvaged to generate pyrimidine nucleotides in a DHODH-independent manner. In BQ-resistant cell lines, BQ monotherapy slowed proliferation and caused modest pyrimidine nucleotide depletion, whereas combination treatment with BQ and CNX-774 led to profound cell viability loss and pyrimidine starvation. We also identify N-acetylneuraminic acid accumulation as a potential marker of the therapeutic efficacy of DHODH inhibitors. In an aggressive, immunocompetent pancreatic cancer mouse model, combined targeting of DHODH and ENT1 dramatically suppressed tumor growth and prolonged mouse survival. Overall, our study defines CNX-774 as a previously uncharacterized ENT1 inhibitor and provides strong proof of concept support for dual targeting of DHODH and ENT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Nicholas J Mullen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Surendra K Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Nina V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chunbo He
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Shikhar Sharma
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Scott E Mulder
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, 02114, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA; OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
6
|
Nucleoside transporters and immunosuppressive adenosine signaling in the tumor microenvironment: Potential therapeutic opportunities. Pharmacol Ther 2022; 240:108300. [PMID: 36283452 DOI: 10.1016/j.pharmthera.2022.108300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.
Collapse
|
7
|
Hau RK, Tash JS, Georg GI, Wright SH, Cherrington NJ. Physiological Characterization of the Transporter-Mediated Uptake of the Reversible Male Contraceptive H2-Gamendazole Across the Blood-Testis Barrier. J Pharmacol Exp Ther 2022; 382:299-312. [PMID: 35779861 PMCID: PMC9426764 DOI: 10.1124/jpet.122.001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Joseph S Tash
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Gunda I Georg
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| |
Collapse
|
8
|
Hau RK, Klein RR, Wright SH, Cherrington NJ. Localization of Xenobiotic Transporters Expressed at the Human Blood-Testis Barrier. Drug Metab Dispos 2022; 50:770-780. [PMID: 35307651 PMCID: PMC9190233 DOI: 10.1124/dmd.121.000748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 10/21/2023] Open
Abstract
The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Robert R Klein
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
9
|
Miller SR, Jilek JL, McGrath ME, Hau RK, Jennings EQ, Galligan JJ, Wright SH, Cherrington NJ. Testicular disposition of clofarabine in rats is dependent on equilibrative nucleoside transporters. Pharmacol Res Perspect 2021; 9:e00831. [PMID: 34288585 PMCID: PMC8292784 DOI: 10.1002/prp2.831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 01/13/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and adolescents. Although the 5-year survival rate is high, some patients respond poorly to chemotherapy or have recurrence in locations such as the testis. The blood-testis barrier (BTB) can prevent complete eradication by limiting chemotherapeutic access and lead to testicular relapse unless a chemotherapeutic is a substrate of drug transporters present at this barrier. Equilibrative nucleoside transporter (ENT) 1 and ENT2 facilitate the movement of substrates across the BTB. Clofarabine is a nucleoside analog used to treat relapsed or refractory ALL. This study investigated the role of ENTs in the testicular disposition of clofarabine. Pharmacological inhibition of the ENTs by 6-nitrobenzylthioinosine (NBMPR) was used to determine ENT contribution to clofarabine transport in primary rat Sertoli cells, in human Sertoli cells, and across the rat BTB. The presence of NBMPR decreased clofarabine uptake by 40% in primary rat Sertoli cells (p = .0329) and by 53% in a human Sertoli cell line (p = .0899). Rats treated with 10 mg/kg intraperitoneal (IP) injection of the NBMPR prodrug, 6-nitrobenzylthioinosine 5'-monophosphate (NBMPR-P), or vehicle, followed by an intravenous (IV) bolus 10 mg/kg dose of clofarabine, showed a trend toward a lower testis concentration of clofarabine than vehicle (1.81 ± 0.59 vs. 2.65 ± 0.92 ng/mg tissue; p = .1160). This suggests that ENTs could be important for clofarabine disposition. Clofarabine may be capable of crossing the human BTB, and its potential use as a first-line treatment to avoid testicular relapse should be considered.
Collapse
Affiliation(s)
- Siennah R. Miller
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Joseph L. Jilek
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Meghan E. McGrath
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Raymond K. Hau
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Erin Q. Jennings
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - James J. Galligan
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Stephen H. Wright
- College of MedicineDepartment of PhysiologyUniversity of ArizonaTucsonAZUSA
| | - Nathan J. Cherrington
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
10
|
Liu L, Li L, Li M, Luo Z. Autophagy-Dependent Ferroptosis as a Therapeutic Target in Cancer. ChemMedChem 2021; 16:2942-2950. [PMID: 34110079 DOI: 10.1002/cmdc.202100334] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 12/26/2022]
Abstract
Ferroptosis is an iron-dependent form of cell death associated with the accumulation of labile iron and cytotoxic lipid peroxides. Increasing evidence reveals that ferroptosis is not a self-standing phenomenon and has close connections with other cellular events. Remarkably, recent insights show that ferroptosis is dependent on autophagy, which is a lysosomal degradation pathway responsible for the recycling of damaged cellular components under survival stress. Autophagy is capable of contributing to ferroptosis through degradation of the ferritin, an iron-storage protein, accompanied with the accumulation of iron levels and lipid ROS. The interplay between autophagy and ferroptosis also reveals emerging opportunities for novel tumor therapies, which has inspired the development of many treatment strategies capable of inducing ferroptosis in tumor cells via autophagic pathways based on molecular and nanoparticulate agents. In this review, we summarize the specific molecular and regulatory networks of autophagy-dependent ferroptosis and highlight their pathophysiological impact on various aspects of tumor cells. A perspective was also provided regarding the preliminary therapeutic exploitation of ferroptosis/autophagy crosstalk for tumor treatment.
Collapse
Affiliation(s)
- Li Liu
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
11
|
Miller SR, Lane TR, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Multiple Computational Approaches for Predicting Drug Interactions with Human Equilibrative Nucleoside Transporter 1. DRUG METABOLISM AND DISPOSITION: THE BIOLOGICAL FATE OF CHEMICALS 2021; 49:479-489. [PMID: 33980604 DOI: 10.1124/dmd.121.000423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
Equilibrativenucleoside transporters (ENTs) participate in the pharmacokinetics and disposition of nucleoside analog drugs. Understanding drug interactions with the ENTs may inform and facilitate the development of new drugs, including chemotherapeutics and antivirals that require access to sanctuary sites such as the male genital tract. This study created three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors using Kt and IC50 data curated from the literature. Substrate pharmacophores for ENT1 and ENT2 are distinct, with partial overlap of hydrogen bond donors, whereas the inhibitor pharmacophores predominantly feature hydrogen bond acceptors. Mizoribine and ribavirin mapped to the ENT1 substrate pharmacophore and proved to be substrates of the ENTs. The presence of the ENT-specific inhibitor 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) decreased mizoribine accumulation in ENT1 and ENT2 cells (ENT1, ∼70% decrease, P = 0.0046; ENT2, ∼50% decrease, P = 0.0012). NBMPR also decreased ribavirin accumulation in ENT1 and ENT2 cells (ENT1: ∼50% decrease, P = 0.0498; ENT2: ∼30% decrease, P = 0.0125). Darunavir mapped to the ENT1 inhibitor pharmacophore and NBMPR did not significantly influence darunavir accumulation in either ENT1 or ENT2 cells (ENT1: P = 0.28; ENT2: P = 0.53), indicating that darunavir's interaction with the ENTs is limited to inhibition. These computational and in vitro models can inform compound selection in the drug discovery and development process, thereby reducing time and expense of identification and optimization of ENT-interacting compounds. SIGNIFICANCE STATEMENT: This study developed computational models of human equilibrative nucleoside transporters (ENTs) to predict drug interactions and validated these models with two compounds in vitro. Identification and prediction of ENT1 and ENT2 substrates allows for the determination of drugs that can penetrate tissues expressing these transporters.
Collapse
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Thomas R Lane
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Kimberley M Zorn
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Sean Ekins
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| |
Collapse
|
12
|
Gilmore JC, Serghides L, Bendayan R. Differential effects of antiretroviral drug toxicity in male versus female children who are HIV-exposed but uninfected. AIDS 2021; 35:1-14. [PMID: 33048885 DOI: 10.1097/qad.0000000000002707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
: In recent years, widespread use of antiretroviral therapy (ART) during pregnancy has been increasingly effective in reducing risk of vertical transmission of HIV, with over 80% of pregnant women living with HIV now accessing ART, and a 41% reduction in new infections in children between 2010 and 2018. Despite these strides, the developmental toxicity of widely administered antiretroviral drugs (ARVs) remains poorly described and existing literature often fails to account for fetal and infant sex as a variable. Recent reports have identified associations between in-utero exposure to commonly used antiretroviral regimens and alteration in neurodevelopment, growth, and metabolism amongst children who are HIV-exposed but uninfected, with findings of sex differences in the prevalence and severity of ARV toxicity. These differences are potentially explained by variable exposure to ARV drugs in utero or exacerbation of existing sex-linked risk factors. Fetal ARV exposure is mediated by placental and fetal drug transporters and metabolic enzymes, which may contribute to the manifestation of sex differences. Existing evidence of sex differences in ARV toxicity in fetal development is concerning, and demands further research to guide optimal treatment options for maternal health and prevention of vertical HIV transmission.
Collapse
Affiliation(s)
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network (UHN)
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto
| |
Collapse
|
13
|
Miller SR, Zhang X, Hau RK, Jilek JL, Jennings EQ, Galligan JJ, Foil DH, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Predicting Drug Interactions with Human Equilibrative Nucleoside Transporters 1 and 2 Using Functional Knockout Cell Lines and Bayesian Modeling. Mol Pharmacol 2020; 99:147-162. [PMID: 33262250 DOI: 10.1124/molpharm.120.000169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [3H]uridine uptake in the presence of the ENT-specific inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC50 values for ENT1 and ENT2. Total accumulation of four identified inhibitors was measured with and without NBMPR to determine whether there was ENT-mediated transport. Clofarabine and cladribine were ENT1 and ENT2 substrates, whereas nevirapine and lexibulin were ENT1 and ENT2 nontransported inhibitors. Bayesian models generated using Assay Central machine learning software yielded reasonably high internal validation performance (receiver operator characteristic > 0.7). ENT1 IC50-based models were generated from ChEMBL; subvalidations using this training data set correctly predicted 58% of inhibitors when analyzing activity by percent uptake and 63% when using estimated-IC50 values. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can thereby circumvent the BTB through this transepithelial transport pathway in Sertoli cells. SIGNIFICANCE STATEMENT: This study is the first to predict drug interactions with equilibrative nucleoside transporter (ENT) 1 and ENT2 using Bayesian modeling. Novel CRISPR/CRISPR-associated protein 9 functional knockouts of ENT1 and ENT2 in HeLa S3 cells were generated and characterized. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can circumvent the blood-testis barrier through this transepithelial transport pathway in Sertoli cells.
Collapse
Affiliation(s)
- Siennah R Miller
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Xiaohong Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Joseph L Jilek
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Daniel H Foil
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Kimberley M Zorn
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Sean Ekins
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| |
Collapse
|
14
|
Hau RK, Miller SR, Wright SH, Cherrington NJ. Generation of a hTERT-Immortalized Human Sertoli Cell Model to Study Transporter Dynamics at the Blood-Testis Barrier. Pharmaceutics 2020; 12:pharmaceutics12111005. [PMID: 33105674 PMCID: PMC7690448 DOI: 10.3390/pharmaceutics12111005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-testis barrier (BTB) formed by adjacent Sertoli cells (SCs) limits the entry of many chemicals into seminiferous tubules. Differences in rodent and human substrate-transporter selectivity or kinetics can misrepresent conclusions drawn using rodent in vitro models. Therefore, human in vitro models are preferable when studying transporter dynamics at the BTB. This study describes a hTERT-immortalized human SC line (hT-SerC) with significantly increased replication capacity and minor phenotypic alterations compared to primary human SCs. Notably, hT-SerCs retained similar morphology and minimal changes to mRNA expression of several common SC genes, including AR and FSHR. The mRNA expression of most xenobiotic transporters was within the 2-fold difference threshold in RT-qPCR analysis with some exceptions (OAT3, OCT3, OCTN1, OATP3A1, OATP4A1, ENT1, and ENT2). Functional analysis of the equilibrative nucleoside transporters (ENTs) revealed that primary human SCs and hT-SerCs predominantly express ENT1 with minimal ENT2 expression at the plasma membrane. ENT1-mediated uptake of [3H] uridine was linear over 10 min and inhibited by NBMPR with an IC50 value of 1.35 ± 0.37 nM. These results demonstrate that hT-SerCs can functionally model elements of transport across the human BTB, potentially leading to identification of other transport pathways for xenobiotics, and will guide drug discovery efforts in developing effective BTB-permeable compounds.
Collapse
Affiliation(s)
- Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
| | - Siennah R. Miller
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85719, USA
- Correspondence: (S.H.W.); (N.J.C.); Tel.: +1-(520)-626-4253 (S.H.W.); +1-(520)-626-0219 (N.J.C.)
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
- Correspondence: (S.H.W.); (N.J.C.); Tel.: +1-(520)-626-4253 (S.H.W.); +1-(520)-626-0219 (N.J.C.)
| |
Collapse
|